1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
|
/*
* Copyright (C) 2020-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/core/source/kernel/kernel_imp.h"
#include "shared/source/assert_handler/assert_handler.h"
#include "shared/source/command_container/implicit_scaling.h"
#include "shared/source/debugger/debugger_l0.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/gmm_helper/gmm_helper.h"
#include "shared/source/helpers/addressing_mode_helper.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/bindless_heaps_helper.h"
#include "shared/source/helpers/blit_commands_helper.h"
#include "shared/source/helpers/compiler_product_helper.h"
#include "shared/source/helpers/gfx_core_helper.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/kernel_helpers.h"
#include "shared/source/helpers/local_work_size.h"
#include "shared/source/helpers/per_thread_data.h"
#include "shared/source/helpers/ray_tracing_helper.h"
#include "shared/source/helpers/simd_helper.h"
#include "shared/source/helpers/string.h"
#include "shared/source/helpers/surface_format_info.h"
#include "shared/source/kernel/implicit_args_helper.h"
#include "shared/source/kernel/kernel_arg_descriptor.h"
#include "shared/source/kernel/kernel_descriptor.h"
#include "shared/source/memory_manager/allocation_properties.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/memory_operations_handler.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "shared/source/program/kernel_info.h"
#include "shared/source/program/work_size_info.h"
#include "shared/source/utilities/arrayref.h"
#include "level_zero/core/source/device/device.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/core/source/driver/driver_handle_imp.h"
#include "level_zero/core/source/image/image.h"
#include "level_zero/core/source/image/image_format_desc_helper.h"
#include "level_zero/core/source/kernel/kernel_shared_state.h"
#include "level_zero/core/source/kernel/sampler_patch_values.h"
#include "level_zero/core/source/module/module.h"
#include "level_zero/core/source/module/module_imp.h"
#include "level_zero/core/source/mutable_cmdlist/mcl_kernel_ext.h"
#include "level_zero/core/source/printf_handler/printf_handler.h"
#include "level_zero/core/source/sampler/sampler.h"
#include "level_zero/driver_experimental/zex_module.h"
#include "encode_surface_state_args.h"
#include "implicit_args.h"
#include <memory>
namespace L0 {
#include "level_zero/core/source/kernel/patch_with_implicit_surface.inl"
KernelImmutableData::KernelImmutableData(L0::Device *l0device) : device(l0device) {}
KernelImmutableData::~KernelImmutableData() {
if (nullptr != isaGraphicsAllocation) {
this->getDevice()->getNEODevice()->getMemoryManager()->freeGraphicsMemory(isaGraphicsAllocation.release());
}
crossThreadDataTemplate.reset();
surfaceStateHeapTemplate.reset();
dynamicStateHeapTemplate.reset();
}
ze_result_t KernelImmutableData::initialize(NEO::KernelInfo *kernelInfo, Device *device, uint32_t computeUnitsUsedForScratch,
NEO::SharedPoolAllocation *globalConstBuffer, NEO::SharedPoolAllocation *globalVarBuffer,
bool internalKernel) {
UNRECOVERABLE_IF(kernelInfo == nullptr);
this->kernelInfo = kernelInfo;
this->kernelDescriptor = &kernelInfo->kernelDescriptor;
DeviceImp *deviceImp = static_cast<DeviceImp *>(device);
auto neoDevice = deviceImp->getActiveDevice();
if (neoDevice->getDebugger() && kernelInfo->kernelDescriptor.external.debugData.get()) {
createRelocatedDebugData(globalConstBuffer, globalVarBuffer);
}
this->crossThreadDataSize = this->kernelDescriptor->kernelAttributes.crossThreadDataSize;
ArrayRef<uint8_t> crossThreadDataArrayRef;
if (crossThreadDataSize != 0) {
crossThreadDataTemplate.reset(new uint8_t[crossThreadDataSize]);
if (kernelInfo->crossThreadData) {
memcpy_s(crossThreadDataTemplate.get(), crossThreadDataSize,
kernelInfo->crossThreadData, crossThreadDataSize);
} else {
memset(crossThreadDataTemplate.get(), 0x00, crossThreadDataSize);
}
crossThreadDataArrayRef = ArrayRef<uint8_t>(this->crossThreadDataTemplate.get(), crossThreadDataSize);
NEO::patchNonPointer<uint32_t>(crossThreadDataArrayRef,
kernelDescriptor->payloadMappings.implicitArgs.simdSize, kernelDescriptor->kernelAttributes.simdSize);
}
if (kernelInfo->heapInfo.surfaceStateHeapSize != 0) {
this->surfaceStateHeapSize = kernelInfo->heapInfo.surfaceStateHeapSize;
surfaceStateHeapTemplate.reset(new uint8_t[surfaceStateHeapSize]);
memcpy_s(surfaceStateHeapTemplate.get(), surfaceStateHeapSize,
kernelInfo->heapInfo.pSsh, surfaceStateHeapSize);
} else if (NEO::KernelDescriptor::isBindlessAddressingKernel(kernelInfo->kernelDescriptor)) {
auto &gfxCoreHelper = deviceImp->getNEODevice()->getGfxCoreHelper();
auto surfaceStateSize = static_cast<uint32_t>(gfxCoreHelper.getRenderSurfaceStateSize());
this->surfaceStateHeapSize = kernelInfo->kernelDescriptor.kernelAttributes.numArgsStateful * surfaceStateSize;
DEBUG_BREAK_IF(kernelInfo->kernelDescriptor.kernelAttributes.numArgsStateful != kernelInfo->kernelDescriptor.getBindlessOffsetToSurfaceState().size());
surfaceStateHeapTemplate.reset(new uint8_t[surfaceStateHeapSize]);
}
if (kernelInfo->heapInfo.dynamicStateHeapSize != 0) {
this->dynamicStateHeapSize = kernelInfo->heapInfo.dynamicStateHeapSize;
dynamicStateHeapTemplate.reset(new uint8_t[dynamicStateHeapSize]);
memcpy_s(dynamicStateHeapTemplate.get(), dynamicStateHeapSize,
kernelInfo->heapInfo.pDsh, dynamicStateHeapSize);
}
ArrayRef<uint8_t> surfaceStateHeapArrayRef = ArrayRef<uint8_t>(surfaceStateHeapTemplate.get(), getSurfaceStateHeapSize());
if (NEO::isValidOffset(kernelDescriptor->payloadMappings.implicitArgs.globalConstantsSurfaceAddress.stateless)) {
UNRECOVERABLE_IF(nullptr == globalConstBuffer);
patchWithImplicitSurface(crossThreadDataArrayRef, surfaceStateHeapArrayRef,
static_cast<uintptr_t>(globalConstBuffer->getGpuAddressToPatch()),
*globalConstBuffer->getGraphicsAllocation(), globalConstBuffer->getGpuAddress(), globalConstBuffer->getSize(),
kernelDescriptor->payloadMappings.implicitArgs.globalConstantsSurfaceAddress, *neoDevice, deviceImp->isImplicitScalingCapable());
this->residencyContainer.push_back(globalConstBuffer->getGraphicsAllocation());
} else if (nullptr != globalConstBuffer) {
this->residencyContainer.push_back(globalConstBuffer->getGraphicsAllocation());
}
if (globalConstBuffer && NEO::isValidOffset(kernelDescriptor->payloadMappings.implicitArgs.globalConstantsSurfaceAddress.bindless)) {
UNRECOVERABLE_IF(globalConstBuffer->getGraphicsAllocation()->getUnderlyingBufferSize() != globalConstBuffer->getSize());
if (!neoDevice->getMemoryManager()->allocateBindlessSlot(globalConstBuffer->getGraphicsAllocation())) {
return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
}
auto &ssInHeap = globalConstBuffer->getGraphicsAllocation()->getBindlessInfo();
patchImplicitArgBindlessOffsetAndSetSurfaceState(crossThreadDataArrayRef, surfaceStateHeapArrayRef,
globalConstBuffer->getGraphicsAllocation(), kernelDescriptor->payloadMappings.implicitArgs.globalConstantsSurfaceAddress,
*neoDevice, deviceImp->isImplicitScalingCapable(), ssInHeap, kernelInfo->kernelDescriptor);
}
if (NEO::isValidOffset(kernelDescriptor->payloadMappings.implicitArgs.globalVariablesSurfaceAddress.stateless)) {
UNRECOVERABLE_IF(globalVarBuffer == nullptr);
patchWithImplicitSurface(crossThreadDataArrayRef, surfaceStateHeapArrayRef,
static_cast<uintptr_t>(globalVarBuffer->getGpuAddressToPatch()),
*globalVarBuffer->getGraphicsAllocation(), globalVarBuffer->getGpuAddress(), globalVarBuffer->getSize(),
kernelDescriptor->payloadMappings.implicitArgs.globalVariablesSurfaceAddress, *neoDevice, deviceImp->isImplicitScalingCapable());
this->residencyContainer.push_back(globalVarBuffer->getGraphicsAllocation());
} else if (nullptr != globalVarBuffer) {
this->residencyContainer.push_back(globalVarBuffer->getGraphicsAllocation());
}
if (globalVarBuffer && NEO::isValidOffset(kernelDescriptor->payloadMappings.implicitArgs.globalVariablesSurfaceAddress.bindless)) {
UNRECOVERABLE_IF(globalVarBuffer->getGraphicsAllocation()->getUnderlyingBufferSize() != globalVarBuffer->getSize());
if (!neoDevice->getMemoryManager()->allocateBindlessSlot(globalVarBuffer->getGraphicsAllocation())) {
return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
}
auto &ssInHeap = globalVarBuffer->getGraphicsAllocation()->getBindlessInfo();
patchImplicitArgBindlessOffsetAndSetSurfaceState(crossThreadDataArrayRef, surfaceStateHeapArrayRef,
globalVarBuffer->getGraphicsAllocation(), kernelDescriptor->payloadMappings.implicitArgs.globalVariablesSurfaceAddress,
*neoDevice, deviceImp->isImplicitScalingCapable(), ssInHeap, kernelInfo->kernelDescriptor);
}
return ZE_RESULT_SUCCESS;
}
void KernelImmutableData::createRelocatedDebugData(NEO::SharedPoolAllocation *globalConstBuffer,
NEO::SharedPoolAllocation *globalVarBuffer) {
NEO::Linker::SegmentInfo globalData;
NEO::Linker::SegmentInfo constData;
if (globalVarBuffer) {
globalData.gpuAddress = globalVarBuffer->getGpuAddress();
globalData.segmentSize = globalVarBuffer->getSize();
}
if (globalConstBuffer) {
constData.gpuAddress = globalConstBuffer->getGpuAddress();
constData.segmentSize = globalConstBuffer->getSize();
}
if (kernelInfo->kernelDescriptor.external.debugData.get()) {
std::string outErrReason;
std::string outWarning;
auto decodedElf = NEO::Elf::decodeElf<NEO::Elf::EI_CLASS_64>(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(kernelInfo->kernelDescriptor.external.debugData->vIsa),
kernelInfo->kernelDescriptor.external.debugData->vIsaSize),
outErrReason, outWarning);
if (decodedElf.getDebugInfoRelocations().size() > 1) {
UNRECOVERABLE_IF(kernelInfo->kernelDescriptor.external.relocatedDebugData.get() != nullptr);
auto size = kernelInfo->kernelDescriptor.external.debugData->vIsaSize;
kernelInfo->kernelDescriptor.external.relocatedDebugData = std::make_unique<uint8_t[]>(size);
memcpy_s(kernelInfo->kernelDescriptor.external.relocatedDebugData.get(), size, kernelInfo->kernelDescriptor.external.debugData->vIsa, kernelInfo->kernelDescriptor.external.debugData->vIsaSize);
NEO::Linker::SegmentInfo textSegment = {getIsaGraphicsAllocation()->getGpuAddress(),
getIsaGraphicsAllocation()->getUnderlyingBufferSize()};
NEO::Linker::applyDebugDataRelocations(decodedElf, ArrayRef<uint8_t>(kernelInfo->kernelDescriptor.external.relocatedDebugData.get(), size),
textSegment, globalData, constData);
}
}
}
NEO::GraphicsAllocation *KernelImmutableData::getIsaGraphicsAllocation() const {
if (auto allocation = this->getIsaParentAllocation(); allocation != nullptr) {
DEBUG_BREAK_IF(this->device->getL0Debugger() != nullptr);
DEBUG_BREAK_IF(this->isaGraphicsAllocation != nullptr);
return allocation;
} else {
DEBUG_BREAK_IF(this->isaGraphicsAllocation.get() == nullptr);
return this->isaGraphicsAllocation.get();
}
}
uint32_t KernelImmutableData::getIsaSize() const {
if (this->getIsaParentAllocation()) {
DEBUG_BREAK_IF(this->device->getL0Debugger() != nullptr);
DEBUG_BREAK_IF(this->isaGraphicsAllocation != nullptr);
return static_cast<uint32_t>(this->isaSubAllocationSize);
} else {
return static_cast<uint32_t>(this->isaGraphicsAllocation->getUnderlyingBufferSize());
}
}
void KernelImmutableData::setIsaPerKernelAllocation(NEO::GraphicsAllocation *allocation) {
DEBUG_BREAK_IF(this->isaParentAllocation != nullptr);
this->isaGraphicsAllocation.reset(allocation);
}
KernelMutableState::KernelMutableState() : pImplicitArgs{}, pExtension{nullptr} {};
KernelMutableState::KernelMutableState(const KernelMutableState &rhs) : Params{rhs}, pImplicitArgs(rhs.pImplicitArgs) {
pExtension = nullptr;
crossThreadData = rhs.crossThreadData;
surfaceStateHeapData = rhs.surfaceStateHeapData;
dynamicStateHeapData = rhs.dynamicStateHeapData;
if (rhs.perThreadDataSizeForWholeThreadGroup) {
reservePerThreadDataForWholeThreadGroup(rhs.perThreadDataSizeForWholeThreadGroup);
DEBUG_BREAK_IF(perThreadDataSizeForWholeThreadGroupAllocated < perThreadDataSizeForWholeThreadGroup);
DEBUG_BREAK_IF(nullptr == rhs.perThreadDataForWholeThreadGroup);
DEBUG_BREAK_IF(nullptr == perThreadDataForWholeThreadGroup);
std::memcpy(perThreadDataForWholeThreadGroup, rhs.perThreadDataForWholeThreadGroup, perThreadDataSizeForWholeThreadGroup);
const size_t tailSize = perThreadDataSizeForWholeThreadGroupAllocated - perThreadDataSizeForWholeThreadGroup;
std::memset(perThreadDataForWholeThreadGroup + perThreadDataSizeForWholeThreadGroup, 0x0, tailSize);
}
};
KernelMutableState &KernelMutableState::operator=(const KernelMutableState &rhs) {
if (&rhs != this) {
KernelMutableState tmp{rhs};
swap(tmp);
}
return *this;
}
void KernelMutableState::swap(KernelMutableState &rhs) {
using std::swap;
swap(*static_cast<Params *>(this), static_cast<Params &>(rhs));
swap(this->pImplicitArgs, rhs.pImplicitArgs);
swap(this->pExtension, rhs.pExtension);
swap(this->crossThreadData, rhs.crossThreadData);
swap(this->surfaceStateHeapData, rhs.surfaceStateHeapData);
swap(this->dynamicStateHeapData, rhs.dynamicStateHeapData);
swap(this->perThreadDataForWholeThreadGroup, rhs.perThreadDataForWholeThreadGroup);
swap(this->perThreadDataSizeForWholeThreadGroup, rhs.perThreadDataSizeForWholeThreadGroup);
swap(this->perThreadDataSizeForWholeThreadGroupAllocated, rhs.perThreadDataSizeForWholeThreadGroupAllocated);
}
KernelMutableState::KernelMutableState(KernelMutableState &&orig) noexcept : Params{std::move(orig)} {
this->moveMembersFrom(std::move(orig));
}
KernelMutableState &KernelMutableState::operator=(KernelMutableState &&rhs) noexcept {
if (&rhs != this) {
static_cast<Params &>(*this) = static_cast<Params &&>(std::move(rhs));
this->moveMembersFrom(std::move(rhs));
}
return *this;
}
void KernelMutableState::moveMembersFrom(KernelMutableState &&orig) {
pImplicitArgs = std::move(orig.pImplicitArgs);
pExtension = std::move(orig.pExtension);
crossThreadData = std::move(orig.crossThreadData);
surfaceStateHeapData = std::move(orig.surfaceStateHeapData);
dynamicStateHeapData = std::move(orig.dynamicStateHeapData);
perThreadDataForWholeThreadGroup = std::exchange(orig.perThreadDataForWholeThreadGroup, nullptr);
perThreadDataSizeForWholeThreadGroup = std::exchange(orig.perThreadDataSizeForWholeThreadGroup, 0U);
perThreadDataSizeForWholeThreadGroupAllocated = std::exchange(orig.perThreadDataSizeForWholeThreadGroupAllocated, 0U);
}
void KernelMutableState::reservePerThreadDataForWholeThreadGroup(uint32_t sizeNeeded) {
if (sizeNeeded > perThreadDataSizeForWholeThreadGroupAllocated) {
alignedFree(perThreadDataForWholeThreadGroup);
perThreadDataForWholeThreadGroup = static_cast<uint8_t *>(alignedMalloc(sizeNeeded, 32));
perThreadDataSizeForWholeThreadGroupAllocated = sizeNeeded;
}
perThreadDataSizeForWholeThreadGroup = sizeNeeded;
}
KernelMutableState::~KernelMutableState() {
if (perThreadDataForWholeThreadGroup != nullptr) {
alignedFree(perThreadDataForWholeThreadGroup);
}
}
KernelSharedState::KernelSharedState(Module *module) {
if (nullptr == module) {
return;
}
this->module = module;
this->implicitArgsVersion = module->getDevice()->getGfxCoreHelper().getImplicitArgsVersion();
ModuleImp *moduleImp = reinterpret_cast<ModuleImp *>(this->module);
if (moduleImp->getTranslationUnit()->programInfo.indirectAccessBufferMajorVersion > 0) {
this->implicitArgsVersion = moduleImp->getTranslationUnit()->programInfo.indirectAccessBufferMajorVersion;
}
}
KernelSharedState::~KernelSharedState() {
if (nullptr == this->module) {
return;
}
if (nullptr != this->privateMemoryGraphicsAllocation) {
this->module->getDevice()->getNEODevice()->getMemoryManager()->freeGraphicsMemory(this->privateMemoryGraphicsAllocation);
}
const auto *kernelImmData = this->kernelImmData;
if (this->printfBuffer != nullptr) {
// not allowed to call virtual function on destructor, so calling printOutput directly
PrintfHandler::printOutput(kernelImmData, this->printfBuffer, this->module->getDevice(), false);
this->module->getDevice()->getNEODevice()->getMemoryManager()->freeGraphicsMemory(this->printfBuffer);
}
if (kernelImmData && kernelImmData->getDescriptor().kernelAttributes.flags.usesAssert && this->module->getDevice()->getNEODevice()->getRootDeviceEnvironment().assertHandler.get()) {
this->module->getDevice()->getNEODevice()->getRootDeviceEnvironment().assertHandler->printAssertAndAbort();
}
}
ze_result_t KernelImp::getBaseAddress(uint64_t *baseAddress) {
if (baseAddress) {
auto gmmHelper = module->getDevice()->getNEODevice()->getGmmHelper();
*baseAddress = gmmHelper->decanonize(this->getImmutableData()->getIsaGraphicsAllocation()->getGpuAddress() +
this->getImmutableData()->getIsaOffsetInParentAllocation());
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getKernelProgramBinary(size_t *kernelSize, char *pKernelBinary) {
size_t kSize = static_cast<size_t>(this->getImmutableData()->getKernelInfo()->heapInfo.kernelHeapSize);
if (nullptr == pKernelBinary) {
*kernelSize = kSize;
return ZE_RESULT_SUCCESS;
}
*kernelSize = std::min(*kernelSize, kSize);
memcpy_s(pKernelBinary, *kernelSize, this->getImmutableData()->getKernelInfo()->heapInfo.pKernelHeap, *kernelSize);
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgumentValue(uint32_t argIndex, size_t argSize,
const void *pArgValue) {
if (argIndex >= privateState.kernelArgHandlers.size()) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
return (this->*privateState.kernelArgHandlers[argIndex])(argIndex, argSize, pArgValue);
}
void KernelImp::setGroupCount(uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) {
const NEO::KernelDescriptor &desc = getImmutableData()->getDescriptor();
const auto &groupSize{this->privateState.groupSize};
uint32_t globalWorkSize[3] = {groupCountX * groupSize[0],
groupCountY * groupSize[1],
groupCountZ * groupSize[2]};
auto dst = getCrossThreadDataSpan();
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.globalWorkSize, globalWorkSize);
uint32_t groupCount[3] = {groupCountX, groupCountY, groupCountZ};
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.numWorkGroups, groupCount);
uint32_t workDim = 1;
if (groupCountZ * groupSize[2] > 1) {
workDim = 3;
} else if (groupCountY * groupSize[1] > 1) {
workDim = 2;
}
auto workDimOffset = desc.payloadMappings.dispatchTraits.workDim;
if (NEO::isValidOffset(workDimOffset)) {
auto destinationBuffer = getCrossThreadDataSpan();
NEO::patchNonPointer<uint32_t, uint32_t>(destinationBuffer, desc.payloadMappings.dispatchTraits.workDim, workDim);
}
if (privateState.pImplicitArgs) {
privateState.pImplicitArgs->setNumWorkDim(workDim);
privateState.pImplicitArgs->setGlobalSize(globalWorkSize[0], globalWorkSize[1], globalWorkSize[2]);
privateState.pImplicitArgs->setGroupCount(groupCount[0], groupCount[1], groupCount[2]);
}
}
ze_result_t KernelImp::setGroupSize(uint32_t groupSizeX, uint32_t groupSizeY,
uint32_t groupSizeZ) {
if ((0 == groupSizeX) || (0 == groupSizeY) || (0 == groupSizeZ)) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
if (this->privateState.groupSize[0] == groupSizeX &&
this->privateState.groupSize[1] == groupSizeY &&
this->privateState.groupSize[2] == groupSizeZ) {
return ZE_RESULT_SUCCESS;
}
auto numChannels = getImmutableData()->getDescriptor().kernelAttributes.numLocalIdChannels;
Vec3<size_t> groupSize{groupSizeX, groupSizeY, groupSizeZ};
auto itemsInGroup = Math::computeTotalElementsCount(groupSize);
const NEO::KernelDescriptor &kernelDescriptor = getImmutableData()->getDescriptor();
if (auto maxGroupSize = module->getMaxGroupSize(kernelDescriptor); itemsInGroup > maxGroupSize) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr,
"Requested work-group size (%lu) exceeds maximum value (%u) for the kernel \"%s\" \n",
itemsInGroup, maxGroupSize, kernelDescriptor.kernelMetadata.kernelName.c_str());
DEBUG_BREAK_IF(true);
return ZE_RESULT_ERROR_INVALID_GROUP_SIZE_DIMENSION;
}
this->privateState.groupSize[0] = groupSizeX;
this->privateState.groupSize[1] = groupSizeY;
this->privateState.groupSize[2] = groupSizeZ;
for (uint32_t i = 0u; i < 3u; i++) {
if (kernelDescriptor.kernelAttributes.requiredWorkgroupSize[i] != 0 &&
kernelDescriptor.kernelAttributes.requiredWorkgroupSize[i] != this->privateState.groupSize[i]) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr,
"Invalid group size {%d, %d, %d} specified, requiredWorkGroupSize = {%d, %d, %d}\n",
this->privateState.groupSize[0], this->privateState.groupSize[1], this->privateState.groupSize[2],
kernelDescriptor.kernelAttributes.requiredWorkgroupSize[0],
kernelDescriptor.kernelAttributes.requiredWorkgroupSize[1],
kernelDescriptor.kernelAttributes.requiredWorkgroupSize[2]);
return ZE_RESULT_ERROR_INVALID_GROUP_SIZE_DIMENSION;
}
}
patchWorkgroupSizeInCrossThreadData(groupSizeX, groupSizeY, groupSizeZ);
auto simdSize = kernelDescriptor.kernelAttributes.simdSize;
auto grfCount = kernelDescriptor.kernelAttributes.numGrfRequired;
auto neoDevice = module->getDevice()->getNEODevice();
auto &rootDeviceEnvironment = neoDevice->getRootDeviceEnvironment();
auto &gfxCoreHelper = rootDeviceEnvironment.getHelper<NEO::GfxCoreHelper>();
this->privateState.numThreadsPerThreadGroup = gfxCoreHelper.calculateNumThreadsPerThreadGroup(
simdSize, static_cast<uint32_t>(itemsInGroup), grfCount, rootDeviceEnvironment);
if (auto wgSizeRet = validateWorkgroupSize(); wgSizeRet != ZE_RESULT_SUCCESS) {
return wgSizeRet;
}
auto remainderSimdLanes = itemsInGroup & (simdSize - 1u);
privateState.threadExecutionMask = static_cast<uint32_t>(maxNBitValue(remainderSimdLanes));
if (!privateState.threadExecutionMask) {
privateState.threadExecutionMask = static_cast<uint32_t>(maxNBitValue((isSimd1(simdSize)) ? 32 : simdSize));
}
evaluateIfRequiresGenerationOfLocalIdsByRuntime(kernelDescriptor);
if (privateState.kernelRequiresGenerationOfLocalIdsByRuntime) {
auto grfSize = this->module->getDevice()->getHwInfo().capabilityTable.grfSize;
uint32_t perThreadDataSizeForWholeThreadGroupNeeded =
static_cast<uint32_t>(NEO::PerThreadDataHelper::getPerThreadDataSizeTotal(
simdSize, grfSize, grfCount, numChannels, itemsInGroup, rootDeviceEnvironment));
privateState.reservePerThreadDataForWholeThreadGroup(perThreadDataSizeForWholeThreadGroupNeeded);
if (numChannels > 0) {
UNRECOVERABLE_IF(3 != numChannels);
std::array<uint8_t, 3> walkOrder{0, 1, 2};
if (kernelDescriptor.kernelAttributes.flags.requiresWorkgroupWalkOrder) {
walkOrder = {
kernelDescriptor.kernelAttributes.workgroupWalkOrder[0],
kernelDescriptor.kernelAttributes.workgroupWalkOrder[1],
kernelDescriptor.kernelAttributes.workgroupWalkOrder[2]};
}
NEO::generateLocalIDs(
privateState.perThreadDataForWholeThreadGroup,
static_cast<uint16_t>(simdSize),
std::array<uint16_t, 3>{{static_cast<uint16_t>(groupSizeX),
static_cast<uint16_t>(groupSizeY),
static_cast<uint16_t>(groupSizeZ)}},
walkOrder,
false, grfSize, grfCount, rootDeviceEnvironment);
}
this->privateState.perThreadDataSize = this->privateState.perThreadDataSizeForWholeThreadGroup / this->privateState.numThreadsPerThreadGroup;
} else {
this->privateState.perThreadDataSizeForWholeThreadGroup = 0;
this->privateState.perThreadDataSize = 0;
}
if (this->sharedState->heaplessEnabled && this->sharedState->localDispatchSupport) {
this->sharedState->maxWgCountPerTileCcs = suggestMaxCooperativeGroupCount(NEO::EngineGroupType::compute, true);
if (this->sharedState->rcsAvailable) {
this->sharedState->maxWgCountPerTileRcs = suggestMaxCooperativeGroupCount(NEO::EngineGroupType::renderCompute, true);
}
if (this->sharedState->cooperativeSupport) {
this->sharedState->maxWgCountPerTileCooperative = suggestMaxCooperativeGroupCount(NEO::EngineGroupType::cooperativeCompute, true);
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::suggestGroupSize(uint32_t globalSizeX, uint32_t globalSizeY,
uint32_t globalSizeZ, uint32_t *groupSizeX,
uint32_t *groupSizeY, uint32_t *groupSizeZ) {
size_t retGroupSize[3] = {};
const auto &kernelDescriptor = this->getImmutableData()->getDescriptor();
auto maxWorkGroupSize = module->getMaxGroupSize(kernelDescriptor);
auto simd = kernelDescriptor.kernelAttributes.simdSize;
size_t workItems[3] = {globalSizeX, globalSizeY, globalSizeZ};
uint32_t dim = (globalSizeY > 1U) ? 2 : 1U;
dim = (globalSizeZ > 1U) ? 3 : dim;
auto cachedGroupSize = std::find_if(this->privateState.suggestGroupSizeCache.begin(),
this->privateState.suggestGroupSizeCache.end(),
[&](const auto &other) {
return other.groupSize == workItems &&
other.slmArgsTotalSize == this->getSlmTotalSize();
});
if (cachedGroupSize != this->privateState.suggestGroupSizeCache.end()) {
*groupSizeX = static_cast<uint32_t>(cachedGroupSize->suggestedGroupSize.x);
*groupSizeY = static_cast<uint32_t>(cachedGroupSize->suggestedGroupSize.y);
*groupSizeZ = static_cast<uint32_t>(cachedGroupSize->suggestedGroupSize.z);
return ZE_RESULT_SUCCESS;
}
if (NEO::debugManager.flags.EnableComputeWorkSizeND.get()) {
auto usesImages = kernelDescriptor.kernelAttributes.flags.usesImages;
auto neoDevice = module->getDevice()->getNEODevice();
const auto &deviceInfo = neoDevice->getDeviceInfo();
uint32_t numThreadsPerSubSlice = (uint32_t)deviceInfo.maxNumEUsPerSubSlice * deviceInfo.numThreadsPerEU;
uint32_t localMemSize = (uint32_t)deviceInfo.localMemSize;
if (this->getSlmTotalSize() > 0 && localMemSize < this->getSlmTotalSize()) {
const auto device = static_cast<DeviceImp *>(module->getDevice());
const auto driverHandle = static_cast<DriverHandleImp *>(device->getDriverHandle());
CREATE_DEBUG_STRING(str, "Size of SLM (%u) larger than available (%u)\n", this->getSlmTotalSize(), localMemSize);
driverHandle->setErrorDescription(std::string(str.get()));
PRINT_DEBUG_STRING(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Size of SLM (%u) larger than available (%u)\n", this->getSlmTotalSize(), localMemSize);
return ZE_RESULT_ERROR_OUT_OF_DEVICE_MEMORY;
}
NEO::WorkSizeInfo wsInfo(maxWorkGroupSize, kernelDescriptor.kernelAttributes.usesBarriers(), simd, this->getSlmTotalSize(),
neoDevice->getRootDeviceEnvironment(), numThreadsPerSubSlice, localMemSize,
usesImages, false, kernelDescriptor.kernelAttributes.flags.requiresDisabledEUFusion);
NEO::computeWorkgroupSizeND(wsInfo, retGroupSize, workItems, dim);
} else {
if (1U == dim) {
NEO::computeWorkgroupSize1D(maxWorkGroupSize, retGroupSize, workItems, simd);
} else if (NEO::debugManager.flags.EnableComputeWorkSizeSquared.get() && (2U == dim)) {
NEO::computeWorkgroupSizeSquared(maxWorkGroupSize, retGroupSize, workItems, simd, dim);
} else {
NEO::computeWorkgroupSize2D(maxWorkGroupSize, retGroupSize, workItems, simd);
}
}
*groupSizeX = static_cast<uint32_t>(retGroupSize[0]);
*groupSizeY = static_cast<uint32_t>(retGroupSize[1]);
*groupSizeZ = static_cast<uint32_t>(retGroupSize[2]);
this->privateState.suggestGroupSizeCache.emplace_back(workItems, this->getSlmTotalSize(), retGroupSize);
return ZE_RESULT_SUCCESS;
}
uint32_t KernelImp::suggestMaxCooperativeGroupCount(NEO::EngineGroupType engineGroupType, uint32_t *groupSize, bool forceSingleTileQuery) {
auto &neoDevice = *module->getDevice()->getNEODevice();
auto &helper = neoDevice.getGfxCoreHelper();
auto &descriptor = getImmutableData()->getDescriptor();
auto usedSlmSize = helper.alignSlmSize(privateState.slmArgsTotalSize + descriptor.kernelAttributes.slmInlineSize);
const uint32_t workDim = 3;
const size_t localWorkSize[] = {this->privateState.groupSize[0], this->privateState.groupSize[1], this->privateState.groupSize[2]};
return NEO::KernelHelper::getMaxWorkGroupCount(neoDevice,
descriptor.kernelAttributes.numGrfRequired,
descriptor.kernelAttributes.simdSize,
descriptor.kernelAttributes.barrierCount,
usedSlmSize,
workDim,
localWorkSize,
engineGroupType,
this->sharedState->implicitScalingEnabled,
forceSingleTileQuery);
}
ze_result_t KernelImp::setIndirectAccess(ze_kernel_indirect_access_flags_t flags) {
if (NEO::debugManager.flags.DisableIndirectAccess.get() == 1) {
return ZE_RESULT_SUCCESS;
}
if (flags & ZE_KERNEL_INDIRECT_ACCESS_FLAG_DEVICE) {
this->privateState.unifiedMemoryControls.indirectDeviceAllocationsAllowed = true;
}
if (flags & ZE_KERNEL_INDIRECT_ACCESS_FLAG_HOST) {
this->privateState.unifiedMemoryControls.indirectHostAllocationsAllowed = true;
}
if (flags & ZE_KERNEL_INDIRECT_ACCESS_FLAG_SHARED) {
this->privateState.unifiedMemoryControls.indirectSharedAllocationsAllowed = true;
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getIndirectAccess(ze_kernel_indirect_access_flags_t *flags) {
*flags = 0;
if (this->privateState.unifiedMemoryControls.indirectDeviceAllocationsAllowed) {
*flags |= ZE_KERNEL_INDIRECT_ACCESS_FLAG_DEVICE;
}
if (this->privateState.unifiedMemoryControls.indirectHostAllocationsAllowed) {
*flags |= ZE_KERNEL_INDIRECT_ACCESS_FLAG_HOST;
}
if (this->privateState.unifiedMemoryControls.indirectSharedAllocationsAllowed) {
*flags |= ZE_KERNEL_INDIRECT_ACCESS_FLAG_SHARED;
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getSourceAttributes(uint32_t *pSize, char **pString) {
auto &desc = getImmutableData()->getDescriptor();
if (pString == nullptr) {
*pSize = (uint32_t)desc.kernelMetadata.kernelLanguageAttributes.length() + 1;
} else {
strncpy_s(*pString, *pSize,
desc.kernelMetadata.kernelLanguageAttributes.c_str(),
desc.kernelMetadata.kernelLanguageAttributes.length());
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgImmediate(uint32_t argIndex, size_t argSize, const void *argVal) {
if (getImmutableData()->getDescriptor().payloadMappings.explicitArgs.size() <= argIndex) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
const auto &arg = getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex];
for (const auto &element : arg.as<NEO::ArgDescValue>().elements) {
if (element.sourceOffset < argSize) {
size_t maxBytesToCopy = argSize - element.sourceOffset;
size_t bytesToCopy = std::min(static_cast<size_t>(element.size), maxBytesToCopy);
auto pDst = &getCrossThreadDataSpan()[element.offset];
if (argVal) {
auto pSrc = ptrOffset(argVal, element.sourceOffset);
memcpy_s(pDst, element.size, pSrc, bytesToCopy);
} else {
uint64_t val = 0;
memcpy_s(pDst, element.size,
reinterpret_cast<void *>(&val), bytesToCopy);
}
} else {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgRedescribedImage(uint32_t argIndex, ze_image_handle_t argVal, bool isPacked) {
const uint32_t bindlessSlot = isPacked ? NEO::BindlessImageSlot::packedImage : NEO::BindlessImageSlot::redescribedImage;
const auto &arg = getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescImage>();
if (argVal == nullptr) {
privateState.argumentsResidencyContainer[argIndex] = nullptr;
return ZE_RESULT_SUCCESS;
}
const auto image = Image::fromHandle(argVal);
if (getImmutableData()->getDescriptor().kernelAttributes.imageAddressingMode == NEO::KernelDescriptor::Bindless) {
NEO::BindlessHeapsHelper *bindlessHeapsHelper = this->module->getDevice()->getNEODevice()->getBindlessHeapsHelper();
auto &gfxCoreHelper = this->module->getDevice()->getGfxCoreHelper();
const auto surfaceStateSize = gfxCoreHelper.getRenderSurfaceStateSize();
if (bindlessHeapsHelper) {
if (image->allocateBindlessSlot() != ZE_RESULT_SUCCESS) {
return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
}
auto ssInHeap = image->getBindlessSlot();
auto patchLocation = ptrOffset(getCrossThreadData(), arg.bindless);
// redescribed image's surface state is after image's implicit args and sampler
uint64_t bindlessSlotOffset = ssInHeap->surfaceStateOffset + surfaceStateSize * bindlessSlot;
uint32_t patchSize = this->sharedState->heaplessEnabled ? 8u : 4u;
uint64_t patchValue = this->sharedState->heaplessEnabled
? bindlessSlotOffset
: gfxCoreHelper.getBindlessSurfaceExtendedMessageDescriptorValue(static_cast<uint32_t>(bindlessSlotOffset));
patchWithRequiredSize(const_cast<uint8_t *>(patchLocation), patchSize, patchValue);
image->copySurfaceStateToSSH(ptrOffset(ssInHeap->ssPtr, surfaceStateSize * bindlessSlot), 0u, bindlessSlot, false);
privateState.isBindlessOffsetSet[argIndex] = true;
} else {
privateState.usingSurfaceStateHeap[argIndex] = true;
auto ssPtr = &getSurfaceStateHeapDataSpan()[getSurfaceStateIndexForBindlessOffset(arg.bindless) * surfaceStateSize];
image->copySurfaceStateToSSH(ssPtr, 0u, bindlessSlot, false);
}
} else {
image->copySurfaceStateToSSH(privateState.surfaceStateHeapData.data(), arg.bindful, bindlessSlot, false);
}
privateState.argumentsResidencyContainer[argIndex] = image->getAllocation();
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgBufferWithAlloc(uint32_t argIndex, uintptr_t argVal, NEO::GraphicsAllocation *allocation, NEO::SvmAllocationData *allocData) {
const auto &arg = getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescPointer>();
const auto val = argVal;
const int64_t bufferSize = static_cast<int64_t>(allocation->getUnderlyingBufferSize() - (ptrDiff(argVal, allocation->getGpuAddress())));
NEO::patchNonPointer<int64_t, int64_t>(getCrossThreadDataSpan(), arg.bufferSize, bufferSize);
NEO::patchPointer(getCrossThreadDataSpan(), arg, val);
if (NEO::isValidOffset(arg.bindful) || NEO::isValidOffset(arg.bindless)) {
if (NEO::isValidOffset(arg.bindless)) {
if (!this->module->getDevice()->getNEODevice()->getMemoryManager()->allocateBindlessSlot(allocation)) {
return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
}
}
setBufferSurfaceState(argIndex, reinterpret_cast<void *>(val), allocation);
}
if (!allocData) {
allocData = this->module->getDevice()->getDriverHandle()->getSvmAllocsManager()->getSVMAlloc(reinterpret_cast<void *>(allocation->getGpuAddress()));
}
if (allocData) {
bool argWasUncacheable = privateState.isArgUncached[argIndex];
bool argIsUncacheable = allocData->allocationFlagsProperty.flags.locallyUncachedResource;
if (argWasUncacheable == false && argIsUncacheable) {
privateState.kernelRequiresUncachedMocsCount++;
} else if (argWasUncacheable && argIsUncacheable == false) {
privateState.kernelRequiresUncachedMocsCount--;
}
this->setKernelArgUncached(argIndex, argIsUncacheable);
}
privateState.argumentsResidencyContainer[argIndex] = allocation;
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgUnknown(uint32_t argIndex, size_t argSize, const void *argVal) {
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgBuffer(uint32_t argIndex, size_t argSize, const void *argVal) {
const auto device = static_cast<DeviceImp *>(this->module->getDevice());
const auto driverHandle = static_cast<DriverHandleImp *>(device->getDriverHandle());
const auto svmAllocsManager = driverHandle->getSvmAllocsManager();
const auto allocationsCounter = svmAllocsManager->allocationsCounter.load();
const auto &argInfo = this->privateState.kernelArgInfos[argIndex];
NEO::SvmAllocationData *allocData = nullptr;
if (argVal != nullptr) {
const auto requestedAddress = *reinterpret_cast<void *const *>(argVal);
PRINT_DEBUG_STRING(NEO::debugManager.flags.PrintL0SetKernelArg.get(), stderr, "set arg buffer index : %u requested address : %p\n", argIndex, requestedAddress);
if (argInfo.allocId > 0 &&
argInfo.allocId < NEO::SvmAllocationData::uninitializedAllocId &&
requestedAddress == argInfo.value) {
bool reuseFromCache = false;
if (allocationsCounter > 0) {
if (allocationsCounter == argInfo.allocIdMemoryManagerCounter) {
reuseFromCache = true;
} else {
allocData = svmAllocsManager->getSVMAlloc(requestedAddress);
if (allocData && allocData->getAllocId() == argInfo.allocId) {
reuseFromCache = true;
this->privateState.kernelArgInfos[argIndex].allocIdMemoryManagerCounter = allocationsCounter;
}
}
if (reuseFromCache) {
return ZE_RESULT_SUCCESS;
}
}
}
} else if (argInfo.isSetToNullptr) {
return ZE_RESULT_SUCCESS;
}
const auto &allArgs = getImmutableData()->getDescriptor().payloadMappings.explicitArgs;
const auto &currArg = allArgs[argIndex];
if (currArg.getTraits().getAddressQualifier() == NEO::KernelArgMetadata::AddrLocal) {
NEO::patchNonPointer<int64_t, int64_t>(getCrossThreadDataSpan(), currArg.as<NEO::ArgDescPointer>().bufferSize, static_cast<int64_t>(argSize));
privateState.slmArgSizes[argIndex] = static_cast<uint32_t>(argSize);
privateState.kernelArgInfos[argIndex] = KernelArgInfo{nullptr, 0, 0, false};
UNRECOVERABLE_IF(NEO::isUndefinedOffset(currArg.as<NEO::ArgDescPointer>().slmOffset));
auto slmOffset = *reinterpret_cast<uint32_t *>(&getCrossThreadDataSpan()[currArg.as<NEO::ArgDescPointer>().slmOffset]);
privateState.slmArgOffsetValues[argIndex] = slmOffset;
slmOffset += static_cast<uint32_t>(argSize);
++argIndex;
while (argIndex < getImmutableData()->getDescriptor().payloadMappings.explicitArgs.size()) {
if (allArgs[argIndex].getTraits().getAddressQualifier() != NEO::KernelArgMetadata::AddrLocal) {
++argIndex;
continue;
}
const auto &nextArg = allArgs[argIndex].as<NEO::ArgDescPointer>();
UNRECOVERABLE_IF(0 == nextArg.requiredSlmAlignment);
slmOffset = alignUp<uint32_t>(slmOffset, nextArg.requiredSlmAlignment);
NEO::patchNonPointer<uint32_t, uint32_t>(getCrossThreadDataSpan(), nextArg.slmOffset, slmOffset);
slmOffset += static_cast<uint32_t>(privateState.slmArgSizes[argIndex]);
++argIndex;
}
privateState.slmArgsTotalSize = static_cast<uint32_t>(alignUp(slmOffset, MemoryConstants::kiloByte));
return ZE_RESULT_SUCCESS;
}
if (nullptr == argVal) {
privateState.argumentsResidencyContainer[argIndex] = nullptr;
const auto &arg = getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescPointer>();
uintptr_t nullBufferValue = 0;
NEO::patchPointer(getCrossThreadDataSpan(), arg, nullBufferValue);
privateState.kernelArgInfos[argIndex] = KernelArgInfo{nullptr, 0, 0, true};
return ZE_RESULT_SUCCESS;
}
const auto requestedAddress = *reinterpret_cast<void *const *>(argVal);
uintptr_t gpuAddress = 0u;
NEO::GraphicsAllocation *alloc = nullptr;
if (allocData) {
gpuAddress = reinterpret_cast<uintptr_t>(requestedAddress);
alloc = allocData->gpuAllocations.getGraphicsAllocation(module->getDevice()->getRootDeviceIndex());
} else {
alloc = driverHandle->getDriverSystemMemoryAllocation(requestedAddress, 1u, module->getDevice()->getRootDeviceIndex(), &gpuAddress);
allocData = svmAllocsManager->getSVMAlloc(requestedAddress);
}
NEO::SvmAllocationData *peerAllocData = nullptr;
if (allocData && driverHandle->isRemoteResourceNeeded(requestedAddress, alloc, allocData, device)) {
uint64_t pbase = allocData->gpuAllocations.getDefaultGraphicsAllocation()->getGpuAddress();
uint64_t offset = (uint64_t)requestedAddress - pbase;
alloc = driverHandle->getPeerAllocation(device, allocData, reinterpret_cast<void *>(pbase), &gpuAddress, &peerAllocData);
if (alloc == nullptr) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
gpuAddress += offset;
}
if (allocData == nullptr) {
if (NEO::debugManager.flags.DisableSystemPointerKernelArgument.get() != 1) {
privateState.argumentsResidencyContainer[argIndex] = nullptr;
const auto &argAsPtr = getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescPointer>();
auto patchLocation = ptrOffset(getCrossThreadData(), argAsPtr.stateless);
NEO::patchNonPointer<int64_t, int64_t>(getCrossThreadDataSpan(), argAsPtr.bufferSize, 0);
patchWithRequiredSize(const_cast<uint8_t *>(patchLocation), argAsPtr.pointerSize, reinterpret_cast<uintptr_t>(requestedAddress));
privateState.kernelArgInfos[argIndex] = KernelArgInfo{requestedAddress, 0, 0, false};
return ZE_RESULT_SUCCESS;
} else {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
}
const uint32_t allocId = allocData->getAllocId();
privateState.kernelArgInfos[argIndex] = KernelArgInfo{requestedAddress, allocId, allocationsCounter, false};
return setArgBufferWithAlloc(argIndex, gpuAddress, alloc, peerAllocData ? peerAllocData : allocData);
}
ze_result_t KernelImp::setArgImage(uint32_t argIndex, size_t argSize, const void *argVal) {
if (argVal == nullptr) {
privateState.argumentsResidencyContainer[argIndex] = nullptr;
return ZE_RESULT_SUCCESS;
}
const auto &hwInfo = module->getDevice()->getNEODevice()->getHardwareInfo();
auto isMediaBlockImage = (hwInfo.capabilityTable.supportsMediaBlock &&
getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex].getExtendedTypeInfo().isMediaBlockImage);
const auto &arg = getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescImage>();
const auto image = Image::fromHandle(*static_cast<const ze_image_handle_t *>(argVal));
if (getImmutableData()->getDescriptor().kernelAttributes.imageAddressingMode == NEO::KernelDescriptor::Bindless) {
NEO::BindlessHeapsHelper *bindlessHeapsHelper = this->module->getDevice()->getNEODevice()->getBindlessHeapsHelper();
auto &gfxCoreHelper = this->module->getDevice()->getNEODevice()->getRootDeviceEnvironmentRef().getHelper<NEO::GfxCoreHelper>();
auto surfaceStateSize = gfxCoreHelper.getRenderSurfaceStateSize();
if (bindlessHeapsHelper) {
if (image->allocateBindlessSlot() != ZE_RESULT_SUCCESS) {
return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
}
auto ssInHeap = image->getBindlessSlot();
auto patchLocation = ptrOffset(getCrossThreadData(), arg.bindless);
auto bindlessSlotOffset = ssInHeap->surfaceStateOffset;
uint32_t patchSize = NEO::isUndefined(arg.size) ? 0 : arg.size;
uint64_t patchValue = this->sharedState->heaplessEnabled
? bindlessSlotOffset
: gfxCoreHelper.getBindlessSurfaceExtendedMessageDescriptorValue(static_cast<uint32_t>(bindlessSlotOffset));
patchWithRequiredSize(const_cast<uint8_t *>(patchLocation), patchSize, patchValue);
image->copySurfaceStateToSSH(ssInHeap->ssPtr, 0u, NEO::BindlessImageSlot::image, isMediaBlockImage);
image->copySurfaceStateToSSH(ptrOffset(ssInHeap->ssPtr, surfaceStateSize), 0u, NEO::BindlessImageSlot::implicitArgs, false);
privateState.isBindlessOffsetSet[argIndex] = true;
} else {
privateState.usingSurfaceStateHeap[argIndex] = true;
auto ssPtr = &getSurfaceStateHeapDataSpan()[getSurfaceStateIndexForBindlessOffset(arg.bindless) * surfaceStateSize];
image->copySurfaceStateToSSH(ssPtr, 0u, NEO::BindlessImageSlot::image, isMediaBlockImage);
}
} else {
image->copySurfaceStateToSSH(privateState.surfaceStateHeapData.data(), arg.bindful, NEO::BindlessImageSlot::image, isMediaBlockImage);
}
privateState.argumentsResidencyContainer[argIndex] = image->getAllocation();
if (image->getImplicitArgsAllocation()) {
if (privateState.implicitArgsResidencyContainerIndices[argIndex] == std::numeric_limits<size_t>::max()) {
privateState.implicitArgsResidencyContainerIndices[argIndex] = privateState.argumentsResidencyContainer.size();
privateState.argumentsResidencyContainer.push_back(image->getImplicitArgsAllocation());
} else {
privateState.argumentsResidencyContainer[privateState.implicitArgsResidencyContainerIndices[argIndex]] = image->getImplicitArgsAllocation();
}
} else {
if (privateState.implicitArgsResidencyContainerIndices[argIndex] != std::numeric_limits<size_t>::max()) {
privateState.argumentsResidencyContainer[privateState.implicitArgsResidencyContainerIndices[argIndex]] = nullptr;
}
}
auto imageInfo = image->getImageInfo();
auto clChannelType = getClChannelDataType(image->getImageDesc().format);
auto clChannelOrder = getClChannelOrder(image->getImageDesc().format);
// If the Module was built from a SPIRv, then the supported channel data type must be in the CL types otherwise it is unsupported.
ModuleImp *moduleImp = reinterpret_cast<ModuleImp *>(this->module);
if (moduleImp->isSPIRv()) {
if (static_cast<int>(clChannelType) == CL_INVALID_VALUE) {
return ZE_RESULT_ERROR_UNSUPPORTED_IMAGE_FORMAT;
}
}
NEO::patchNonPointer<uint32_t, size_t>(getCrossThreadDataSpan(), arg.metadataPayload.imgWidth, imageInfo.imgDesc.imageWidth);
NEO::patchNonPointer<uint32_t, size_t>(getCrossThreadDataSpan(), arg.metadataPayload.imgHeight, imageInfo.imgDesc.imageHeight);
NEO::patchNonPointer<uint32_t, size_t>(getCrossThreadDataSpan(), arg.metadataPayload.imgDepth, imageInfo.imgDesc.imageDepth);
NEO::patchNonPointer<uint32_t, uint32_t>(getCrossThreadDataSpan(), arg.metadataPayload.numSamples, imageInfo.imgDesc.numSamples);
NEO::patchNonPointer<uint32_t, size_t>(getCrossThreadDataSpan(), arg.metadataPayload.arraySize, imageInfo.imgDesc.imageArraySize);
NEO::patchNonPointer<cl_channel_type, cl_channel_type>(getCrossThreadDataSpan(), arg.metadataPayload.channelDataType, clChannelType);
NEO::patchNonPointer<cl_channel_order, cl_channel_order>(getCrossThreadDataSpan(), arg.metadataPayload.channelOrder, clChannelOrder);
NEO::patchNonPointer<uint32_t, uint32_t>(getCrossThreadDataSpan(), arg.metadataPayload.numMipLevels, imageInfo.imgDesc.numMipLevels);
auto pixelSize = imageInfo.surfaceFormat->imageElementSizeInBytes;
NEO::patchNonPointer<uint64_t, uint64_t>(getCrossThreadDataSpan(), arg.metadataPayload.flatBaseOffset, image->getAllocation()->getGpuAddress());
NEO::patchNonPointer<uint32_t, size_t>(getCrossThreadDataSpan(), arg.metadataPayload.flatWidth, (imageInfo.imgDesc.imageWidth * pixelSize) - 1u);
NEO::patchNonPointer<uint32_t, size_t>(getCrossThreadDataSpan(), arg.metadataPayload.flatHeight, (imageInfo.imgDesc.imageHeight * pixelSize) - 1u);
NEO::patchNonPointer<uint32_t, size_t>(getCrossThreadDataSpan(), arg.metadataPayload.flatPitch, imageInfo.imgDesc.imageRowPitch - 1u);
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgSampler(uint32_t argIndex, size_t argSize, const void *argVal) {
const auto &arg = getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescSampler>();
const auto sampler = Sampler::fromHandle(*static_cast<const ze_sampler_handle_t *>(argVal));
if (NEO::isValidOffset(arg.bindful)) {
sampler->copySamplerStateToDSH(getDynamicStateHeapDataSpan(), arg.bindful);
} else if (NEO::isValidOffset(arg.bindless)) {
const auto offset = getImmutableData()->getDescriptor().payloadMappings.samplerTable.tableOffset;
auto &gfxCoreHelper = this->module->getDevice()->getNEODevice()->getRootDeviceEnvironmentRef().getHelper<NEO::GfxCoreHelper>();
const auto stateSize = gfxCoreHelper.getSamplerStateSize();
auto heapOffset = offset + static_cast<uint32_t>(stateSize) * arg.index;
sampler->copySamplerStateToDSH(getDynamicStateHeapDataSpan(), heapOffset);
}
auto samplerDesc = sampler->getSamplerDesc();
NEO::patchNonPointer<uint32_t, uint32_t>(getCrossThreadDataSpan(), arg.metadataPayload.samplerSnapWa, (samplerDesc.addressMode == ZE_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER && samplerDesc.filterMode == ZE_SAMPLER_FILTER_MODE_NEAREST) ? std::numeric_limits<uint32_t>::max() : 0u);
NEO::patchNonPointer<uint32_t, uint32_t>(getCrossThreadDataSpan(), arg.metadataPayload.samplerAddressingMode, static_cast<uint32_t>(getAddrMode(samplerDesc.addressMode)));
NEO::patchNonPointer<uint32_t, uint32_t>(getCrossThreadDataSpan(), arg.metadataPayload.samplerNormalizedCoords, samplerDesc.isNormalized ? static_cast<uint32_t>(SamplerPatchValues::normalizedCoordsTrue) : static_cast<uint32_t>(SamplerPatchValues::normalizedCoordsFalse));
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getKernelName(size_t *pSize, char *pName) {
size_t kernelNameSize = this->getImmutableData()->getDescriptor().kernelMetadata.kernelName.size() + 1;
if (0 == *pSize || nullptr == pName) {
*pSize = kernelNameSize;
return ZE_RESULT_SUCCESS;
}
*pSize = std::min(*pSize, kernelNameSize);
strncpy_s(pName, *pSize,
this->getImmutableData()->getDescriptor().kernelMetadata.kernelName.c_str(),
this->getImmutableData()->getDescriptor().kernelMetadata.kernelName.size());
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getProperties(ze_kernel_properties_t *pKernelProperties) {
const auto &gfxCoreHelper = this->module->getDevice()->getGfxCoreHelper();
const auto &kernelDescriptor = this->getImmutableData()->getDescriptor();
pKernelProperties->numKernelArgs = static_cast<uint32_t>(kernelDescriptor.payloadMappings.explicitArgs.size());
pKernelProperties->requiredGroupSizeX = kernelDescriptor.kernelAttributes.requiredWorkgroupSize[0];
pKernelProperties->requiredGroupSizeY = kernelDescriptor.kernelAttributes.requiredWorkgroupSize[1];
pKernelProperties->requiredGroupSizeZ = kernelDescriptor.kernelAttributes.requiredWorkgroupSize[2];
pKernelProperties->requiredNumSubGroups = kernelDescriptor.kernelMetadata.compiledSubGroupsNumber;
pKernelProperties->requiredSubgroupSize = kernelDescriptor.kernelMetadata.requiredSubGroupSize;
pKernelProperties->maxSubgroupSize = kernelDescriptor.kernelAttributes.simdSize;
pKernelProperties->localMemSize = this->getSlmTotalSize();
pKernelProperties->privateMemSize = gfxCoreHelper.getKernelPrivateMemSize(kernelDescriptor);
pKernelProperties->spillMemSize = kernelDescriptor.kernelAttributes.spillFillScratchMemorySize;
memset(pKernelProperties->uuid.kid, 0, ZE_MAX_KERNEL_UUID_SIZE);
memset(pKernelProperties->uuid.mid, 0, ZE_MAX_MODULE_UUID_SIZE);
uint32_t maxKernelWorkGroupSize = static_cast<uint32_t>(this->module->getMaxGroupSize(kernelDescriptor));
const auto &rootDeviceEnvironment = this->module->getDevice()->getNEODevice()->getRootDeviceEnvironment();
maxKernelWorkGroupSize = gfxCoreHelper.adjustMaxWorkGroupSize(kernelDescriptor.kernelAttributes.numGrfRequired, kernelDescriptor.kernelAttributes.simdSize, maxKernelWorkGroupSize, rootDeviceEnvironment);
pKernelProperties->maxNumSubgroups = maxKernelWorkGroupSize / kernelDescriptor.kernelAttributes.simdSize;
void *pNext = pKernelProperties->pNext;
while (pNext) {
ze_base_desc_t *extendedProperties = reinterpret_cast<ze_base_desc_t *>(pNext);
if (extendedProperties->stype == ZE_STRUCTURE_TYPE_KERNEL_PREFERRED_GROUP_SIZE_PROPERTIES) {
ze_kernel_preferred_group_size_properties_t *preferredGroupSizeProperties =
reinterpret_cast<ze_kernel_preferred_group_size_properties_t *>(extendedProperties);
preferredGroupSizeProperties->preferredMultiple = this->getImmutableData()->getKernelInfo()->getMaxSimdSize();
if (gfxCoreHelper.isFusedEuDispatchEnabled(this->module->getDevice()->getHwInfo(), kernelDescriptor.kernelAttributes.flags.requiresDisabledEUFusion)) {
preferredGroupSizeProperties->preferredMultiple *= 2;
}
} else if (extendedProperties->stype == ZE_STRUCTURE_TYPE_KERNEL_MAX_GROUP_SIZE_EXT_PROPERTIES) {
ze_kernel_max_group_size_properties_ext_t *properties = reinterpret_cast<ze_kernel_max_group_size_properties_ext_t *>(extendedProperties);
properties->maxGroupSize = maxKernelWorkGroupSize;
} else if (static_cast<uint32_t>(extendedProperties->stype) == ZEX_STRUCTURE_KERNEL_REGISTER_FILE_SIZE_EXP) {
zex_kernel_register_file_size_exp_t *properties = reinterpret_cast<zex_kernel_register_file_size_exp_t *>(extendedProperties);
properties->registerFileSize = kernelDescriptor.kernelAttributes.numGrfRequired;
}
pNext = const_cast<void *>(extendedProperties->pNext);
}
return ZE_RESULT_SUCCESS;
}
NEO::GraphicsAllocation *KernelImp::allocatePrivateMemoryGraphicsAllocation() {
auto &kernelAttributes = getImmutableData()->getDescriptor().kernelAttributes;
auto neoDevice = module->getDevice()->getNEODevice();
auto privateSurfaceSize = NEO::KernelHelper::getPrivateSurfaceSize(kernelAttributes.perHwThreadPrivateMemorySize,
neoDevice->getDeviceInfo().computeUnitsUsedForScratch);
UNRECOVERABLE_IF(privateSurfaceSize == 0);
auto privateMemoryGraphicsAllocation = neoDevice->getMemoryManager()->allocateGraphicsMemoryWithProperties(
{neoDevice->getRootDeviceIndex(), privateSurfaceSize, NEO::AllocationType::privateSurface, neoDevice->getDeviceBitfield()});
if (privateMemoryGraphicsAllocation == nullptr) {
const auto usedLocalMemorySize = neoDevice->getMemoryManager()->getUsedLocalMemorySize(neoDevice->getRootDeviceIndex());
const auto maxGlobalMemorySize = neoDevice->getRootDevice()->getGlobalMemorySize(static_cast<uint32_t>(neoDevice->getDeviceBitfield().to_ulong()));
CREATE_DEBUG_STRING(str, "Failed to allocate private surface of %zu bytes, used local memory %zu, max global memory %zu\n", static_cast<size_t>(privateSurfaceSize), usedLocalMemorySize, static_cast<size_t>(maxGlobalMemorySize));
neoDevice->getRootDeviceEnvironment().executionEnvironment.setErrorDescription(std::string(str.get()));
PRINT_DEBUG_STRING(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, str.get());
}
return privateMemoryGraphicsAllocation;
}
void KernelImp::patchCrossthreadDataWithPrivateAllocation(NEO::GraphicsAllocation *privateAllocation) {
auto device = module->getDevice();
patchWithImplicitSurface(getCrossThreadDataSpan(), getSurfaceStateHeapDataSpan(),
static_cast<uintptr_t>(privateAllocation->getGpuAddressToPatch()),
*privateAllocation, getImmutableData()->getDescriptor().payloadMappings.implicitArgs.privateMemoryAddress,
*device->getNEODevice(), device->isImplicitScalingCapable());
}
void KernelImp::setInlineSamplers() {
auto device = module->getDevice();
const auto productFamily = device->getNEODevice()->getHardwareInfo().platform.eProductFamily;
for (auto &inlineSampler : getKernelDescriptor().inlineSamplers) {
ze_sampler_desc_t samplerDesc = {};
samplerDesc.addressMode = static_cast<ze_sampler_address_mode_t>(inlineSampler.addrMode);
samplerDesc.filterMode = static_cast<ze_sampler_filter_mode_t>(inlineSampler.filterMode);
samplerDesc.isNormalized = inlineSampler.isNormalized;
auto sampler = std::unique_ptr<L0::Sampler>(L0::Sampler::create(productFamily, device, &samplerDesc));
UNRECOVERABLE_IF(sampler.get() == nullptr);
if (NEO::isValidOffset(inlineSampler.bindless)) {
auto samplerStateIndex = inlineSampler.samplerIndex;
auto &gfxCoreHelper = device->getGfxCoreHelper();
auto samplerStateSize = gfxCoreHelper.getSamplerStateSize();
uint32_t offset = inlineSampler.borderColorStateSize;
offset += static_cast<uint32_t>(samplerStateSize) * samplerStateIndex;
sampler->copySamplerStateToDSH(getDynamicStateHeapDataSpan(), offset);
} else {
sampler->copySamplerStateToDSH(getDynamicStateHeapDataSpan(), inlineSampler.getSamplerBindfulOffset());
}
}
}
ze_result_t KernelImp::initialize(const ze_kernel_desc_t *desc) {
auto &sharedState = *(this->sharedState);
sharedState.kernelImmData = module->getKernelImmutableData(desc->pKernelName);
if (sharedState.kernelImmData == nullptr) {
return ZE_RESULT_ERROR_INVALID_KERNEL_NAME;
}
auto &kernelImmData = *(sharedState.kernelImmData);
auto neoDevice = module->getDevice()->getNEODevice();
auto &kernelDescriptor = kernelImmData.getDescriptor();
auto localMemSize = static_cast<uint32_t>(neoDevice->getDeviceInfo().localMemSize);
auto slmInlineSize = kernelDescriptor.kernelAttributes.slmInlineSize;
if (slmInlineSize > 0 && localMemSize < slmInlineSize) {
CREATE_DEBUG_STRING(str, "Size of SLM (%u) larger than available (%u)\n", slmInlineSize, localMemSize);
module->getDevice()->getDriverHandle()->setErrorDescription(std::string(str.get()));
PRINT_DEBUG_STRING(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Size of SLM (%u) larger than available (%u)\n", slmInlineSize, localMemSize);
return ZE_RESULT_ERROR_OUT_OF_DEVICE_MEMORY;
}
auto isaAllocation = kernelImmData.getIsaGraphicsAllocation();
const auto &productHelper = neoDevice->getProductHelper();
const auto &rootDeviceEnvironment = module->getDevice()->getNEODevice()->getRootDeviceEnvironment();
auto ret = NEO::KernelHelper::checkIfThereIsSpaceForScratchOrPrivate(kernelDescriptor.kernelAttributes, neoDevice);
if (ret == NEO::KernelHelper::ErrorCode::invalidKernel) {
return ZE_RESULT_ERROR_INVALID_NATIVE_BINARY;
}
if (ret == NEO::KernelHelper::ErrorCode::outOfDeviceMemory) {
return ZE_RESULT_ERROR_OUT_OF_DEVICE_MEMORY;
}
UNRECOVERABLE_IF(!kernelImmData.getKernelInfo()->heapInfo.pKernelHeap);
const auto &hwInfo = neoDevice->getHardwareInfo();
auto deviceBitfield = neoDevice->getDeviceBitfield();
const auto &gfxHelper = rootDeviceEnvironment.getHelper<NEO::GfxCoreHelper>();
sharedState.heaplessEnabled = rootDeviceEnvironment.getHelper<NEO::CompilerProductHelper>().isHeaplessModeEnabled(hwInfo);
bool platformImplicitScaling = gfxHelper.platformSupportsImplicitScaling(rootDeviceEnvironment);
sharedState.implicitScalingEnabled = NEO::ImplicitScalingHelper::isImplicitScalingEnabled(deviceBitfield, platformImplicitScaling);
sharedState.rcsAvailable = gfxHelper.isRcsAvailable(hwInfo);
sharedState.cooperativeSupport = productHelper.isCooperativeEngineSupported(hwInfo);
sharedState.walkerInlineDataSize = gfxHelper.getDefaultWalkerInlineDataSize();
sharedState.surfaceStateAlignmentMask = gfxHelper.getSurfaceBaseAddressAlignmentMask();
sharedState.surfaceStateAlignment = gfxHelper.getSurfaceBaseAddressAlignment();
if (isaAllocation->getAllocationType() == NEO::AllocationType::kernelIsaInternal && kernelImmData.getIsaParentAllocation() == nullptr) {
isaAllocation->setTbxWritable(true, std::numeric_limits<uint32_t>::max());
isaAllocation->setAubWritable(true, std::numeric_limits<uint32_t>::max());
NEO::MemoryTransferHelper::transferMemoryToAllocation(productHelper.isBlitCopyRequiredForLocalMemory(rootDeviceEnvironment, *isaAllocation),
*neoDevice,
isaAllocation,
kernelImmData.getIsaOffsetInParentAllocation(),
kernelImmData.getKernelInfo()->heapInfo.pKernelHeap,
static_cast<size_t>(kernelImmData.getKernelInfo()->heapInfo.kernelHeapSize));
}
this->privateState.kernelArgHandlers.reserve(kernelDescriptor.payloadMappings.explicitArgs.size());
for (const auto &argT : kernelDescriptor.payloadMappings.explicitArgs) {
switch (argT.type) {
default:
this->privateState.kernelArgHandlers.push_back(&KernelImp::setArgUnknown);
break;
case NEO::ArgDescriptor::argTPointer:
this->privateState.kernelArgHandlers.push_back(&KernelImp::setArgBuffer);
break;
case NEO::ArgDescriptor::argTImage:
this->privateState.kernelArgHandlers.push_back(&KernelImp::setArgImage);
break;
case NEO::ArgDescriptor::argTSampler:
this->privateState.kernelArgHandlers.push_back(&KernelImp::setArgSampler);
break;
case NEO::ArgDescriptor::argTValue:
this->privateState.kernelArgHandlers.push_back(&KernelImp::setArgImmediate);
break;
}
}
privateState.slmArgSizes.resize(this->privateState.kernelArgHandlers.size(), 0);
privateState.slmArgOffsetValues.resize(this->privateState.kernelArgHandlers.size(), 0);
privateState.kernelArgInfos.resize(this->privateState.kernelArgHandlers.size(), {});
privateState.isArgUncached.resize(this->privateState.kernelArgHandlers.size(), 0);
privateState.isBindlessOffsetSet.resize(this->privateState.kernelArgHandlers.size(), 0);
privateState.usingSurfaceStateHeap.resize(this->privateState.kernelArgHandlers.size(), 0);
if (const auto surfaceStateHeapSize = kernelImmData.getSurfaceStateHeapSize();
surfaceStateHeapSize > 0U) {
this->privateState.surfaceStateHeapData.resize(surfaceStateHeapSize);
memcpy_s(this->privateState.surfaceStateHeapData.data(),
surfaceStateHeapSize,
kernelImmData.getSurfaceStateHeapTemplate(),
surfaceStateHeapSize);
}
if (const auto crossThreadDataSize = kernelDescriptor.kernelAttributes.crossThreadDataSize;
crossThreadDataSize != 0) {
this->privateState.crossThreadData.resize(crossThreadDataSize);
memcpy_s(this->privateState.crossThreadData.data(),
crossThreadDataSize,
kernelImmData.getCrossThreadDataTemplate(),
crossThreadDataSize);
}
if (const auto dynamicStateHeapSize = kernelImmData.getDynamicStateHeapDataSize();
dynamicStateHeapSize != 0) {
this->privateState.dynamicStateHeapData.clear();
this->privateState.dynamicStateHeapData.resize(dynamicStateHeapSize);
memcpy_s(this->privateState.dynamicStateHeapData.data(),
dynamicStateHeapSize,
kernelImmData.getDynamicStateHeapTemplate(),
dynamicStateHeapSize);
}
if (kernelDescriptor.kernelAttributes.flags.requiresImplicitArgs) {
privateState.pImplicitArgs = Clonable(new NEO::ImplicitArgs());
privateState.pImplicitArgs->initializeHeader(sharedState.implicitArgsVersion);
privateState.pImplicitArgs->setSimdWidth(kernelDescriptor.kernelAttributes.simdSize);
}
if (kernelDescriptor.kernelAttributes.requiredWorkgroupSize[0] > 0) {
auto *reqdSize = kernelDescriptor.kernelAttributes.requiredWorkgroupSize;
UNRECOVERABLE_IF(reqdSize[1] == 0);
UNRECOVERABLE_IF(reqdSize[2] == 0);
auto result = setGroupSize(reqdSize[0], reqdSize[1], reqdSize[2]);
if (result != ZE_RESULT_SUCCESS) {
return result;
}
} else {
auto result = setGroupSize(1, 1, 1);
if (result != ZE_RESULT_SUCCESS) {
return result;
}
}
privateState.argumentsResidencyContainer.resize(this->privateState.kernelArgHandlers.size(), nullptr);
privateState.implicitArgsResidencyContainerIndices.resize(this->privateState.kernelArgHandlers.size(), std::numeric_limits<size_t>::max());
auto &kernelAttributes = kernelDescriptor.kernelAttributes;
if ((kernelAttributes.perHwThreadPrivateMemorySize != 0U) && (false == module->shouldAllocatePrivateMemoryPerDispatch())) {
sharedState.privateMemoryGraphicsAllocation = allocatePrivateMemoryGraphicsAllocation();
if (sharedState.privateMemoryGraphicsAllocation == nullptr) {
return ZE_RESULT_ERROR_OUT_OF_DEVICE_MEMORY;
}
this->patchCrossthreadDataWithPrivateAllocation(sharedState.privateMemoryGraphicsAllocation);
this->privateState.internalResidencyContainer.push_back(sharedState.privateMemoryGraphicsAllocation);
}
this->createPrintfBuffer();
this->setInlineSamplers();
this->setAssertBuffer();
this->privateState.internalResidencyContainer.insert(this->privateState.internalResidencyContainer.end(),
kernelImmData.getResidencyContainer().begin(),
kernelImmData.getResidencyContainer().end());
ModuleImp *moduleImp = reinterpret_cast<ModuleImp *>(this->module);
const auto indirectDetectionVersion = moduleImp->getTranslationUnit()->programInfo.indirectDetectionVersion;
bool detectIndirectAccessInKernel = productHelper.isDetectIndirectAccessInKernelSupported(kernelDescriptor, moduleImp->isPrecompiled(), indirectDetectionVersion);
if (NEO::debugManager.flags.DetectIndirectAccessInKernel.get() != -1) {
detectIndirectAccessInKernel = NEO::debugManager.flags.DetectIndirectAccessInKernel.get() == 1;
}
if (detectIndirectAccessInKernel) {
privateState.kernelHasIndirectAccess = kernelDescriptor.kernelAttributes.hasNonKernelArgLoad ||
kernelDescriptor.kernelAttributes.hasNonKernelArgStore ||
kernelDescriptor.kernelAttributes.hasNonKernelArgAtomic ||
kernelDescriptor.kernelAttributes.hasIndirectStatelessAccess ||
kernelDescriptor.kernelAttributes.hasIndirectAccessInImplicitArg ||
kernelDescriptor.kernelAttributes.flags.useStackCalls ||
NEO::KernelHelper::isAnyArgumentPtrByValue(kernelDescriptor);
} else {
privateState.kernelHasIndirectAccess = true;
}
if (this->usesRayTracing()) {
uint32_t bvhLevels = NEO::RayTracingHelper::maxBvhLevels;
if (NEO::debugManager.flags.SetMaxBVHLevels.get() != -1) {
bvhLevels = static_cast<uint32_t>(NEO::debugManager.flags.SetMaxBVHLevels.get());
}
auto arg = kernelImmData.getDescriptor().payloadMappings.implicitArgs.rtDispatchGlobals;
neoDevice->initializeRayTracing(bvhLevels);
auto rtDispatchGlobalsInfo = neoDevice->getRTDispatchGlobals(bvhLevels);
if (rtDispatchGlobalsInfo == nullptr) {
return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
}
for (auto rtStack : rtDispatchGlobalsInfo->rtStacks) {
this->privateState.internalResidencyContainer.push_back(rtStack);
}
auto address = rtDispatchGlobalsInfo->rtDispatchGlobalsArray->getGpuAddressToPatch();
if (NEO::isValidOffset(arg.stateless)) {
NEO::patchPointer(getCrossThreadDataSpan(), arg, static_cast<uintptr_t>(address));
}
if (this->privateState.pImplicitArgs) {
privateState.pImplicitArgs->setRtGlobalBufferPtr(address);
}
this->privateState.internalResidencyContainer.push_back(rtDispatchGlobalsInfo->rtDispatchGlobalsArray);
}
return ZE_RESULT_SUCCESS;
}
std::unique_ptr<KernelImp> KernelImp::makeDependentClone() {
DEBUG_BREAK_IF(nullptr == this->ownedSharedState.get());
auto *device{static_cast<DeviceImp *>(this->module->getDevice())};
const auto productFamily = device->getNEODevice()->getHardwareInfo().platform.eProductFamily;
KernelAllocatorFn allocator = kernelFactory[productFamily];
auto clone = static_cast<KernelImp *>(allocator(nullptr));
DEBUG_BREAK_IF(nullptr == clone);
DEBUG_BREAK_IF(clone->ownedSharedState);
clone->module = this->module;
clone->sharedState = this->ownedSharedState.get();
clone->privateState = this->privateState;
return std::unique_ptr<KernelImp>{clone};
}
void KernelImp::createPrintfBuffer() {
auto &sharedState = *(this->sharedState);
if (this->getImmutableData()->getDescriptor().kernelAttributes.flags.usesPrintf || privateState.pImplicitArgs) {
sharedState.printfBuffer = PrintfHandler::createPrintfBuffer(this->module->getDevice());
this->privateState.internalResidencyContainer.push_back(sharedState.printfBuffer);
if (this->getImmutableData()->getDescriptor().kernelAttributes.flags.usesPrintf) {
NEO::patchPointer(getCrossThreadDataSpan(),
this->getImmutableData()->getDescriptor().payloadMappings.implicitArgs.printfSurfaceAddress,
static_cast<uintptr_t>(sharedState.printfBuffer->getGpuAddressToPatch()));
}
if (privateState.pImplicitArgs) {
privateState.pImplicitArgs->setPrintfBuffer(sharedState.printfBuffer->getGpuAddress());
}
sharedState.devicePrintfKernelMutex = &(static_cast<DeviceImp *>(this->module->getDevice())->printfKernelMutex);
}
}
void KernelImp::printPrintfOutput(bool hangDetected) {
PrintfHandler::printOutput(getImmutableData(), this->sharedState->printfBuffer, module->getDevice(), hangDetected);
}
bool KernelImp::usesSyncBuffer() {
return this->getImmutableData()->getDescriptor().kernelAttributes.flags.usesSyncBuffer;
}
bool KernelImp::usesRegionGroupBarrier() const {
return this->getImmutableData()->getDescriptor().kernelAttributes.flags.usesRegionGroupBarrier;
}
void KernelImp::patchSyncBuffer(NEO::GraphicsAllocation *gfxAllocation, size_t bufferOffset) {
if (privateState.syncBufferIndex == std::numeric_limits<size_t>::max()) {
privateState.syncBufferIndex = this->privateState.internalResidencyContainer.size();
this->privateState.internalResidencyContainer.push_back(gfxAllocation);
} else {
this->privateState.internalResidencyContainer[privateState.syncBufferIndex] = gfxAllocation;
}
NEO::patchPointer(getCrossThreadDataSpan(),
this->getImmutableData()->getDescriptor().payloadMappings.implicitArgs.syncBufferAddress,
static_cast<uintptr_t>(ptrOffset(gfxAllocation->getGpuAddressToPatch(), bufferOffset)));
if (privateState.pImplicitArgs) {
privateState.pImplicitArgs->setSyncBufferPtr(static_cast<uintptr_t>(ptrOffset(gfxAllocation->getGpuAddressToPatch(), bufferOffset)));
}
}
void KernelImp::patchRegionGroupBarrier(NEO::GraphicsAllocation *gfxAllocation, size_t bufferOffset) {
if (privateState.regionGroupBarrierIndex == std::numeric_limits<size_t>::max()) {
privateState.regionGroupBarrierIndex = this->privateState.internalResidencyContainer.size();
this->privateState.internalResidencyContainer.push_back(gfxAllocation);
} else {
this->privateState.internalResidencyContainer[privateState.regionGroupBarrierIndex] = gfxAllocation;
}
NEO::patchPointer(getCrossThreadDataSpan(),
this->getImmutableData()->getDescriptor().payloadMappings.implicitArgs.regionGroupBarrierBuffer,
static_cast<uintptr_t>(ptrOffset(gfxAllocation->getGpuAddressToPatch(), bufferOffset)));
}
uint32_t KernelImp::getSurfaceStateHeapDataSize() const {
if (NEO::KernelDescriptor::isBindlessAddressingKernel(getImmutableData()->getDescriptor())) {
if (std::none_of(privateState.usingSurfaceStateHeap.cbegin(), privateState.usingSurfaceStateHeap.cend(), [](bool i) { return i; })) {
return 0;
}
}
return static_cast<uint32_t>(privateState.surfaceStateHeapData.size());
}
void *KernelImp::patchBindlessSurfaceState(NEO::GraphicsAllocation *alloc, uint32_t bindless) {
auto &gfxCoreHelper = this->module->getDevice()->getGfxCoreHelper();
auto &ssInHeap = alloc->getBindlessInfo();
auto patchLocation = ptrOffset(getCrossThreadData(), bindless);
auto patchValue = gfxCoreHelper.getBindlessSurfaceExtendedMessageDescriptorValue(static_cast<uint32_t>(ssInHeap.surfaceStateOffset));
patchWithRequiredSize(const_cast<uint8_t *>(patchLocation), sizeof(patchValue), patchValue);
return ssInHeap.ssPtr;
}
void KernelImp::patchWorkgroupSizeInCrossThreadData(uint32_t x, uint32_t y, uint32_t z) {
const NEO::KernelDescriptor &desc = getImmutableData()->getDescriptor();
auto dst = getCrossThreadDataSpan();
uint32_t workgroupSize[3] = {x, y, z};
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.localWorkSize, workgroupSize);
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.localWorkSize2, workgroupSize);
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.enqueuedLocalWorkSize, workgroupSize);
if (privateState.pImplicitArgs) {
privateState.pImplicitArgs->setLocalSize(x, y, z);
privateState.pImplicitArgs->setEnqueuedLocalSize(x, y, z);
}
}
ze_result_t KernelImp::setGlobalOffsetExp(uint32_t offsetX,
uint32_t offsetY,
uint32_t offsetZ) {
this->privateState.globalOffsets[0] = offsetX;
this->privateState.globalOffsets[1] = offsetY;
this->privateState.globalOffsets[2] = offsetZ;
return ZE_RESULT_SUCCESS;
}
void KernelImp::patchGlobalOffset() {
const NEO::KernelDescriptor &desc = getImmutableData()->getDescriptor();
auto dst = getCrossThreadDataSpan();
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.globalWorkOffset, this->privateState.globalOffsets);
if (privateState.pImplicitArgs) {
privateState.pImplicitArgs->setGlobalOffset(privateState.globalOffsets[0], privateState.globalOffsets[1], privateState.globalOffsets[2]);
}
}
Kernel *Kernel::create(uint32_t productFamily, Module *module,
const ze_kernel_desc_t *desc, ze_result_t *res) {
UNRECOVERABLE_IF(productFamily >= IGFX_MAX_PRODUCT);
KernelAllocatorFn allocator = kernelFactory[productFamily];
auto kernel = static_cast<KernelImp *>(allocator(module));
*res = kernel->initialize(desc);
if (*res) {
kernel->destroy();
return nullptr;
}
return kernel;
}
bool KernelImp::hasIndirectAllocationsAllowed() const {
return this->hasIndirectAccess() && (privateState.unifiedMemoryControls.indirectDeviceAllocationsAllowed ||
privateState.unifiedMemoryControls.indirectHostAllocationsAllowed ||
privateState.unifiedMemoryControls.indirectSharedAllocationsAllowed);
}
uint32_t KernelImp::getSlmTotalSize() const {
return privateState.slmArgsTotalSize + getImmutableData()->getDescriptor().kernelAttributes.slmInlineSize;
}
ze_result_t KernelImp::setCacheConfig(ze_cache_config_flags_t flags) {
privateState.cacheConfigFlags = flags;
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getProfileInfo(zet_profile_properties_t *pProfileProperties) {
pProfileProperties->flags = module->getProfileFlags();
pProfileProperties->numTokens = 0;
return ZE_RESULT_SUCCESS;
}
NEO::GraphicsAllocation *KernelImp::getIsaAllocation() const {
return getImmutableData()->getIsaGraphicsAllocation();
}
uint64_t KernelImp::getIsaOffsetInParentAllocation() const {
return static_cast<uint64_t>(getImmutableData()->getIsaOffsetInParentAllocation());
}
ze_result_t KernelImp::setSchedulingHintExp(ze_scheduling_hint_exp_desc_t *pHint) {
auto &threadArbitrationPolicy = const_cast<NEO::ThreadArbitrationPolicy &>(getKernelDescriptor().kernelAttributes.threadArbitrationPolicy);
if (pHint->flags == ZE_SCHEDULING_HINT_EXP_FLAG_OLDEST_FIRST) {
threadArbitrationPolicy = NEO::ThreadArbitrationPolicy::AgeBased;
} else if (pHint->flags == ZE_SCHEDULING_HINT_EXP_FLAG_ROUND_ROBIN) {
threadArbitrationPolicy = NEO::ThreadArbitrationPolicy::RoundRobin;
} else {
threadArbitrationPolicy = NEO::ThreadArbitrationPolicy::RoundRobinAfterDependency;
}
return ZE_RESULT_SUCCESS;
}
void KernelImp::setAssertBuffer() {
if (!getKernelDescriptor().kernelAttributes.flags.usesAssert) {
return;
}
auto assertHandler = this->module->getDevice()->getNEODevice()->getRootDeviceEnvironmentRef().getAssertHandler(this->module->getDevice()->getNEODevice());
NEO::patchPointer(getCrossThreadDataSpan(),
this->getImmutableData()->getDescriptor().payloadMappings.implicitArgs.assertBufferAddress,
static_cast<uintptr_t>(assertHandler->getAssertBuffer()->getGpuAddressToPatch()));
this->privateState.internalResidencyContainer.push_back(assertHandler->getAssertBuffer());
if (privateState.pImplicitArgs) {
privateState.pImplicitArgs->setAssertBufferPtr(static_cast<uintptr_t>(assertHandler->getAssertBuffer()->getGpuAddressToPatch()));
}
}
void KernelImp::patchBindlessOffsetsInCrossThreadData(uint64_t bindlessSurfaceStateBaseOffset) const {
UNRECOVERABLE_IF(this->module == nullptr);
auto &gfxCoreHelper = this->module->getDevice()->getGfxCoreHelper();
auto surfaceStateSize = gfxCoreHelper.getRenderSurfaceStateSize();
for (size_t argIndex = 0; argIndex < getImmutableData()->getDescriptor().payloadMappings.explicitArgs.size(); argIndex++) {
const auto &arg = getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex];
auto crossThreadOffset = NEO::undefined<NEO::CrossThreadDataOffset>;
if (arg.type == NEO::ArgDescriptor::argTPointer) {
crossThreadOffset = arg.as<NEO::ArgDescPointer>().bindless;
} else if (arg.type == NEO::ArgDescriptor::argTImage) {
crossThreadOffset = arg.as<NEO::ArgDescImage>().bindless;
} else {
continue;
}
if (NEO::isValidOffset(crossThreadOffset)) {
auto patchLocation = ptrOffset(getCrossThreadData(), crossThreadOffset);
auto index = getSurfaceStateIndexForBindlessOffset(crossThreadOffset);
if (index < std::numeric_limits<uint32_t>::max() && !privateState.isBindlessOffsetSet[argIndex]) {
auto surfaceStateOffset = static_cast<uint32_t>(bindlessSurfaceStateBaseOffset + index * surfaceStateSize);
auto patchValue = gfxCoreHelper.getBindlessSurfaceExtendedMessageDescriptorValue(static_cast<uint32_t>(surfaceStateOffset));
patchWithRequiredSize(const_cast<uint8_t *>(patchLocation), sizeof(patchValue), patchValue);
}
}
}
const auto bindlessHeapsHelper = this->module->getDevice()->getNEODevice()->getBindlessHeapsHelper();
if (!bindlessHeapsHelper) {
patchBindlessOffsetsForImplicitArgs(bindlessSurfaceStateBaseOffset);
}
}
void KernelImp::patchSamplerBindlessOffsetsInCrossThreadData(uint64_t samplerStateOffset) const {
if (this->module == nullptr) {
return;
}
const auto &gfxCoreHelper = this->module->getDevice()->getGfxCoreHelper();
const auto samplerStateSize = gfxCoreHelper.getSamplerStateSize();
auto crossThreadData = getCrossThreadData();
for (size_t index = 0; index < getImmutableData()->getDescriptor().payloadMappings.explicitArgs.size(); index++) {
const auto &arg = getImmutableData()->getDescriptor().payloadMappings.explicitArgs[index];
auto crossThreadOffset = NEO::undefined<NEO::CrossThreadDataOffset>;
if (arg.type == NEO::ArgDescriptor::argTSampler) {
crossThreadOffset = arg.as<NEO::ArgDescSampler>().bindless;
} else {
continue;
}
auto samplerIndex = arg.as<NEO::ArgDescSampler>().index;
if (NEO::isValidOffset(crossThreadOffset)) {
auto patchLocation = ptrOffset(crossThreadData, crossThreadOffset);
if (samplerIndex < std::numeric_limits<uint8_t>::max()) {
auto surfaceStateOffset = static_cast<uint64_t>(samplerStateOffset + samplerIndex * samplerStateSize);
auto patchValue = surfaceStateOffset;
patchWithRequiredSize(const_cast<uint8_t *>(patchLocation), arg.as<NEO::ArgDescSampler>().size, patchValue);
}
}
}
for (size_t index = 0; index < getImmutableData()->getDescriptor().inlineSamplers.size(); index++) {
const auto &sampler = getImmutableData()->getDescriptor().inlineSamplers[index];
auto crossThreadOffset = NEO::undefined<NEO::CrossThreadDataOffset>;
if (sampler.bindless != NEO::undefined<NEO::CrossThreadDataOffset>) {
crossThreadOffset = sampler.bindless;
} else {
continue;
}
auto samplerIndex = sampler.samplerIndex;
if (samplerIndex < std::numeric_limits<uint8_t>::max()) {
auto patchLocation = ptrOffset(crossThreadData, crossThreadOffset);
auto surfaceStateOffset = static_cast<uint64_t>(samplerStateOffset + samplerIndex * samplerStateSize);
auto patchValue = surfaceStateOffset;
patchWithRequiredSize(const_cast<uint8_t *>(patchLocation), sampler.size, patchValue);
}
}
}
uint32_t KernelImp::getSurfaceStateIndexForBindlessOffset(NEO::CrossThreadDataOffset bindlessOffset) const {
const auto &iter = getKernelDescriptor().getBindlessOffsetToSurfaceState().find(bindlessOffset);
if (iter != getKernelDescriptor().getBindlessOffsetToSurfaceState().end()) {
return iter->second;
}
DEBUG_BREAK_IF(true);
return std::numeric_limits<uint32_t>::max();
}
void KernelImp::patchBindlessOffsetsForImplicitArgs(uint64_t bindlessSurfaceStateBaseOffset) const {
auto implicitArgsVec = getImmutableData()->getDescriptor().getImplicitArgBindlessCandidatesVec();
auto &gfxCoreHelper = this->module->getDevice()->getGfxCoreHelper();
auto surfaceStateSize = gfxCoreHelper.getRenderSurfaceStateSize();
for (size_t i = 0; i < implicitArgsVec.size(); i++) {
if (NEO::isValidOffset(implicitArgsVec[i]->bindless)) {
auto patchLocation = ptrOffset(getCrossThreadData(), implicitArgsVec[i]->bindless);
auto index = getSurfaceStateIndexForBindlessOffset(implicitArgsVec[i]->bindless);
if (index < std::numeric_limits<uint32_t>::max()) {
auto surfaceStateOffset = static_cast<uint32_t>(bindlessSurfaceStateBaseOffset + index * surfaceStateSize);
auto patchValue = gfxCoreHelper.getBindlessSurfaceExtendedMessageDescriptorValue(static_cast<uint32_t>(surfaceStateOffset));
patchWithRequiredSize(const_cast<uint8_t *>(patchLocation), sizeof(patchValue), patchValue);
}
}
}
}
bool KernelImp::checkKernelContainsStatefulAccess() {
auto moduleImp = static_cast<ModuleImp *>(this->module);
auto isUserKernel = (moduleImp->getModuleType() == ModuleType::user);
auto isGeneratedByIgc = moduleImp->getTranslationUnit()->isGeneratedByIgc;
auto containsStatefulAccess = NEO::AddressingModeHelper::containsStatefulAccess(getKernelDescriptor(), false);
return containsStatefulAccess && isUserKernel && isGeneratedByIgc;
}
uint8_t KernelImp::getRequiredSlmAlignment(uint32_t argIndex) const {
const auto &allArgs = getImmutableData()->getDescriptor().payloadMappings.explicitArgs;
UNRECOVERABLE_IF(allArgs[argIndex].getTraits().getAddressQualifier() != NEO::KernelArgMetadata::AddrLocal);
const auto &nextArg = allArgs[argIndex].as<NEO::ArgDescPointer>();
return nextArg.requiredSlmAlignment;
}
ze_result_t KernelImp::getArgumentSize(uint32_t argIndex, uint32_t *argSize) const {
if (argIndex >= privateState.kernelArgHandlers.size()) {
return ZE_RESULT_ERROR_INVALID_KERNEL_ARGUMENT_INDEX;
}
if (argSize == nullptr) {
return ZE_RESULT_ERROR_INVALID_NULL_POINTER;
}
uint32_t outArgSize = 0u;
auto &argDescriptor = this->getImmutableData()->getDescriptor().payloadMappings.explicitArgs[argIndex];
switch (argDescriptor.type) {
case NEO::ArgDescriptor::argTPointer:
outArgSize = argDescriptor.as<NEO::ArgDescPointer>().pointerSize;
break;
case NEO::ArgDescriptor::argTImage:
outArgSize = sizeof(ze_image_handle_t);
break;
case NEO::ArgDescriptor::argTSampler:
outArgSize = argDescriptor.as<NEO::ArgDescSampler>().size;
break;
case NEO::ArgDescriptor::argTValue: {
auto numOfElements = argDescriptor.as<NEO::ArgDescValue>().elements.size();
if (numOfElements == 0) {
outArgSize = 0;
break;
}
auto &lastElement = argDescriptor.as<NEO::ArgDescValue>().elements[numOfElements - 1];
outArgSize = lastElement.sourceOffset + lastElement.size;
} break;
default:
break;
}
*argSize = outArgSize;
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getArgumentType(uint32_t argIndex, uint32_t *pSize, char *pString) const {
this->populateMetadata();
if (argIndex >= privateState.kernelArgHandlers.size()) {
return ZE_RESULT_ERROR_INVALID_KERNEL_ARGUMENT_INDEX;
}
if (pSize == nullptr) {
return ZE_RESULT_ERROR_INVALID_NULL_POINTER;
}
if (this->getImmutableData()->getDescriptor().explicitArgsExtendedMetadata.empty()) {
// Failed to populate/generate extended args metadata.
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
const auto &argMetadata = this->getImmutableData()->getDescriptor().explicitArgsExtendedMetadata[argIndex];
auto userSize = *pSize;
*pSize = static_cast<uint32_t>(argMetadata.type.length() + 1);
if (pString != nullptr && userSize >= argMetadata.type.length()) {
strncpy_s(pString, *pSize, argMetadata.type.c_str(), argMetadata.type.length());
}
return ZE_RESULT_SUCCESS;
}
void KernelImp::populateMetadata() const {
this->module->populateZebinExtendedArgsMetadata();
this->module->generateDefaultExtendedArgsMetadata();
}
KernelExt *KernelImp::getExtension(uint32_t extensionType) {
if (extensionType == MCL::MclKernelExt::extensionType) {
if (nullptr == this->privateState.pExtension) {
this->privateState.pExtension = std::make_unique<MCL::MclKernelExt>(this->privateState.kernelArgHandlers.size());
}
return this->privateState.pExtension.get();
}
return nullptr;
}
uint32_t KernelImp::getIndirectSize() const {
uint32_t totalPayloadSize = getCrossThreadDataSize() + getPerThreadDataSizeForWholeThreadGroup();
if (getKernelDescriptor().kernelAttributes.flags.passInlineData) {
if (totalPayloadSize > this->sharedState->walkerInlineDataSize) {
totalPayloadSize -= this->sharedState->walkerInlineDataSize;
} else {
totalPayloadSize = 0;
}
}
return totalPayloadSize;
}
void KernelImp::evaluateIfRequiresGenerationOfLocalIdsByRuntime(const NEO::KernelDescriptor &kernelDescriptor) {
auto &gfxHelper = module->getDevice()->getNEODevice()->getRootDeviceEnvironment().getHelper<NEO::GfxCoreHelper>();
size_t localWorkSizes[3];
localWorkSizes[0] = this->privateState.groupSize[0];
localWorkSizes[1] = this->privateState.groupSize[1];
localWorkSizes[2] = this->privateState.groupSize[2];
std::array<uint8_t, 3> kernelWalkOrder{
kernelDescriptor.kernelAttributes.workgroupWalkOrder[0],
kernelDescriptor.kernelAttributes.workgroupWalkOrder[1],
kernelDescriptor.kernelAttributes.workgroupWalkOrder[2]};
privateState.kernelRequiresGenerationOfLocalIdsByRuntime =
gfxHelper.isRuntimeLocalIdsGenerationRequired(kernelDescriptor.kernelAttributes.numLocalIdChannels,
localWorkSizes,
kernelWalkOrder,
kernelDescriptor.kernelAttributes.flags.requiresWorkgroupWalkOrder,
privateState.requiredWorkgroupOrder,
kernelDescriptor.kernelAttributes.simdSize);
}
} // namespace L0
|