File: heap_allocator.cpp

package info (click to toggle)
intel-compute-runtime 25.35.35096.9-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,324 kB
  • sloc: cpp: 926,243; lisp: 3,433; sh: 715; makefile: 162; python: 21
file content (209 lines) | stat: -rw-r--r-- 7,395 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
 * Copyright (C) 2019-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/utilities/heap_allocator.h"

#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/utilities/logger.h"

#include <algorithm>

namespace NEO {

bool operator<(const HeapChunk &hc1, const HeapChunk &hc2) {
    return hc1.ptr < hc2.ptr;
}

uint64_t HeapAllocator::allocateWithCustomAlignment(size_t &sizeToAllocate, size_t alignment) {
    if (alignment < this->allocationAlignment) {
        alignment = this->allocationAlignment;
    }

    UNRECOVERABLE_IF(alignment % allocationAlignment != 0); // custom alignment have to be a multiple of allocator alignment
    sizeToAllocate = alignUp(sizeToAllocate, allocationAlignment);

    std::lock_guard<std::mutex> lock(mtx);
    DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());
    if (availableSize < sizeToAllocate) {
        return 0llu;
    }

    std::vector<HeapChunk> &freedChunks = (sizeToAllocate > sizeThreshold) ? freedChunksBig : freedChunksSmall;
    uint32_t defragmentCount = 0;

    for (;;) {
        uint64_t ptrReturn = 0llu;

        if (sizeToAllocate > sizeThreshold) {
            const uint64_t misalignment = alignUp(pLeftBound, alignment) - pLeftBound;
            if (pLeftBound + misalignment + sizeToAllocate <= pRightBound) {
                if (misalignment) {
                    storeInFreedChunks(pLeftBound, static_cast<size_t>(misalignment), freedChunks);
                    pLeftBound += misalignment;
                }
                ptrReturn = pLeftBound;
                pLeftBound += sizeToAllocate;
            }
        } else {
            const uint64_t pStart = pRightBound - sizeToAllocate;
            const uint64_t misalignment = pStart - alignDown(pStart, alignment);
            if (pLeftBound + sizeToAllocate + misalignment <= pRightBound) {
                if (misalignment) {
                    pRightBound -= misalignment;
                    storeInFreedChunks(pRightBound, static_cast<size_t>(misalignment), freedChunks);
                }
                pRightBound -= sizeToAllocate;
                ptrReturn = pRightBound;
            }
        }

        size_t sizeOfFreedChunk = 0;
        if (ptrReturn == 0llu) {
            ptrReturn = getFromFreedChunks(sizeToAllocate, freedChunks, sizeOfFreedChunk, alignment);
        }

        if (ptrReturn != 0llu) {
            if (sizeOfFreedChunk > 0) {
                availableSize -= sizeOfFreedChunk;
                sizeToAllocate = sizeOfFreedChunk;
            } else {
                availableSize -= sizeToAllocate;
            }
            DEBUG_BREAK_IF(!isAligned(ptrReturn, alignment));
            return ptrReturn;
        }

        if (defragmentCount == 0) {
            defragment();
            defragmentCount++;
        } else if (alignment > 2 * MemoryConstants::megaByte && pRightBound - pLeftBound >= sizeToAllocate) {
            alignment = Math::prevPowerOfTwo(static_cast<size_t>(pRightBound - pLeftBound - 1 - sizeToAllocate + 2 * MemoryConstants::pageSize64k));
        } else {
            return 0llu;
        }
    }
}

void HeapAllocator::free(uint64_t ptr, size_t size) {
    if (ptr == 0llu)
        return;

    std::lock_guard<std::mutex> lock(mtx);
    DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());

    if (ptr == pRightBound) {
        pRightBound = ptr + size;
        mergeLastFreedSmall();
    } else if (ptr == pLeftBound - size) {
        pLeftBound = ptr;
        mergeLastFreedBig();
    } else if (ptr < pLeftBound) {
        DEBUG_BREAK_IF(size <= sizeThreshold);
        storeInFreedChunks(ptr, size, freedChunksBig);
    } else {
        storeInFreedChunks(ptr, size, freedChunksSmall);
    }
    availableSize += size;
}

NO_SANITIZE
double HeapAllocator::getUsage() const {
    return static_cast<double>(size - availableSize) / size;
}

uint64_t HeapAllocator::getFromFreedChunks(size_t size, std::vector<HeapChunk> &freedChunks, size_t &sizeOfFreedChunk, size_t requiredAlignment) {
    size_t elements = freedChunks.size();
    size_t bestFitIndex = -1;
    size_t bestFitSize = 0;
    sizeOfFreedChunk = 0;

    for (size_t i = 0; i < elements; i++) {
        const bool chunkAligned = isAligned(freedChunks[i].ptr, requiredAlignment);
        if (!chunkAligned) {
            continue;
        }

        if (freedChunks[i].size == size) {
            auto ptr = freedChunks[i].ptr;
            freedChunks.erase(freedChunks.begin() + i);
            return ptr;
        }

        if (freedChunks[i].size > size) {
            if (freedChunks[i].size < bestFitSize || bestFitSize == 0) {
                bestFitIndex = i;
                bestFitSize = freedChunks[i].size;
            }
        }
    }

    if (bestFitSize != 0) {
        if (bestFitSize < (size << 1)) {
            auto ptr = freedChunks[bestFitIndex].ptr;
            sizeOfFreedChunk = freedChunks[bestFitIndex].size;
            freedChunks.erase(freedChunks.begin() + bestFitIndex);
            return ptr;
        } else {
            size_t sizeDelta = freedChunks[bestFitIndex].size - size;

            DEBUG_BREAK_IF(!(size <= sizeThreshold || (size > sizeThreshold && sizeDelta > sizeThreshold)));

            auto ptr = freedChunks[bestFitIndex].ptr + sizeDelta;
            if (!isAligned(ptr, requiredAlignment)) {
                auto alignedPtr = alignDown(ptr, requiredAlignment);
                auto alignedDelta = ptr - alignedPtr;

                sizeOfFreedChunk = size + static_cast<size_t>(alignedDelta);
                freedChunks[bestFitIndex].size = sizeDelta - static_cast<size_t>(alignedDelta);
                if (freedChunks[bestFitIndex].size == 0) {
                    freedChunks.erase(freedChunks.begin() + bestFitIndex);
                }
                return alignedPtr;
            }

            freedChunks[bestFitIndex].size = sizeDelta;
            return ptr;
        }
    }
    return 0llu;
}

void HeapAllocator::defragment() {

    if (freedChunksSmall.size() > 1) {
        std::sort(freedChunksSmall.rbegin(), freedChunksSmall.rend());
        size_t maxSize = freedChunksSmall.size();
        for (size_t i = maxSize - 1; i > 0; --i) {
            auto ptr = freedChunksSmall[i].ptr;
            size_t chunkSize = freedChunksSmall[i].size;

            if (freedChunksSmall[i - 1].ptr == ptr + chunkSize) {
                freedChunksSmall[i - 1].ptr = ptr;
                freedChunksSmall[i - 1].size += chunkSize;
                freedChunksSmall.erase(freedChunksSmall.begin() + i);
            }
        }
    }
    mergeLastFreedSmall();
    if (freedChunksBig.size() > 1) {
        std::sort(freedChunksBig.begin(), freedChunksBig.end());

        size_t maxSize = freedChunksBig.size();
        for (size_t i = maxSize - 1; i > 0; --i) {
            auto ptr = freedChunksBig[i].ptr;
            size_t chunkSize = freedChunksBig[i].size;
            if ((freedChunksBig[i - 1].ptr + freedChunksBig[i - 1].size) == ptr) {
                freedChunksBig[i - 1].size += chunkSize;
                freedChunksBig.erase(freedChunksBig.begin() + i);
            }
        }
    }
    mergeLastFreedBig();
    DBG_LOG(LogAllocationMemoryPool, __FUNCTION__, "Allocator usage == ", this->getUsage());
}

} // namespace NEO