File: bitcontainers.h

package info (click to toggle)
intel-compute-runtime 25.35.35096.9-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,324 kB
  • sloc: cpp: 926,243; lisp: 3,433; sh: 715; makefile: 162; python: 21
file content (239 lines) | stat: -rw-r--r-- 7,281 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
 * Copyright (C) 2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#pragma once

#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/debug_helpers.h"
#include "shared/source/helpers/ptr_math.h"

#include <algorithm>
#include <bit>
#include <bitset>
#include <functional>
#include <vector>

// Variable-length bitarray with support for ffz (find first zero)
class BitArray final {
    static inline constexpr size_t chunkSize = 64;
    using Chunk = std::bitset<chunkSize>;
    static_assert(sizeof(Chunk) == sizeof(uint64_t));

    std::vector<Chunk> data;
    size_t arrayLength;

  public:
    static inline constexpr int64_t npos = -1;

    BitArray(size_t length) : arrayLength(length) {
        data.resize(alignUp(length, chunkSize) / chunkSize);
    }

    Chunk::reference operator[](size_t pos) {
        DEBUG_BREAK_IF(pos >= arrayLength);
        return data[pos / chunkSize][pos % chunkSize];
    }

    int64_t ffz() const {
        auto chunkIt = std::find_if(cbegin(data), cend(data), [](auto &chunk) { return false == chunk.all(); });
        if (cend(data) == chunkIt) {
            return npos;
        }

        auto offset = std::countr_one(chunkIt->to_ullong());
        auto block = chunkIt - cbegin(data);
        auto pos = block * chunkSize + offset;
        if (pos >= arrayLength) {
            return npos;
        }
        return static_cast<int64_t>(pos);
    }

    size_t length() const {
        return arrayLength;
    }
};

// Variable-length allocator of bits (positions)
class BitAllocator final {
    BitArray bitArray;

  public:
    static inline constexpr int64_t npos = BitArray::npos;

    BitAllocator(size_t capacity) : bitArray(capacity) {
    }

    int64_t allocate() {
        auto pos = bitArray.ffz();
        if (BitArray::npos == pos) {
            return npos;
        }
        bitArray[static_cast<size_t>(pos)] = true;
        return pos;
    }

    void free(int64_t pos) {
        if (pos < 0) {
            DEBUG_BREAK_IF(true);
            return;
        }
        DEBUG_BREAK_IF(false == bitArray[static_cast<size_t>(pos)]);
        bitArray[static_cast<size_t>(pos)] = false;
    }

    size_t sizeInBits() const {
        return bitArray.length();
    }
};

// Array of opaque elements
template <typename UnderlyingMemoryHandleT = void *>
class OpaqueArray {
    using ElementCount = size_t;

    const UnderlyingMemoryHandleT userHandle;
    void *const array = nullptr;
    const size_t arraySizeInBytes = 0;
    const size_t elementStrideInBytes = 0;

  protected:
    size_t idx(void *ptr) const {
        DEBUG_BREAK_IF(false == contains(ptr));
        auto byteOffset = ptrDiff(ptr, array);
        return byteOffset / elementStrideInBytes;
    }

  public:
    template <typename T>
    OpaqueArray(T &&handle, void *array, size_t elementStrideInBytes, size_t numElementsInArray)
        : userHandle(std::forward<T>(handle)), array(reinterpret_cast<uint8_t *>(array)),
          arraySizeInBytes(numElementsInArray * elementStrideInBytes), elementStrideInBytes(elementStrideInBytes) {
    }

    const UnderlyingMemoryHandleT &handle() const {
        return userHandle;
    }

    void *element(size_t pos) {
        return ptrOffset(array, pos * elementStrideInBytes);
    }

    void *base() const {
        return array;
    }

    bool contains(void *ptr) const {
        if (byteRangeContains(array, arraySizeInBytes, ptr)) {
            DEBUG_BREAK_IF(ptrDiff(ptr, array) + elementStrideInBytes > arraySizeInBytes);
            return true;
        }
        return false;
    }
};

// Fast fixed-size allocator of opaque elements (of uniform size)
template <typename UnderlyingMemoryHandleT = void *>
class OpaqueArrayElementAllocator final : public OpaqueArray<UnderlyingMemoryHandleT> {
    BitAllocator bitAllocator;

  public:
    template <typename T>
    OpaqueArrayElementAllocator(T &&handle, void *array, size_t elementStrideInBytes, size_t numElementsInArray)
        : OpaqueArray<UnderlyingMemoryHandleT>(std::forward<T>(handle), array, elementStrideInBytes, numElementsInArray),
          bitAllocator(numElementsInArray) {
    }

    void *allocate() {
        auto pos = bitAllocator.allocate();
        if (BitAllocator::npos == pos) {
            return nullptr;
        }
        return this->element(static_cast<size_t>(pos));
    }

    bool free(void *el) {
        if (this->contains(el) == false) {
            return false;
        }

        auto pos = this->idx(el);
        bitAllocator.free(pos);
        return true;
    }
};

template <typename UnderlyingMemoryHandleT>
struct UnderlyingAllocator {
    using AllocationT = std::pair<UnderlyingMemoryHandleT, void *>;

    std::function<AllocationT(size_t size, size_t alignment)> allocate;
    std::function<void(AllocationT)> free;
};

// Fast dynamic-size allocator of opaque elements (of uniform size)
template <typename UnderlyingMemoryHandleT = void *>
class OpaqueElementAllocator final {
  public:
    using UnderlyingAllocatorT = UnderlyingAllocator<UnderlyingMemoryHandleT>;
    using AllocationT = UnderlyingAllocatorT::AllocationT;

  private:
    const size_t chunkSize;
    const size_t alignedElementSize;

    UnderlyingAllocatorT underlyingAllocator;
    using ChunkT = OpaqueArrayElementAllocator<UnderlyingMemoryHandleT>;
    std::vector<ChunkT> chunks;

  public:
    template <typename GivenAllocatorT = UnderlyingAllocatorT>
    OpaqueElementAllocator(size_t chunkSize, size_t alignedElementSize,
                           GivenAllocatorT &&underlyingAllocator) : chunkSize(chunkSize), alignedElementSize(alignedElementSize),
                                                                    underlyingAllocator(std::forward<GivenAllocatorT>(underlyingAllocator)) {
        UNRECOVERABLE_IF(chunkSize < alignedElementSize);
        DEBUG_BREAK_IF((chunkSize % alignedElementSize) != 0);
    }

    ~OpaqueElementAllocator() {
        for (auto &chunk : chunks) {
            underlyingAllocator.free({std::move(chunk.handle()), chunk.base()});
        }
    }

    OpaqueElementAllocator(OpaqueElementAllocator &&) = default;
    OpaqueElementAllocator &operator=(OpaqueElementAllocator &&) = default;
    OpaqueElementAllocator(const OpaqueElementAllocator &) = delete;
    OpaqueElementAllocator &operator=(const OpaqueElementAllocator &) = delete;

    AllocationT allocate() {
        for (auto &chunk : chunks) {
            auto *va = chunk.allocate();
            if (va) {
                return {chunk.handle(), va};
            }
        }

        auto alloc = underlyingAllocator.allocate(chunkSize, alignedElementSize);
        if (nullptr == alloc.second) {
            return {};
        }
        chunks.emplace_back(std::move(alloc.first), alloc.second, alignedElementSize, chunkSize / alignedElementSize);

        return {chunks.rbegin()->handle(), chunks.rbegin()->allocate()};
    }

    bool free(void *ptr) {
        return std::ranges::any_of(chunks,
                                   [=](auto &chunk) { return chunk.free(ptr); });
    }

    bool contains(void *ptr) const {
        return std::ranges::any_of(chunks,
                                   [=](const auto &chunk) { return chunk.contains(ptr); });
    }
};