File: gfx_partition.cpp

package info (click to toggle)
intel-compute-runtime 25.35.35096.9-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,324 kB
  • sloc: cpp: 926,243; lisp: 3,433; sh: 715; makefile: 162; python: 21
file content (399 lines) | stat: -rw-r--r-- 19,839 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
 * Copyright (C) 2019-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/memory_manager/gfx_partition.h"

#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/heap_assigner.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/utilities/cpu_info.h"
#include "shared/source/utilities/heap_allocator.h"

namespace NEO {

const std::array<HeapIndex, 4> GfxPartition::heap32Names{{HeapIndex::heapInternalDeviceMemory,
                                                          HeapIndex::heapInternal,
                                                          HeapIndex::heapExternalDeviceMemory,
                                                          HeapIndex::heapExternal}};

const std::array<HeapIndex, 8> GfxPartition::heapNonSvmNames{{HeapIndex::heapInternalDeviceMemory,
                                                              HeapIndex::heapInternal,
                                                              HeapIndex::heapExternalDeviceMemory,
                                                              HeapIndex::heapExternal,
                                                              HeapIndex::heapStandard,
                                                              HeapIndex::heapStandard64KB,
                                                              HeapIndex::heapStandard2MB,
                                                              HeapIndex::heapExtended}};

static void reserveLow48BitRangeWithRetry(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, size_t numRootDevices) {
    uint64_t reservationSize = numRootDevices * MemoryConstants::teraByte;
    constexpr uint64_t minimalReservationSize = 32 * MemoryConstants::gigaByte;

    while (reservationSize >= minimalReservationSize) {
        // With no base address being specified OS always reserve memory in [0x000000000000-0x7FFFFFFFFFFF] range
        reservedCpuAddressRange = osMemory->reserveCpuAddressRange(static_cast<size_t>(reservationSize), GfxPartition::heapGranularity);

        if (reservedCpuAddressRange.alignedPtr) {
            break;
        }

        // Oops... Try again with smaller chunk
        reservationSize = alignDown(static_cast<uint64_t>(reservationSize * 0.9), MemoryConstants::pageSize64k);
    };
}

static void reserveRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, uint64_t areaBase, uint64_t areaTop, uint64_t reservationSize) {
    uint64_t reservationBase = areaBase;

    reservedCpuAddressRange = osMemory->reserveCpuAddressRange(reinterpret_cast<void *>(reservationBase), static_cast<size_t>(reservationSize), MemoryConstants::pageSize64k);

    if (reservedCpuAddressRange.alignedPtr != nullptr) {
        uint64_t alignedPtrU64 = castToUint64(reservedCpuAddressRange.alignedPtr);
        if (alignedPtrU64 >= areaBase && alignedPtrU64 + reservationSize < areaTop) {
            return;
        } else {
            osMemory->releaseCpuAddressRange(reservedCpuAddressRange);
            reservedCpuAddressRange.alignedPtr = nullptr;
        }
    }

    OSMemory::MemoryMaps memoryMaps;
    osMemory->getMemoryMaps(memoryMaps);

    for (size_t i = 0; reservationBase < areaTop && i < memoryMaps.size(); ++i) {
        if (memoryMaps[i].end < areaBase) {
            continue;
        }

        if (memoryMaps[i].start - reservationBase >= reservationSize) {
            break;
        }
        reservationBase = memoryMaps[i].end;
    }

    if (reservationBase + reservationSize < areaTop) {
        reservedCpuAddressRange = osMemory->reserveCpuAddressRange(reinterpret_cast<void *>(reservationBase), static_cast<size_t>(reservationSize), MemoryConstants::pageSize64k);
    }
}

static void reserveHigh48BitRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, size_t numRootDevices) {
    constexpr uint64_t high48BitAreaBase = maxNBitValue(47) + 1; // 0x800000000000
    constexpr uint64_t high48BitAreaTop = maxNBitValue(48);      // 0xFFFFFFFFFFFF
    uint64_t reservationSize = numRootDevices * MemoryConstants::teraByte;
    reserveRangeWithMemoryMapsParse(osMemory, reservedCpuAddressRange, high48BitAreaBase, high48BitAreaTop, reservationSize);
}

static void reserve57BitRangeWithMemoryMapsParse(OSMemory *osMemory, OSMemory::ReservedCpuAddressRange &reservedCpuAddressRange, uint64_t reservationSize) {
    constexpr uint64_t areaBase = maxNBitValue(48) + 1;
    constexpr uint64_t areaTop = maxNBitValue(56);
    reserveRangeWithMemoryMapsParse(osMemory, reservedCpuAddressRange, areaBase, areaTop, reservationSize);
}

GfxPartition::GfxPartition(OSMemory::ReservedCpuAddressRange &reservedCpuAddressRangeForNonSvmHeaps) : reservedCpuAddressRangeForNonSvmHeaps(reservedCpuAddressRangeForNonSvmHeaps), osMemory(OSMemory::create()) {}

GfxPartition::~GfxPartition() {
    osMemory->releaseCpuAddressRange(reservedCpuAddressRangeForNonSvmHeaps);
    reservedCpuAddressRangeForNonSvmHeaps = {};
    osMemory->releaseCpuAddressRange(reservedCpuAddressRangeForHeapExtended);
}

void GfxPartition::Heap::init(uint64_t base, uint64_t size, size_t allocationAlignment) {
    this->base = base;
    this->size = size;

    auto heapGranularity = GfxPartition::heapGranularity;
    if (allocationAlignment > heapGranularity) {
        heapGranularity = GfxPartition::heapGranularity2MB;
    }

    // Exclude very first and very last 64K from GPU address range allocation
    if (size > 2 * heapGranularity) {
        size -= 2 * heapGranularity;
    }

    alloc = std::make_unique<HeapAllocator>(base + heapGranularity, size, allocationAlignment);
}

void GfxPartition::Heap::initExternalWithFrontWindow(uint64_t base, uint64_t size) {
    this->base = base;
    this->size = size;

    size -= GfxPartition::heapGranularity;

    alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}

void GfxPartition::Heap::initWithFrontWindow(uint64_t base, uint64_t size, uint64_t frontWindowSize) {
    this->base = base;
    this->size = size;

    // Exclude very very last 64K from GPU address range allocation
    size -= GfxPartition::heapGranularity;
    size -= frontWindowSize;

    alloc = std::make_unique<HeapAllocator>(base + frontWindowSize, size, MemoryConstants::pageSize);
}

void GfxPartition::Heap::initFrontWindow(uint64_t base, uint64_t size) {
    this->base = base;
    this->size = size;

    alloc = std::make_unique<HeapAllocator>(base, size, MemoryConstants::pageSize, 0u);
}

uint64_t GfxPartition::Heap::allocate(size_t &size) {
    return alloc->allocate(size);
}

uint64_t GfxPartition::Heap::allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment) {
    return alloc->allocateWithCustomAlignment(sizeToAllocate, alignment);
}

void GfxPartition::Heap::free(uint64_t ptr, size_t size) {
    alloc->free(ptr, size);
}

void GfxPartition::freeGpuAddressRange(uint64_t ptr, size_t size) {
    for (auto heapName : GfxPartition::heapNonSvmNames) {
        auto &heap = getHeap(heapName);
        if ((ptr > heap.getBase()) && ((ptr + size) < heap.getLimit())) {
            heap.free(ptr, size);
            break;
        }
    }
}

uint64_t GfxPartition::getHeapMinimalAddress(HeapIndex heapIndex) {
    if (heapIndex == HeapIndex::heapSvm ||
        heapIndex == HeapIndex::heapExternalDeviceFrontWindow ||
        heapIndex == HeapIndex::heapExternalFrontWindow ||
        heapIndex == HeapIndex::heapInternalDeviceFrontWindow ||
        heapIndex == HeapIndex::heapInternalFrontWindow) {
        return getHeapBase(heapIndex);
    } else {
        if ((heapIndex == HeapIndex::heapExternal ||
             heapIndex == HeapIndex::heapExternalDeviceMemory) &&
            (getHeapLimit(HeapAssigner::mapExternalWindowIndex(heapIndex)) != 0)) {
            return getHeapBase(heapIndex) + GfxPartition::externalFrontWindowPoolSize;
        } else if (heapIndex == HeapIndex::heapInternal ||
                   heapIndex == HeapIndex::heapInternalDeviceMemory) {
            return getHeapBase(heapIndex) + GfxPartition::internalFrontWindowPoolSize;
        } else if (heapIndex == HeapIndex::heapStandard2MB) {
            return getHeapBase(heapIndex) + GfxPartition::heapGranularity2MB;
        }
        return getHeapBase(heapIndex) + GfxPartition::heapGranularity;
    }
}

bool GfxPartition::init(uint64_t gpuAddressSpace, size_t cpuAddressRangeSizeToReserve, uint32_t rootDeviceIndex, size_t numRootDevices, bool useExternalFrontWindowPool, uint64_t systemMemorySize, uint64_t gfxTop) {

    /*
     * I. 64-bit builds:
     *
     *   1) 48-bit Full Range SVM gfx layout:
     *
     *                   SVM                  H0   H1   H2   H3      STANDARD      STANDARD64K
     *   |__________________________________|____|____|____|____|________________|______________|
     *   |                                  |    |    |    |    |                |              |
     *   |                                gfxBase                                             gfxTop
     *  0x0                          0x0000800000000000                               0x0000FFFFFFFFFFFF
     *
     *
     *   2) 47-bit Full Range SVM gfx layout:
     *
     *                             gfxSize = 2^47 / 4 = 0x200000000000
     *                      ________________________________________________
     *                     /                                                \
     *           SVM      / H0   H1   H2   H3      STANDARD      STANDARD64K \      SVM
     *   |________________|____|____|____|____|________________|______________|_______________|
     *   |                |    |    |    |    |                |              |               |
     *   |              gfxBase                                             gfxTop            |
     *  0x0    reserveCpuAddressRange(gfxSize)                                      0x00007FFFFFFFFFFF
     *   \_____________________________________ SVM _________________________________________/
     *
     *
     *
     *   3) Limited Range gfx layout (no SVM):
     *
     *     H0   H1   H2   H3        STANDARD          STANDARD64K
     *   |____|____|____|____|____________________|__________________|
     *   |    |    |    |    |                    |                  |
     * gfxBase                                                    gfxTop
     *  0x0                                                    0xFFF...FFF < 47 bit
     *
     *
     * II. 32-bit builds:
     *
     *   1) 32-bit Full Range SVM gfx layout:
     *
     *      SVM    H0   H1   H2   H3      STANDARD      STANDARD64K
     *   |_______|____|____|____|____|________________|______________|
     *   |       |    |    |    |    |                |              |
     *   |     gfxBase                                             gfxTop
     *  0x0  0x100000000                                       gpuAddressSpace
     */

    uint64_t gfxBase = 0x0ull;
    const uint64_t gfxHeap32Size = 4 * MemoryConstants::gigaByte;

    if (is32bit) {
        gfxBase = maxNBitValue(32) + 1;
        heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
    } else {
        auto cpuVirtualAddressSize = CpuInfo::getInstance().getVirtualAddressSize();
        if (cpuVirtualAddressSize == 48 && gpuAddressSpace == maxNBitValue(48)) {
            gfxBase = maxNBitValue(48 - 1) + 1;
            heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
        } else if (gpuAddressSpace == maxNBitValue(47)) {
            if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
                if (cpuAddressRangeSizeToReserve == 0) {
                    return false;
                }
                reservedCpuAddressRangeForNonSvmHeaps = osMemory->reserveCpuAddressRange(cpuAddressRangeSizeToReserve, GfxPartition::heapGranularity);
                if (reservedCpuAddressRangeForNonSvmHeaps.originalPtr == nullptr) {
                    return false;
                }
                if (!isAligned<GfxPartition::heapGranularity>(reservedCpuAddressRangeForNonSvmHeaps.alignedPtr)) {
                    return false;
                }
            }
            gfxBase = reinterpret_cast<uint64_t>(reservedCpuAddressRangeForNonSvmHeaps.alignedPtr);
            gfxTop = gfxBase + cpuAddressRangeSizeToReserve;
            heapInit(HeapIndex::heapSvm, 0ull, gpuAddressSpace + 1);
        } else if (gpuAddressSpace < maxNBitValue(47)) {
            gfxBase = 0ull;
            heapInit(HeapIndex::heapSvm, 0ull, 0ull);
        } else {
            if (!initAdditionalRange(cpuVirtualAddressSize, gpuAddressSpace, gfxBase, gfxTop, rootDeviceIndex, systemMemorySize, numRootDevices)) {
                return false;
            }
        }
    }

    for (auto heap : GfxPartition::heap32Names) {
        if (useExternalFrontWindowPool && HeapAssigner::heapTypeExternalWithFrontWindowPool(heap)) {
            heapInitExternalWithFrontWindow(heap, gfxBase, gfxHeap32Size);
            size_t externalFrontWindowSize = GfxPartition::externalFrontWindowPoolSize;
            auto allocation = heapAllocate(heap, externalFrontWindowSize);
            heapInitExternalWithFrontWindow(HeapAssigner::mapExternalWindowIndex(heap), allocation,
                                            externalFrontWindowSize);
        } else if (HeapAssigner::isInternalHeap(heap)) {
            heapInitWithFrontWindow(heap, gfxBase, gfxHeap32Size, GfxPartition::internalFrontWindowPoolSize);
            heapInitFrontWindow(HeapAssigner::mapInternalWindowIndex(heap), gfxBase, GfxPartition::internalFrontWindowPoolSize);
        } else {
            heapInit(heap, gfxBase, gfxHeap32Size);
        }
        gfxBase += gfxHeap32Size;
    }

    constexpr uint32_t numStandardHeaps = static_cast<uint32_t>(HeapIndex::heapStandard2MB) - static_cast<uint32_t>(HeapIndex::heapStandard) + 1;
    constexpr uint64_t maxStandardHeapGranularity = std::max(GfxPartition::heapGranularity, GfxPartition::heapGranularity2MB);

    gfxBase = alignUp(gfxBase, maxStandardHeapGranularity);
    uint64_t maxStandardHeapSize = alignDown((gfxTop - gfxBase) / numStandardHeaps, maxStandardHeapGranularity);
    uint64_t maxStandard64HeapSize = maxStandardHeapSize;
    uint64_t maxStandard2MBHeapSize = maxStandardHeapSize;

    if (gpuAddressSpace == maxNBitValue(57)) {
        maxStandardHeapSize *= 2;
        maxStandard64HeapSize /= 2;
        maxStandard2MBHeapSize /= 2;
    }

    auto gfxStandardSize = maxStandardHeapSize;
    heapInit(HeapIndex::heapStandard, gfxBase, gfxStandardSize);
    DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity>(getHeapBase(HeapIndex::heapStandard)));

    gfxBase += maxStandardHeapSize;

    // Split HEAP_STANDARD64K among root devices
    auto gfxStandard64KBSize = alignDown(maxStandard64HeapSize / numRootDevices, GfxPartition::heapGranularity);
    heapInitWithAllocationAlignment(HeapIndex::heapStandard64KB, gfxBase + rootDeviceIndex * gfxStandard64KBSize, gfxStandard64KBSize, MemoryConstants::pageSize64k);
    DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity>(getHeapBase(HeapIndex::heapStandard64KB)));

    gfxBase += maxStandard64HeapSize;

    // Split HEAP_STANDARD2MB among root devices
    auto gfxStandard2MBSize = alignDown(maxStandard2MBHeapSize / numRootDevices, GfxPartition::heapGranularity2MB);
    heapInitWithAllocationAlignment(HeapIndex::heapStandard2MB, gfxBase + rootDeviceIndex * gfxStandard2MBSize, gfxStandard2MBSize, 2 * MemoryConstants::megaByte);
    DEBUG_BREAK_IF(!isAligned<GfxPartition::heapGranularity2MB>(getHeapBase(HeapIndex::heapStandard2MB)));

    return true;
}

bool GfxPartition::initAdditionalRange(uint32_t cpuVirtualAddressSize, uint64_t gpuAddressSpace, uint64_t &gfxBase, uint64_t &gfxTop, uint32_t rootDeviceIndex, uint64_t systemMemorySize, size_t numRootDevices) {
    /*
     * 57-bit Full Range SVM gfx layout:
     *
     *                                gfxSize = 256GB(48b)/1TB(57b)                                 2^48 = 0x1_0000_0000_0000          (Not Used Now)
     *                      ________________________________________________                     _______________________________     ___________________
     *                     /                                                \                   /                               \   /                   \
     *           SVM      / H0   H1   H2   H3      STANDARD      STANDARD64K \      SVM        /          HEAP_EXTENDED          \ /                     \
     *   |________________|____|____|____|____|________________|______________|_______________|___________________________________|______________ ..... __|
     *   |                |    |    |    |    |                |              |               |                                   |                       |
     *   |              gfxBase                                     gfxTop < 0xFFFFFFFFFFFF   |                                   |                       |
     *  0x0  reserveCpuAddressRange(gfxSize) < 0xFFFFFFFFFFFF - gfxSize             0x100_0000_0000_0000(57b)           0x100_FFFF_FFFF_FFFF    0x1FF_FFFF_FFFF_FFFF
     *   \_____________________________________ SVM _________________________________________/
     *
     */

    // We are here means either CPU VA or GPU VA or both are 57 bit
    if (cpuVirtualAddressSize != 57 && cpuVirtualAddressSize != 48) {
        return false;
    }

    if (gpuAddressSpace != maxNBitValue(57) && gpuAddressSpace != maxNBitValue(48)) {
        return false;
    }

    if (cpuVirtualAddressSize == 57 && CpuInfo::getInstance().isCpuFlagPresent("la57")) {
        // Always reserve 48 bit window on 57 bit CPU
        if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
            reserveHigh48BitRangeWithMemoryMapsParse(osMemory.get(), reservedCpuAddressRangeForNonSvmHeaps, numRootDevices);

            if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
                reserveLow48BitRangeWithRetry(osMemory.get(), reservedCpuAddressRangeForNonSvmHeaps, numRootDevices);
            }

            if (reservedCpuAddressRangeForNonSvmHeaps.alignedPtr == nullptr) {
                return false;
            }
        }

        gfxBase = castToUint64(reservedCpuAddressRangeForNonSvmHeaps.alignedPtr);
        gfxTop = gfxBase + reservedCpuAddressRangeForNonSvmHeaps.sizeToReserve;
        if (gpuAddressSpace == maxNBitValue(57)) {
            heapInit(HeapIndex::heapSvm, 0ull, maxNBitValue(57 - 1) + 1);
        } else {
            heapInit(HeapIndex::heapSvm, 0ull, maxNBitValue(48) + 1);
        }

        if (gpuAddressSpace == maxNBitValue(57)) {
            uint64_t heapExtendedSize = 4 * systemMemorySize;
            reserve57BitRangeWithMemoryMapsParse(osMemory.get(), reservedCpuAddressRangeForHeapExtended, heapExtendedSize);
            if (reservedCpuAddressRangeForHeapExtended.alignedPtr) {
                heapInit(HeapIndex::heapExtendedHost, castToUint64(reservedCpuAddressRangeForHeapExtended.alignedPtr), heapExtendedSize);
            }
        }
    } else {
        // On 48 bit CPU this range is reserved for OS usage, do not reserve
        gfxBase = maxNBitValue(48 - 1) + 1; // 0x800000000000
        gfxTop = maxNBitValue(48) + 1;      // 0x1000000000000
        heapInit(HeapIndex::heapSvm, 0ull, gfxBase);
    }

    // Init HEAP_EXTENDED only for 57 bit GPU
    if (gpuAddressSpace == maxNBitValue(57)) {
        auto heapExtendedSize = alignDown((maxNBitValue(48) + 1), GfxPartition::heapGranularity);
        heapInit(HeapIndex::heapExtended, maxNBitValue(57 - 1) + 1 + rootDeviceIndex * heapExtendedSize, heapExtendedSize);
    }

    return true;
}

} // namespace NEO