1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/*
* Copyright (C) 2019-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/memory_manager/gfx_partition.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/heap_assigner.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/utilities/cpu_info.h"
#include "shared/source/utilities/heap_allocator.h"
namespace NEO {
const std::array<HeapIndex, 4> GfxPartition::heap32Names{{HeapIndex::heapInternalDeviceMemory,
HeapIndex::heapInternal,
HeapIndex::heapExternalDeviceMemory,
HeapIndex::heapExternal}};
const std::array<HeapIndex, 8> GfxPartition::heapNonSvmNames{{HeapIndex::heapInternalDeviceMemory,
HeapIndex::heapInternal,
HeapIndex::heapExternalDeviceMemory,
HeapIndex::heapExternal,
HeapIndex::heapStandard,
HeapIndex::heapStandard64KB,
HeapIndex::heapStandard2MB,
HeapIndex::heapExtended}};
static void reserveLow48BitRangeWithRetry(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, size_t numRootDevices) {
uint64_t reservationSize = numRootDevices * MemoryConstants::teraByte;
constexpr uint64_t minimalReservationSize = 32 * MemoryConstants::gigaByte;
while (reservationSize >= minimalReservationSize) {
// With no base address being specified OS always reserve memory in [0x000000000000-0x7FFFFFFFFFFF] range
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(static_cast<size_t>(reservationSize), GfxPartition::heapGranularity);
if (reservedCpuAddressRange.alignedPtr) {
break;
}
// Oops... Try again with smaller chunk
reservationSize = alignDown(static_cast<uint64_t>(reservationSize * 0.9), MemoryConstants::pageSize64k);
};
}
static void reserveRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, uint64_t areaBase, uint64_t areaTop, uint64_t reservationSize) {
uint64_t reservationBase = areaBase;
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(reinterpret_cast<void *>(reservationBase), static_cast<size_t>(reservationSize), MemoryConstants::pageSize64k);
if (reservedCpuAddressRange.alignedPtr != nullptr) {
uint64_t alignedPtrU64 = castToUint64(reservedCpuAddressRange.alignedPtr);
if (alignedPtrU64 >= areaBase && alignedPtrU64 + reservationSize < areaTop) {
return;
} else {
osMemory->releaseCpuAddressRange(reservedCpuAddressRange);
reservedCpuAddressRange.alignedPtr = nullptr;
}
}
OSMemory::MemoryMaps memoryMaps;
osMemory->getMemoryMaps(memoryMaps);
for (size_t i = 0; reservationBase < areaTop && i < memoryMaps.size(); ++i) {
if (memoryMaps[i].end < areaBase) {
continue;
}
if (memoryMaps[i].start - reservationBase >= reservationSize) {
break;
}
reservationBase = memoryMaps[i].end;
}
if (reservationBase + reservationSize < areaTop) {
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(reinterpret_cast<void *>(reservationBase), static_cast<size_t>(reservationSize), MemoryConstants::pageSize64k);
}
}
static void reserveHigh48BitRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, size_t numRootDevices) {
constexpr uint64_t high48BitAreaBase = maxNBitValue(47) + 1; // 0x800000000000
constexpr uint64_t high48BitAreaTop = maxNBitValue(48); // 0xFFFFFFFFFFFF
uint64_t reservationSize = numRootDevices * MemoryConstants::teraByte;
reserveRangeWithMemoryMapsParse(osMemory, reservedCpuAddressRange, high48BitAreaBase, high48BitAreaTop, reservationSize);
}
static void reserve57BitRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, uint64_t reservationSize) {
constexpr uint64_t areaBase = maxNBitValue(48) + 1;
constexpr uint64_t areaTop = maxNBitValue(56);
reserveRangeWithMemoryMapsParse(osMemory, reservedCpuAddressRange, areaBase, areaTop, reservationSize);
}
GfxPartition::GfxPartition(OSMemory::ReservedCpuAddressRange &reservedCpuAddressRangeForNonSvmHeaps) : reservedCpuAddressRangeForNonSvmHeaps(reservedCpuAddressRangeForNonSvmHeaps), osMemory(OSMemory::create()) {}
GfxPartition::~GfxPartition() {
osMemory->releaseCpuAddressRange(reservedCpuAddressRangeForNonSvmHeaps);
reservedCpuAddressRangeForNonSvmHeaps = {};
osMemory->releaseCpuAddressRange(reservedCpuAddressRangeForHeapExtended);
}
void GfxPartition::Heap::init(uint64_t base, uint64_t size, size_t allocationAlignment) {
this->base = base;
this->size = size;
auto heapGranularity = GfxPartition::heapGranularity;
if (allocationAlignment > heapGranularity) {
heapGranularity = GfxPartition::heapGranularity2MB;
}
// Exclude very first and very last 64K from GPU address range allocation
if (size > 2 * heapGranularity) {
size -= 2 * heapGranularity;
}
alloc = std::make_unique<HeapAllocator>(base + heapGranularity, size, allocationAlignment);
}
void GfxPartition::Heap::initExternalWithFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
size -= GfxPartition::heapGranularity;
alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}
void GfxPartition::Heap::initWithFrontWindow(uint64_t base, uint64_t size, uint64_t frontWindowSize) {
this->base = base;
this->size = size;
// Exclude very very last 64K from GPU address range allocation
size -= GfxPartition::heapGranularity;
size -= frontWindowSize;
alloc = std::make_unique<HeapAllocator>(base + frontWindowSize, size, MemoryConstants::pageSize);
}
void GfxPartition::Heap::initFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}
uint64_t GfxPartition::Heap::allocate(size_t &size) {
return alloc->allocate(size);
}
uint64_t GfxPartition::Heap::allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment) {
return alloc->allocateWithCustomAlignment(sizeToAllocate, alignment);
}
void GfxPartition::Heap::free(uint64_t ptr, size_t size) {
alloc->free(ptr, size);
}
void GfxPartition::freeGpuAddressRange(uint64_t ptr, size_t size) {
for (auto heapName : GfxPartition::heapNonSvmNames) {
auto &heap = getHeap(heapName);
if ((ptr > heap.getBase()) && ((ptr + size) < heap.getLimit())) {
heap.free(ptr, size);
break;
}
}
}
uint64_t GfxPartition::getHeapMinimalAddress(HeapIndex heapIndex) {
if (heapIndex == HeapIndex::heapSvm ||
heapIndex == HeapIndex::heapExternalDeviceFrontWindow ||
heapIndex == HeapIndex::heapExternalFrontWindow ||
heapIndex == HeapIndex::heapInternalDeviceFrontWindow ||
heapIndex == HeapIndex::heapInternalFrontWindow) {
return getHeapBase(heapIndex);
} else {
if ((heapIndex == HeapIndex::heapExternal ||
heapIndex == HeapIndex::heapExternalDeviceMemory) &&
(getHeapLimit(HeapAssigner::mapExternalWindowIndex(heapIndex)) != 0)) {
return getHeapBase(heapIndex) + GfxPartition::externalFrontWindowPoolSize;
} else if (heapIndex == HeapIndex::heapInternal ||
heapIndex == HeapIndex::heapInternalDeviceMemory) {
return getHeapBase(heapIndex) + GfxPartition::internalFrontWindowPoolSize;
} else if (heapIndex == HeapIndex::heapStandard2MB) {
return getHeapBase(heapIndex) + GfxPartition::heapGranularity2MB;
}
return getHeapBase(heapIndex) + GfxPartition::heapGranularity;
}
}
bool GfxPartition::init(uint64_t gpuAddressSpace, size_t cpuAddressRangeSizeToReserve, uint32_t rootDeviceIndex, size_t numRootDevices, bool useExternalFrontWindowPool, uint64_t systemMemorySize, uint64_t gfxTop) {
/*
* I. 64-bit builds:
*
* 1) 48-bit Full Range SVM gfx layout:
*
* SVM H0 H1 H2 H3 STANDARD STANDARD64K
* |__________________________________|____|____|____|____|________________|______________|
* | | | | | | | |
* | gfxBase gfxTop
* 0x0 0x0000800000000000 0x0000FFFFFFFFFFFF
*
*
* 2) 47-bit Full Range SVM gfx layout:
*
* gfxSize = 2^47 / 4 = 0x200000000000
* ________________________________________________
* / \
* SVM / H0 H1 H2 H3 STANDARD STANDARD64K \ SVM
* |________________|____|____|____|____|________________|______________|_______________|
* | | | | | | | | |
* | gfxBase gfxTop |
* 0x0 reserveCpuAddressRange(gfxSize) 0x00007FFFFFFFFFFF
* \_____________________________________ SVM _________________________________________/
*
*
*
* 3) Limited Range gfx layout (no SVM):
*
* H0 H1 H2 H3 STANDARD STANDARD64K
* |____|____|____|____|____________________|__________________|
* | | | | | | |
* gfxBase gfxTop
* 0x0 0xFFF...FFF < 47 bit
*
*
* II. 32-bit builds:
*
* 1) 32-bit Full Range SVM gfx layout:
*
* SVM H0 H1 H2 H3 STANDARD STANDARD64K
* |_______|____|____|____|____|________________|______________|
* | | | | | | | |
* | gfxBase gfxTop
* 0x0 0x100000000 gpuAddressSpace
*/
uint64_t gfxBase = 0x0ull;
const uint64_t gfxHeap32Size = 4 * MemoryConstants::gigaByte;
if (is32bit) {
gfxBase = maxNBitValue(32) + 1;
heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
} else {
auto cpuVirtualAddressSize = CpuInfo::getInstance().getVirtualAddressSize();
if (cpuVirtualAddressSize == 48 && gpuAddressSpace == maxNBitValue(48)) {
gfxBase = maxNBitValue(48 - 1) + 1;
heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
} else if (gpuAddressSpace == maxNBitValue(47)) {
if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
if (cpuAddressRangeSizeToReserve == 0) {
return false;
}
reservedCpuAddressRangeForNonSvmHeaps = osMemory->reserveCpuAddressRange(cpuAddressRangeSizeToReserve, GfxPartition::heapGranularity);
if (reservedCpuAddressRangeForNonSvmHeaps.originalPtr == nullptr) {
return false;
}
if (!isAligned<GfxPartition::heapGranularity>(reservedCpuAddressRangeForNonSvmHeaps.alignedPtr)) {
return false;
}
}
gfxBase = reinterpret_cast<uint64_t>(reservedCpuAddressRangeForNonSvmHeaps.alignedPtr);
gfxTop = gfxBase + cpuAddressRangeSizeToReserve;
heapInit(HeapIndex::heapSvm, 0ull, gpuAddressSpace + 1);
} else if (gpuAddressSpace < maxNBitValue(47)) {
gfxBase = 0ull;
heapInit(HeapIndex::heapSvm, 0ull, 0ull);
} else {
if (!initAdditionalRange(cpuVirtualAddressSize, gpuAddressSpace, gfxBase, gfxTop, rootDeviceIndex, systemMemorySize, numRootDevices)) {
return false;
}
}
}
for (auto heap : GfxPartition::heap32Names) {
if (useExternalFrontWindowPool && HeapAssigner::heapTypeExternalWithFrontWindowPool(heap)) {
heapInitExternalWithFrontWindow(heap, gfxBase, gfxHeap32Size);
size_t externalFrontWindowSize = GfxPartition::externalFrontWindowPoolSize;
auto allocation = heapAllocate(heap, externalFrontWindowSize);
heapInitExternalWithFrontWindow(HeapAssigner::mapExternalWindowIndex(heap), allocation,
externalFrontWindowSize);
} else if (HeapAssigner::isInternalHeap(heap)) {
heapInitWithFrontWindow(heap, gfxBase, gfxHeap32Size, GfxPartition::internalFrontWindowPoolSize);
heapInitFrontWindow(HeapAssigner::mapInternalWindowIndex(heap), gfxBase, GfxPartition::internalFrontWindowPoolSize);
} else {
heapInit(heap, gfxBase, gfxHeap32Size);
}
gfxBase += gfxHeap32Size;
}
constexpr uint32_t numStandardHeaps = static_cast<uint32_t>(HeapIndex::heapStandard2MB) - static_cast<uint32_t>(HeapIndex::heapStandard) + 1;
constexpr uint64_t maxStandardHeapGranularity = std::max(GfxPartition::heapGranularity, GfxPartition::heapGranularity2MB);
gfxBase = alignUp(gfxBase, maxStandardHeapGranularity);
uint64_t maxStandardHeapSize = alignDown((gfxTop - gfxBase) / numStandardHeaps, maxStandardHeapGranularity);
uint64_t maxStandard64HeapSize = maxStandardHeapSize;
uint64_t maxStandard2MBHeapSize = maxStandardHeapSize;
if (gpuAddressSpace == maxNBitValue(57)) {
maxStandardHeapSize *= 2;
maxStandard64HeapSize /= 2;
maxStandard2MBHeapSize /= 2;
}
auto gfxStandardSize = maxStandardHeapSize;
heapInit(HeapIndex::heapStandard, gfxBase, gfxStandardSize);
DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity>(getHeapBase(HeapIndex::heapStandard)));
gfxBase += maxStandardHeapSize;
// Split HEAP_STANDARD64K among root devices
auto gfxStandard64KBSize = alignDown(maxStandard64HeapSize / numRootDevices, GfxPartition::heapGranularity);
heapInitWithAllocationAlignment(HeapIndex::heapStandard64KB, gfxBase + rootDeviceIndex * gfxStandard64KBSize, gfxStandard64KBSize, MemoryConstants::pageSize64k);
DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity>(getHeapBase(HeapIndex::heapStandard64KB)));
gfxBase += maxStandard64HeapSize;
// Split HEAP_STANDARD2MB among root devices
auto gfxStandard2MBSize = alignDown(maxStandard2MBHeapSize / numRootDevices, GfxPartition::heapGranularity2MB);
heapInitWithAllocationAlignment(HeapIndex::heapStandard2MB, gfxBase + rootDeviceIndex * gfxStandard2MBSize, gfxStandard2MBSize, 2 * MemoryConstants::megaByte);
DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity2MB>(getHeapBase(HeapIndex::heapStandard2MB)));
return true;
}
bool GfxPartition::initAdditionalRange(uint32_t cpuVirtualAddressSize, uint64_t gpuAddressSpace, uint64_t &gfxBase, uint64_t &gfxTop, uint32_t rootDeviceIndex, uint64_t systemMemorySize, size_t numRootDevices) {
/*
* 57-bit Full Range SVM gfx layout:
*
* gfxSize = 256GB(48b)/1TB(57b) 2^48 = 0x1_0000_0000_0000 (Not Used Now)
* ________________________________________________ _______________________________ ___________________
* / \ / \ / \
* SVM / H0 H1 H2 H3 STANDARD STANDARD64K \ SVM / HEAP_EXTENDED \ / \
* |________________|____|____|____|____|________________|______________|_______________|___________________________________|______________ ..... __|
* | | | | | | | | | | |
* | gfxBase gfxTop < 0xFFFFFFFFFFFF | | |
* 0x0 reserveCpuAddressRange(gfxSize) < 0xFFFFFFFFFFFF - gfxSize 0x100_0000_0000_0000(57b) 0x100_FFFF_FFFF_FFFF 0x1FF_FFFF_FFFF_FFFF
* \_____________________________________ SVM _________________________________________/
*
*/
// We are here means either CPU VA or GPU VA or both are 57 bit
if (cpuVirtualAddressSize != 57 && cpuVirtualAddressSize != 48) {
return false;
}
if (gpuAddressSpace != maxNBitValue(57) && gpuAddressSpace != maxNBitValue(48)) {
return false;
}
if (cpuVirtualAddressSize == 57 && CpuInfo::getInstance().isCpuFlagPresent("la57")) {
// Always reserve 48 bit window on 57 bit CPU
if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
reserveHigh48BitRangeWithMemoryMapsParse(osMemory.get(), reservedCpuAddressRangeForNonSvmHeaps, numRootDevices);
if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
reserveLow48BitRangeWithRetry(osMemory.get(), reservedCpuAddressRangeForNonSvmHeaps, numRootDevices);
}
if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
return false;
}
}
gfxBase = castToUint64(reservedCpuAddressRangeForNonSvmHeaps.alignedPtr);
gfxTop = gfxBase + reservedCpuAddressRangeForNonSvmHeaps.sizeToReserve;
if (gpuAddressSpace == maxNBitValue(57)) {
heapInit(HeapIndex::heapSvm, 0ull, maxNBitValue(57 - 1) + 1);
} else {
heapInit(HeapIndex::heapSvm, 0ull, maxNBitValue(48) + 1);
}
if (gpuAddressSpace == maxNBitValue(57)) {
uint64_t heapExtendedSize = 4 * systemMemorySize;
reserve57BitRangeWithMemoryMapsParse(osMemory.get(), reservedCpuAddressRangeForHeapExtended, heapExtendedSize);
if (reservedCpuAddressRangeForHeapExtended.alignedPtr) {
heapInit(HeapIndex::heapExtendedHost, castToUint64(reservedCpuAddressRangeForHeapExtended.alignedPtr), heapExtendedSize);
}
}
} else {
// On 48 bit CPU this range is reserved for OS usage, do not reserve
gfxBase = maxNBitValue(48 - 1) + 1; // 0x800000000000
gfxTop = maxNBitValue(48) + 1; // 0x1000000000000
heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
}
// Init HEAP_EXTENDED only for 57 bit GPU
if (gpuAddressSpace == maxNBitValue(57)) {
auto heapExtendedSize = alignDown((maxNBitValue(48) + 1), GfxPartition::heapGranularity);
heapInit(HeapIndex::heapExtended, maxNBitValue(57 - 1) + 1 + rootDeviceIndex * heapExtendedSize, heapExtendedSize);
}
return true;
}
} // namespace NEO
|