1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/*
* Copyright (C) 2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/indirect_heap/indirect_heap.h"
#include "shared/source/kernel/kernel_arg_descriptor.h"
#include "level_zero/core/source/cmdlist/cmdlist.h"
#include "level_zero/core/source/mutable_cmdlist/mutable_cmdlist.h"
#include "level_zero/core/source/mutable_cmdlist/usage.h"
#include "level_zero/core/source/mutable_cmdlist/variable.h"
#include "level_zero/experimental/source/mutable_cmdlist/program/mcl_decoder.h"
namespace L0::MCL {
using State = VariableDescriptor::State;
Variable *Variable::createFromInfo(ze_command_list_handle_t hCmdList, Program::Decoder::VarInfo &varInfo) {
auto var = new Variable(MutableCommandList::fromHandle(hCmdList));
auto &desc = var->getDesc();
desc.type = varInfo.type;
desc.size = varInfo.size;
desc.isTemporary = varInfo.tmp;
desc.isScalable = varInfo.scalable;
desc.name = varInfo.name;
if (varInfo.type == VariableType::buffer) {
var->setBufferUsages(std::move(varInfo.bufferUsages));
} else if (varInfo.type == VariableType::value) {
var->setValueUsages(std::move(varInfo.valueUsages));
}
desc.apiVariable = true;
return var;
}
ze_result_t Variable::addKernelArgUsageImmediateAsContinuous(const NEO::ArgDescriptor &kernelArg, IndirectObjectHeapOffset iohOffset, IndirectObjectHeapOffset iohFullOffset,
CommandBufferOffset walkerCmdOffset, MutableComputeWalker *mutableComputeWalker, bool inlineData) {
const auto &arg = kernelArg.as<NEO::ArgDescValue>();
size_t fullSize = 0U;
size_t startOffset = arg.elements[0].offset;
bool isContinuous = true;
for (auto &ele : arg.elements) {
isContinuous &= (ele.sourceOffset == fullSize);
isContinuous &= ((ele.offset - startOffset) == fullSize);
fullSize += ele.size;
}
if (false == isContinuous) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
if (inlineData) {
auto inlineSize = mutableComputeWalker->getInlineDataSize();
if (startOffset < inlineSize) {
valueUsages.commandBufferOffsets.push_back(walkerCmdOffset + mutableComputeWalker->getInlineDataOffset() + startOffset);
auto walkerInlineFullOffset = reinterpret_cast<CommandBufferOffset>(mutableComputeWalker->getInlineDataPointer()) + startOffset;
valueUsages.commandBufferWithoutOffset.push_back(walkerInlineFullOffset);
// check immediate variable fits only in inline
if (startOffset + fullSize <= inlineSize) {
// full size immediate fits in inline
valueUsages.commandBufferPatchSize.push_back(fullSize);
} else {
size_t csSize = inlineSize - startOffset;
valueUsages.commandBufferPatchSize.push_back(csSize);
// cross-thread continues at the starts of heap chunk
valueUsages.statelessIndirect.push_back(iohOffset);
valueUsages.statelessWithoutOffset.push_back(iohFullOffset);
size_t heapSize = (startOffset + fullSize) - inlineSize;
valueUsages.statelessIndirectPatchSize.push_back(heapSize);
}
} else {
// immediate fits only in cross-thread, just decrease start offset by inline size
startOffset -= inlineSize;
valueUsages.statelessIndirect.push_back(iohOffset + startOffset);
valueUsages.statelessWithoutOffset.push_back(iohFullOffset + startOffset);
valueUsages.statelessIndirectPatchSize.push_back(fullSize);
}
} else {
valueUsages.statelessIndirect.push_back(iohOffset + startOffset);
valueUsages.statelessWithoutOffset.push_back(iohFullOffset + startOffset);
valueUsages.statelessIndirectPatchSize.push_back(fullSize);
}
desc.size = fullSize;
return ZE_RESULT_SUCCESS;
}
ze_result_t Variable::addCsUsage(CommandBufferOffset csOffset, CommandBufferOffset csFullOffset) {
if (false == isType(VariableType::buffer)) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
bufferUsages.commandBufferOffsets.push_back(csOffset);
bufferUsages.commandBufferWithoutOffset.push_back(csFullOffset);
return ZE_RESULT_SUCCESS;
}
ze_result_t Variable::setValueVariableContinuous(size_t size, const void *argVal) {
if (size != desc.size) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
if (valueUsages.statelessWithoutOffset.size() > 0) {
size_t statelessSizeIndex = 0;
for (const auto &statelessPatch : valueUsages.statelessWithoutOffset) {
auto statelessSize = valueUsages.statelessIndirectPatchSize[statelessSizeIndex];
const void *newValue = argVal;
if (statelessSize < desc.size) {
newValue = reinterpret_cast<const void *>(reinterpret_cast<uintptr_t>(newValue) + (desc.size - statelessSize));
}
memcpy_s(reinterpret_cast<void *>(statelessPatch), statelessSize,
newValue, statelessSize);
statelessSizeIndex++;
}
} else {
size_t statelessSizeIndex = 0;
auto iohCpuBase = cmdList->getBase()->getCmdContainer().getIndirectHeap(NEO::HeapType::indirectObject)->getCpuBase();
for (const auto &statelessOffset : valueUsages.statelessIndirect) {
auto statelessSize = valueUsages.statelessIndirectPatchSize[statelessSizeIndex];
const void *newValue = argVal;
if (statelessSize < desc.size) {
newValue = reinterpret_cast<const void *>(reinterpret_cast<uintptr_t>(newValue) + (desc.size - statelessSize));
}
memcpy_s(reinterpret_cast<void *>(ptrOffset(iohCpuBase, statelessOffset)), statelessSize,
newValue, statelessSize);
statelessSizeIndex++;
}
}
if (valueUsages.commandBufferWithoutOffset.size() > 0) {
size_t csSizeIndex = 0;
for (const auto &csInlinePatch : valueUsages.commandBufferWithoutOffset) {
auto csSize = valueUsages.commandBufferPatchSize[csSizeIndex];
memcpy_s(reinterpret_cast<void *>(csInlinePatch), csSize,
argVal, csSize);
csSizeIndex++;
}
} else {
size_t csSizeIndex = 0;
auto csCpuBase = cmdList->getBase()->getCmdContainer().getCommandStream()->getCpuBase();
for (const auto csOffset : valueUsages.commandBufferOffsets) {
auto csSize = valueUsages.commandBufferPatchSize[csSizeIndex];
memcpy_s(reinterpret_cast<void *>(ptrOffset(csCpuBase, csOffset)), csSize,
argVal, csSize);
csSizeIndex++;
}
}
desc.state = State::initialized;
return ZE_RESULT_SUCCESS;
}
void Variable::handleFlags(uint32_t flags) {
if ((flags & Variable::directFlag) != 0) {
cmdList->toggleCommandListUpdated();
}
}
ze_result_t Variable::selectImmediateSetValueHandler(size_t size, const void *argVal) {
if (desc.immediateValueChunks) {
return setValueVariableInChunks(size, argVal);
} else {
return setValueVariableContinuous(size, argVal);
}
}
ze_result_t Variable::selectImmediateAddKernelArgUsageHandler(const NEO::ArgDescriptor &kernelArg, IndirectObjectHeapOffset iohOffset, IndirectObjectHeapOffset iohFullOffset,
CommandBufferOffset walkerCmdOffset, MutableComputeWalker *mutableComputeWalker, bool inlineData) {
if (desc.immediateValueChunks) {
return addKernelArgUsageImmediateAsChunk(kernelArg, iohOffset, iohFullOffset, walkerCmdOffset, mutableComputeWalker, inlineData);
} else {
return addKernelArgUsageImmediateAsContinuous(kernelArg, iohOffset, iohFullOffset, walkerCmdOffset, mutableComputeWalker, inlineData);
}
}
void Variable::setDescExperimentalValues(const InterfaceVariableDescriptor *ifaceVarDesc) {
desc.name = ifaceVarDesc->name == nullptr ? "" : std::string(ifaceVarDesc->name);
desc.apiVariable = ifaceVarDesc->api;
if (ifaceVarDesc->isTemporary) {
desc.isTemporary = true;
if (ifaceVarDesc->isConstSize) {
desc.size = ifaceVarDesc->size;
} else if (ifaceVarDesc->isScalable) {
desc.isScalable = true;
desc.eleSize = ifaceVarDesc->size;
}
}
}
ze_result_t Variable::addKernelArgUsageStatefulBuffer(const NEO::ArgDescriptor &kernelArg, IndirectObjectHeapOffset iohOffset, SurfaceStateHeapOffset sshOffset) {
if (desc.apiVariable) {
const auto &arg = kernelArg.as<NEO::ArgDescPointer>();
if (sshOffset != undefined<SurfaceStateHeapOffset>) {
if (NEO::isValidOffset(arg.bufferOffset)) {
if (NEO::isValidOffset(arg.bindful)) {
bufferUsages.bindful.push_back(sshOffset + arg.bindful);
} else if (NEO::isValidOffset(arg.bindless)) {
bufferUsages.bindless.push_back(iohOffset + arg.bindless);
} else {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
bufferUsages.bufferOffset.push_back(iohOffset + arg.bufferOffset);
} else {
if (NEO::isValidOffset(arg.bindful)) {
bufferUsages.bindfulWithoutOffset.push_back(sshOffset + arg.bindful);
} else if (NEO::isValidOffset(arg.bindless)) {
bufferUsages.bindlessWithoutOffset.push_back(iohOffset + arg.bindless);
} else {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
}
}
}
return ZE_RESULT_SUCCESS;
}
void Variable::mutateStatefulBufferArg(GpuAddress bufferGpuAddress, NEO::GraphicsAllocation *bufferAllocation) {
if (desc.apiVariable) {
cmdList->setBufferSurfaceState(reinterpret_cast<void *>(bufferGpuAddress), bufferAllocation, this);
}
}
} // namespace L0::MCL
|