1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/*
* Copyright (C) 2019-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/utilities/heap_allocator.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/utilities/logger.h"
#include <algorithm>
namespace NEO {
bool operator<(const HeapChunk &hc1, const HeapChunk &hc2) {
return hc1.ptr < hc2.ptr;
}
uint64_t HeapAllocator::allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment) {
if (alignment < this->allocationAlignment) {
alignment = this->allocationAlignment;
}
UNRECOVERABLE_IF(alignment % allocationAlignment != 0); // custom alignment have to be a multiple of allocator alignment
sizeToAllocate = alignUp(sizeToAllocate, allocationAlignment);
std::lock_guard<std::mutex> lock(mtx);
DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());
if (availableSize < sizeToAllocate) {
return 0llu;
}
std::vector<HeapChunk> &freedChunks = (sizeToAllocate > sizeThreshold) ? freedChunksBig : freedChunksSmall;
uint32_t defragmentCount = 0;
for (;;) {
uint64_t ptrReturn = 0llu;
if (sizeToAllocate > sizeThreshold) {
const uint64_t misalignment = alignUp(pLeftBound, alignment) - pLeftBound;
if (pLeftBound + misalignment + sizeToAllocate <= pRightBound) {
if (misalignment) {
storeInFreedChunks(pLeftBound, static_cast<size_t>(misalignment), freedChunks);
pLeftBound += misalignment;
}
ptrReturn = pLeftBound;
pLeftBound += sizeToAllocate;
}
} else {
const uint64_t pStart = pRightBound - sizeToAllocate;
const uint64_t misalignment = pStart - alignDown(pStart, alignment);
if (pLeftBound + sizeToAllocate + misalignment <= pRightBound) {
if (misalignment) {
pRightBound -= misalignment;
storeInFreedChunks(pRightBound, static_cast<size_t>(misalignment), freedChunks);
}
pRightBound -= sizeToAllocate;
ptrReturn = pRightBound;
}
}
size_t sizeOfFreedChunk = 0;
if (ptrReturn == 0llu) {
ptrReturn = getFromFreedChunks(sizeToAllocate, freedChunks, sizeOfFreedChunk, alignment);
}
if (ptrReturn != 0llu) {
if (sizeOfFreedChunk > 0) {
availableSize -= sizeOfFreedChunk;
sizeToAllocate = sizeOfFreedChunk;
} else {
availableSize -= sizeToAllocate;
}
DEBUG_BREAK_IF(!isAligned(ptrReturn, alignment));
return ptrReturn;
}
if (defragmentCount == 0) {
defragment();
defragmentCount++;
} else if (alignment > 2 * MemoryConstants::megaByte && pRightBound - pLeftBound >= sizeToAllocate) {
alignment = Math::prevPowerOfTwo(static_cast<size_t>(pRightBound - pLeftBound - 1 - sizeToAllocate + 2 * MemoryConstants::pageSize64k));
} else {
return 0llu;
}
}
}
void HeapAllocator::free(uint64_t ptr, size_t size) {
if (ptr == 0llu)
return;
std::lock_guard<std::mutex> lock(mtx);
DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());
if (ptr == pRightBound) {
pRightBound = ptr + size;
mergeLastFreedSmall();
} else if (ptr == pLeftBound - size) {
pLeftBound = ptr;
mergeLastFreedBig();
} else if (ptr < pLeftBound) {
DEBUG_BREAK_IF(size <= sizeThreshold);
storeInFreedChunks(ptr, size, freedChunksBig);
} else {
storeInFreedChunks(ptr, size, freedChunksSmall);
}
availableSize += size;
}
NO_SANITIZE
double HeapAllocator::getUsage() const {
return static_cast<double>(size - availableSize) / size;
}
uint64_t HeapAllocator::getFromFreedChunks(size_t size, std::vector<HeapChunk> &freedChunks, size_t &sizeOfFreedChunk, size_t requiredAlignment) {
size_t elements = freedChunks.size();
size_t bestFitIndex = -1;
size_t bestFitSize = 0;
sizeOfFreedChunk = 0;
for (size_t i = 0; i < elements; i++) {
const bool chunkAligned = isAligned(freedChunks[i].ptr, requiredAlignment);
if (!chunkAligned) {
continue;
}
if (freedChunks[i].size == size) {
auto ptr = freedChunks[i].ptr;
freedChunks.erase(freedChunks.begin() + i);
return ptr;
}
if (freedChunks[i].size > size) {
if (freedChunks[i].size < bestFitSize || bestFitSize == 0) {
bestFitIndex = i;
bestFitSize = freedChunks[i].size;
}
}
}
if (bestFitSize != 0) {
if (bestFitSize < (size << 1)) {
auto ptr = freedChunks[bestFitIndex].ptr;
sizeOfFreedChunk = freedChunks[bestFitIndex].size;
freedChunks.erase(freedChunks.begin() + bestFitIndex);
return ptr;
} else {
size_t sizeDelta = freedChunks[bestFitIndex].size - size;
DEBUG_BREAK_IF(!(size <= sizeThreshold || (size > sizeThreshold && sizeDelta > sizeThreshold)));
auto ptr = freedChunks[bestFitIndex].ptr + sizeDelta;
if (!isAligned(ptr, requiredAlignment)) {
auto alignedPtr = alignDown(ptr, requiredAlignment);
auto alignedDelta = ptr - alignedPtr;
sizeOfFreedChunk = size + static_cast<size_t>(alignedDelta);
freedChunks[bestFitIndex].size = sizeDelta - static_cast<size_t>(alignedDelta);
if (freedChunks[bestFitIndex].size == 0) {
freedChunks.erase(freedChunks.begin() + bestFitIndex);
}
return alignedPtr;
}
freedChunks[bestFitIndex].size = sizeDelta;
return ptr;
}
}
return 0llu;
}
void HeapAllocator::defragment() {
if (freedChunksSmall.size() > 1) {
std::sort(freedChunksSmall.rbegin(), freedChunksSmall.rend());
size_t maxSize = freedChunksSmall.size();
for (size_t i = maxSize - 1; i > 0; --i) {
auto ptr = freedChunksSmall[i].ptr;
size_t chunkSize = freedChunksSmall[i].size;
if (freedChunksSmall[i - 1].ptr == ptr + chunkSize) {
freedChunksSmall[i - 1].ptr = ptr;
freedChunksSmall[i - 1].size += chunkSize;
freedChunksSmall.erase(freedChunksSmall.begin() + i);
}
}
}
mergeLastFreedSmall();
if (freedChunksBig.size() > 1) {
std::sort(freedChunksBig.begin(), freedChunksBig.end());
size_t maxSize = freedChunksBig.size();
for (size_t i = maxSize - 1; i > 0; --i) {
auto ptr = freedChunksBig[i].ptr;
size_t chunkSize = freedChunksBig[i].size;
if ((freedChunksBig[i - 1].ptr + freedChunksBig[i - 1].size) == ptr) {
freedChunksBig[i - 1].size += chunkSize;
freedChunksBig.erase(freedChunksBig.begin() + i);
}
}
}
mergeLastFreedBig();
DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());
}
} // namespace NEO
|