1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/*
* Copyright (C) 2024 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/core/source/fabric/fabric.h"
#include "shared/source/helpers/debug_helpers.h"
#include <algorithm>
#include <cstring>
#include <deque>
#include <limits>
#include <map>
#include <string>
#include <vector>
namespace L0 {
void FabricEdge::createEdgesFromVertices(const std::vector<FabricVertex *> &vertices, std::vector<FabricEdge *> &edges, std::vector<FabricEdge *> &indirectEdges) {
// Get all vertices and sub-vertices
std::vector<FabricVertex *> allVertices = {};
for (auto &fabricVertex : vertices) {
allVertices.push_back(fabricVertex);
for (auto &fabricSubVertex : fabricVertex->subVertices) {
allVertices.push_back(fabricSubVertex);
}
}
// Get direct physical edges between all vertices
std::map<uint32_t, std::vector<std::pair<uint32_t, ze_fabric_edge_exp_properties_t *>>> adjacentVerticesMap;
std::map<uint32_t, std::vector<uint32_t>> nonAdjacentVerticesMap;
for (uint32_t vertexAIndex = 0; vertexAIndex < allVertices.size(); vertexAIndex++) {
for (uint32_t vertexBIndex = vertexAIndex + 1; vertexBIndex < allVertices.size(); vertexBIndex++) {
bool isAdjacent = false;
auto vertexA = allVertices[vertexAIndex];
auto vertexB = allVertices[vertexBIndex];
ze_fabric_edge_exp_properties_t edgeProperty = {};
for (auto const &fabricDeviceInterface : vertexA->pFabricDeviceInterfaces) {
bool isConnected =
fabricDeviceInterface.second->getEdgeProperty(vertexB, edgeProperty);
if (isConnected) {
edges.push_back(create(vertexA, vertexB, edgeProperty));
adjacentVerticesMap[vertexAIndex].emplace_back(vertexBIndex, &edges.back()->properties);
adjacentVerticesMap[vertexBIndex].emplace_back(vertexAIndex, &edges.back()->properties);
isAdjacent = true;
}
}
if (!isAdjacent) {
auto &subVerticesOfA = vertexA->subVertices;
if (std::find(subVerticesOfA.begin(), subVerticesOfA.end(), vertexB) == subVerticesOfA.end()) {
nonAdjacentVerticesMap[vertexAIndex].push_back(vertexBIndex);
nonAdjacentVerticesMap[vertexBIndex].push_back(vertexAIndex);
}
}
}
}
// Find logical multi-hop edges between vertices not directly connected
for (const auto &[vertexAIndex, nonAdjacentVertices] : nonAdjacentVerticesMap) {
for (auto vertexBIndex : nonAdjacentVertices) {
std::map<uint32_t, uint32_t> visited;
visited[vertexAIndex] = vertexAIndex;
std::deque<uint32_t> toVisit;
toVisit.push_back(vertexAIndex);
uint32_t currVertexIndex = vertexAIndex;
while (true) {
std::deque<uint32_t> toVisitIaf, toVisitMdfi;
while (!toVisit.empty()) {
currVertexIndex = toVisit.front();
toVisit.pop_front();
if (currVertexIndex == vertexBIndex) {
break;
}
for (auto [vertexIndex, edgeProperty] : adjacentVerticesMap[currVertexIndex]) {
if (visited.find(vertexIndex) == visited.end()) {
if (strncmp(edgeProperty->model, "XeLink", 7) == 0) {
toVisitIaf.push_back(vertexIndex);
} else {
DEBUG_BREAK_IF(strncmp(edgeProperty->model, "MDFI", 5) != 0);
toVisitMdfi.push_back(vertexIndex);
}
visited[vertexIndex] = currVertexIndex;
}
}
}
if (currVertexIndex != vertexBIndex) {
if (toVisitIaf.size() + toVisitMdfi.size() != 0) {
toVisit.insert(toVisit.end(), toVisitMdfi.begin(), toVisitMdfi.end());
toVisit.insert(toVisit.end(), toVisitIaf.begin(), toVisitIaf.end());
} else {
break;
}
} else {
bool hasMdfi = false;
std::string path = "";
ze_fabric_edge_exp_properties_t properties = {};
properties.stype = ZE_STRUCTURE_TYPE_FABRIC_EDGE_EXP_PROPERTIES;
properties.pNext = nullptr;
memset(properties.uuid.id, 0, ZE_MAX_UUID_SIZE);
memset(properties.model, 0, ZE_MAX_FABRIC_EDGE_MODEL_EXP_SIZE);
properties.bandwidth = std::numeric_limits<uint32_t>::max();
properties.bandwidthUnit = ZE_BANDWIDTH_UNIT_BYTES_PER_NANOSEC;
properties.latency = 0;
properties.latencyUnit = ZE_LATENCY_UNIT_HOP;
properties.duplexity = ZE_FABRIC_EDGE_EXP_DUPLEXITY_FULL_DUPLEX;
while (true) {
const auto parentIndex = visited[currVertexIndex];
ze_fabric_edge_exp_properties_t *currEdgeProperty = nullptr;
for (const auto &[vertexIndex, edgeProperty] : adjacentVerticesMap[parentIndex]) {
if (vertexIndex == currVertexIndex) {
currEdgeProperty = edgeProperty;
break;
}
}
UNRECOVERABLE_IF(currEdgeProperty == nullptr);
path = std::string(currEdgeProperty->model) + path;
if (strncmp(currEdgeProperty->model, "XeLink", 7) == 0) {
if (currEdgeProperty->bandwidth < properties.bandwidth) {
properties.bandwidth = currEdgeProperty->bandwidth;
}
properties.latency += currEdgeProperty->latency;
}
if (strncmp(currEdgeProperty->model, "MDFI", 5) == 0) {
hasMdfi = true;
}
currVertexIndex = parentIndex;
if (currVertexIndex == vertexAIndex) {
path.resize(ZE_MAX_FABRIC_EDGE_MODEL_EXP_SIZE - 1, '\0');
path.copy(properties.model, path.size());
break;
} else {
path = '-' + path;
}
}
if (hasMdfi) {
properties.latency = 0;
properties.latencyUnit = ZE_LATENCY_UNIT_UNKNOWN;
}
indirectEdges.push_back(create(allVertices[vertexAIndex], allVertices[vertexBIndex], properties));
break;
}
}
}
}
}
} // namespace L0
|