File: sysman_os_pci_imp.cpp

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (421 lines) | stat: -rw-r--r-- 18,258 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
 * Copyright (C) 2023-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "level_zero/sysman/source/api/pci/linux/sysman_os_pci_imp.h"

#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/os_interface/linux/file_descriptor.h"
#include "shared/source/utilities/directory.h"

#include "level_zero/include/level_zero/zes_intel_gpu_sysman.h"
#include "level_zero/sysman/source/api/pci/sysman_pci_utils.h"
#include "level_zero/sysman/source/shared/firmware_util/sysman_firmware_util.h"
#include "level_zero/sysman/source/shared/linux/kmd_interface/sysman_kmd_interface.h"
#include "level_zero/sysman/source/shared/linux/product_helper/sysman_product_helper.h"
#include "level_zero/sysman/source/shared/linux/sysman_fs_access_interface.h"
#include "level_zero/sysman/source/shared/linux/zes_os_sysman_imp.h"
#include "level_zero/sysman/source/sysman_const.h"

#include <sstream>

namespace L0 {
namespace Sysman {

const std::string LinuxPciImp::deviceDir("device");
const std::string LinuxPciImp::resourceFile("device/resource");

ze_result_t LinuxPciImp::getProperties(zes_pci_properties_t *pProperties) {
    auto pSysmanProductHelper = pLinuxSysmanImp->getSysmanProductHelper();

    void *pNext = pProperties->pNext;
    while (pNext) {
        auto pExtProps = reinterpret_cast<zes_base_properties_t *>(pNext);
        if (pExtProps->stype == ZES_INTEL_PCI_LINK_SPEED_DOWNGRADE_EXP_PROPERTIES) {
            auto pDowngradeExtProps = reinterpret_cast<zes_intel_pci_link_speed_downgrade_exp_properties_t *>(pExtProps);
            auto pSysmanKmdInterface = pLinuxSysmanImp->getSysmanKmdInterface();
            uint32_t downgradeCapable;
            if (pSysmanKmdInterface->readPcieDowngradeAttribute("pcieDowngradeCapable", downgradeCapable) == ZE_RESULT_SUCCESS) {
                pDowngradeExtProps->pciLinkSpeedUpdateCapable = downgradeCapable;
                pDowngradeExtProps->maxPciGenSupported = pSysmanProductHelper->maxPcieGenSupported();
                isPciDowngradePropertiesAvailable = true;
            }
            break;
        }
        pNext = pExtProps->pNext;
    }
    return pSysmanProductHelper->getPciProperties(pProperties);
}

ze_result_t LinuxPciImp::getPciBdf(zes_pci_properties_t &pciProperties) {
    std::string bdfDir;
    ze_result_t result = pSysfsAccess->readSymLink(deviceDir, bdfDir);
    if (ZE_RESULT_SUCCESS != result) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): readSymLink() failed to retrieve BDF from %s and returning error:0x%x \n", __FUNCTION__, deviceDir.c_str(), result);
        return result;
    }
    const auto loc = bdfDir.find_last_of('/');
    std::string bdf = bdfDir.substr(loc + 1);
    uint16_t domain = 0;
    uint8_t bus = 0, device = 0, function = 0;
    NEO::parseBdfString(bdf.c_str(), domain, bus, device, function);
    pciProperties.address.domain = static_cast<uint32_t>(domain);
    pciProperties.address.bus = static_cast<uint32_t>(bus);
    pciProperties.address.device = static_cast<uint32_t>(device);
    pciProperties.address.function = static_cast<uint32_t>(function);
    return ZE_RESULT_SUCCESS;
}

void LinuxPciImp::getMaxLinkCaps(double &maxLinkSpeed, int32_t &maxLinkWidth) {
    maxLinkSpeed = 0;
    maxLinkWidth = -1;

    auto isIntegratedDevice = pLinuxSysmanImp->getSysmanDeviceImp()->getRootDeviceEnvironment().getHardwareInfo()->capabilityTable.isIntegratedDevice;
    if (isIntegratedDevice) {
        return;
    }

    std::string pciConfigNode = {};
    auto pSysmanProductHelper = pLinuxSysmanImp->getSysmanProductHelper();
    if (pSysmanProductHelper->isUpstreamPortConnected()) {
        pSysfsAccess->getRealPath(deviceDir, pciConfigNode);
        std::string cardBusPath = pLinuxSysmanImp->getPciCardBusDirectoryPath(pciConfigNode);
        pciConfigNode = cardBusPath + "/config";
    } else {
        pSysfsAccess->getRealPath("device/config", pciConfigNode);
    }

    std::vector<uint8_t> configMemory(PCI_CFG_SPACE_SIZE);
    if (!getPciConfigMemory(std::move(pciConfigNode), configMemory)) {
        return;
    }

    auto linkCapPos = L0::Sysman::LinuxPciImp::getLinkCapabilityPos(configMemory.data());
    if (!linkCapPos) {
        return;
    }

    uint16_t linkCaps = L0::Sysman::PciUtil::getWordFromConfig(linkCapPos, configMemory.data());
    maxLinkSpeed = convertPciGenToLinkSpeed(bits(linkCaps, 0, 4));
    maxLinkWidth = bits(linkCaps, 4, 6);

    return;
}

void getBarBaseAndSize(std::string readBytes, uint64_t &baseAddr, uint64_t &barSize, uint64_t &barFlags) {
    unsigned long long start, end, flags;
    std::stringstream sStreamReadBytes;
    sStreamReadBytes << readBytes;
    sStreamReadBytes >> std::hex >> start;
    sStreamReadBytes >> end;
    sStreamReadBytes >> flags;

    flags &= 0xf;
    barFlags = flags;
    baseAddr = start;
    barSize = end - start + 1;
}

ze_result_t LinuxPciImp::initializeBarProperties(std::vector<zes_pci_bar_properties_t *> &pBarProperties) {
    std::vector<std::string> readBytes;
    ze_result_t result = pSysfsAccess->read(resourceFile, readBytes);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): read() failed to read %s and returning error:0x%x \n", __FUNCTION__, resourceFile.c_str(), result);
        return result;
    }
    for (uint32_t i = 0; i <= maxPciBars; i++) {
        uint64_t baseAddr, barSize, barFlags;
        getBarBaseAndSize(readBytes[i], baseAddr, barSize, barFlags);
        if (baseAddr && !(barFlags & 0x1)) { // we do not update for I/O ports
            zes_pci_bar_properties_t *pBarProp = new zes_pci_bar_properties_t;
            memset(pBarProp, 0, sizeof(zes_pci_bar_properties_t));
            pBarProp->index = i;
            pBarProp->base = baseAddr;
            pBarProp->size = barSize;
            // Bar Flags Desc.
            // Bit-0 - Value 0x0 -> MMIO type BAR
            // Bit-0 - Value 0x1 -> I/O type BAR
            if (i == 0) { // GRaphics MMIO is at BAR0, and is a 64-bit
                pBarProp->type = ZES_PCI_BAR_TYPE_MMIO;
            }
            if (i == 2) {
                pBarProp->type = ZES_PCI_BAR_TYPE_MEM; // device memory is always at BAR2
            }
            if (i == 6) { // the 7th entry of resource file is expected to be ROM BAR
                pBarProp->type = ZES_PCI_BAR_TYPE_ROM;
            }
            pBarProperties.push_back(pBarProp);
        }
    }
    if (pBarProperties.size() == 0) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): BarProperties = %d and returning error:0x%x \n", __FUNCTION__, pBarProperties.size(), result);
        result = ZE_RESULT_ERROR_UNKNOWN;
    }
    return result;
}

uint32_t LinuxPciImp::getRebarCapabilityPos(uint8_t *configMemory, bool isVfBar) {
    uint32_t pos = PCI_CFG_SPACE_SIZE;
    uint32_t header = 0;

    // Minimum 8 bytes per capability. Hence maximum capabilities that
    // could be present in PCI extended configuration space are
    // represented by loopCount.
    auto loopCount = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
    header = L0::Sysman::PciUtil::getDwordFromConfig(pos, configMemory);
    if (!header) {
        return 0;
    }

    uint32_t capId = isVfBar ? PCI_EXT_CAP_ID_VF_REBAR : PCI_EXT_CAP_ID_REBAR;

    while (loopCount-- > 0) {
        if (PCI_EXT_CAP_ID(header) == capId) {
            return pos;
        }
        pos = PCI_EXT_CAP_NEXT(header);
        if (pos < PCI_CFG_SPACE_SIZE) {
            return 0;
        }
        header = L0::Sysman::PciUtil::getDwordFromConfig(pos, configMemory);
    }
    return 0;
}

uint16_t LinuxPciImp::getLinkCapabilityPos(uint8_t *configMem) {
    uint16_t pos = PCI_CAPABILITY_LIST;
    uint8_t id, type = 0;
    uint16_t capRegister = 0;

    if (!(L0::Sysman::PciUtil::getByteFromConfig(PCI_STATUS, configMem) & PCI_STATUS_CAP_LIST)) {
        return 0;
    }

    // Minimum 8 bytes per capability. Hence maximum capabilities that
    // could be present in PCI configuration space are
    // represented by loopCount.
    auto loopCount = (PCI_CFG_SPACE_SIZE) / 8;

    // Bottom two bits of capability pointer register are reserved and
    // software should mask these bits to get pointer to capability list.

    pos = L0::Sysman::PciUtil::getByteFromConfig(pos, configMem) & 0xfc;
    while (loopCount-- > 0) {
        id = L0::Sysman::PciUtil::getByteFromConfig(pos + PCI_CAP_LIST_ID, configMem);
        if (id == PCI_CAP_ID_EXP) {
            capRegister = L0::Sysman::PciUtil::getWordFromConfig(pos + PCI_CAP_FLAGS, configMem);
            type = bits(capRegister, 4, 4);

            // Root Complex Integrated end point and
            // Root Complex Event collector will not implement link capabilities

            if ((type != PCI_EXP_TYPE_RC_END) && (type != PCI_EXP_TYPE_RC_EC)) {
                return pos + PCI_EXP_LNKCAP;
            }
        }

        pos = L0::Sysman::PciUtil::getByteFromConfig(pos + PCI_CAP_LIST_NEXT, configMem) & 0xfc;
        if (!pos) {
            break;
        }
    }
    return 0;
}

// Parse PCIe configuration space to see if resizable Bar is supported
bool LinuxPciImp::resizableBarSupported() {
    std::string pciConfigNode = {};
    pSysfsAccess->getRealPath("device/config", pciConfigNode);
    std::vector<uint8_t> configMemory(PCI_CFG_SPACE_EXP_SIZE);
    if (!getPciConfigMemory(std::move(pciConfigNode), configMemory)) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Unable to get pci config space \n", __FUNCTION__);
        return false;
    }
    return (L0::Sysman::LinuxPciImp::getRebarCapabilityPos(configMemory.data(), false) > 0);
}

bool LinuxPciImp::resizableBarEnabled(uint32_t barIndex) {
    bool isBarResizable = false;
    uint32_t capabilityRegister = 0, controlRegister = 0;
    uint32_t nBars = 1;

    std::string pciConfigNode = {};
    pSysfsAccess->getRealPath("device/config", pciConfigNode);
    std::vector<uint8_t> configMemory(PCI_CFG_SPACE_EXP_SIZE);
    if (!getPciConfigMemory(std::move(pciConfigNode), configMemory)) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Unable to get pci config space \n", __FUNCTION__);
        return false;
    }

    auto rebarCapabilityPos = L0::Sysman::LinuxPciImp::getRebarCapabilityPos(configMemory.data(), false);

    // If resizable Bar is not supported then return false.
    if (!rebarCapabilityPos) {
        return false;
    }

    // As per PCI spec, resizable BAR's capability structure's 52 byte length could be represented as:
    // --------------------------------------------------------------
    // | byte offset    |   Description of register                 |
    // -------------------------------------------------------------|
    // | +000h          |   PCI Express Extended Capability Header  |
    // -------------------------------------------------------------|
    // | +004h          |   Resizable BAR Capability Register (0)   |
    // -------------------------------------------------------------|
    // | +008h          |   Resizable BAR Control Register (0)      |
    // -------------------------------------------------------------|
    // | +00Ch          |   Resizable BAR Capability Register (1)   |
    // -------------------------------------------------------------|
    // | +010h          |   Resizable BAR Control Register (1)      |
    // -------------------------------------------------------------|
    // | +014h          |   ---                                     |
    // -------------------------------------------------------------|

    // Only first Control register(at offset 008h, as shown above), could tell about number of resizable Bars
    controlRegister = L0::Sysman::PciUtil::getDwordFromConfig(rebarCapabilityPos + PCI_REBAR_CTRL, configMemory.data());
    nBars = bits(controlRegister, 5, 3); // control register's bits 5,6 and 7 contain number of resizable bars information
    for (auto barNumber = 0u; barNumber < nBars; barNumber++) {
        uint32_t barId = 0;
        controlRegister = L0::Sysman::PciUtil::getDwordFromConfig(rebarCapabilityPos + PCI_REBAR_CTRL, configMemory.data());
        barId = bits(controlRegister, 0, 3); // Control register's bit 0,1,2 tells the index of bar
        if (barId == barIndex) {
            isBarResizable = true;
            break;
        }
        rebarCapabilityPos += 8;
    }

    if (isBarResizable == false) {
        return false;
    }

    capabilityRegister = L0::Sysman::PciUtil::getDwordFromConfig(rebarCapabilityPos + PCI_REBAR_CAP, configMemory.data());
    // Capability register's bit 4 to 31 indicates supported Bar sizes.
    // In possibleBarSizes, position of each set bit indicates supported bar size. Example,  if set bit
    // position of possibleBarSizes is from 0 to n, then this indicates BAR size from 2^0 MB to 2^n MB
    auto possibleBarSizes = (capabilityRegister & PCI_REBAR_CAP_SIZES) >> 4; // First 4 bits are reserved
    uint32_t largestPossibleBarSize = 0;
    while (possibleBarSizes >>= 1) { // most significant set bit position of possibleBarSizes would tell largest possible bar size
        largestPossibleBarSize++;
    }

    // Control register's bit 8 to 13 indicates current BAR size in encoded form.
    // Example, real value of current size could be 2^currentSize MB
    auto currentSize = bits(controlRegister, 8, 6);

    // If current size is equal to largest possible BAR size, it indicates resizable BAR is enabled.
    return (currentSize == largestPossibleBarSize);
}

ze_result_t LinuxPciImp::getState(zes_pci_state_t *state) {
    ze_result_t result = ZE_RESULT_SUCCESS;
    state->qualityIssues = 0;
    state->stabilityIssues = 0;
    state->status = ZES_PCI_LINK_STATUS_UNKNOWN;

    state->speed.gen = -1;
    state->speed.width = -1;
    state->speed.maxBandwidth = -1;

    const void *pNext = state->pNext;
    while (pNext) {
        result = ZE_RESULT_ERROR_INVALID_ARGUMENT;
        auto pExtProps = reinterpret_cast<zes_base_properties_t *>(const_cast<void *>(pNext));
        if (pExtProps->stype == ZES_INTEL_PCI_LINK_SPEED_DOWNGRADE_EXP_STATE) {
            auto pDowngradeExpState = reinterpret_cast<zes_intel_pci_link_speed_downgrade_exp_state_t *>(pExtProps);
            auto pSysmanKmdInterface = pLinuxSysmanImp->getSysmanKmdInterface();
            uint32_t downgradeStatus;
            result = pSysmanKmdInterface->readPcieDowngradeAttribute("pcieDowngradeStatus", downgradeStatus);
            if (result == ZE_RESULT_SUCCESS) {
                pDowngradeExpState->pciLinkSpeedDowngradeStatus = downgradeStatus;
            }
            break;
        }
        pNext = pExtProps->pNext;
    }
    return result;
}

ze_result_t LinuxPciImp::pciLinkSpeedUpdateExp(ze_bool_t downgradeUpgrade, zes_device_action_t *pendingAction) {
    auto pSysmanProductHelper = pLinuxSysmanImp->getSysmanProductHelper();

    if (!pSysmanProductHelper->isPcieDowngradeSupported()) {
        return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    }
    FirmwareUtil *pFwInterface = pLinuxSysmanImp->getFwUtilInterface();
    if (pFwInterface == nullptr) {
        return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    }

    uint8_t requestedState = 0x0;
    if (downgradeUpgrade) {
        requestedState = 0x1;
    }

    std::vector<uint8_t> outBuf(maxGfspHeciOutBuffer, 0);
    ze_result_t result = pFwInterface->fwGetGfspConfig(GfspHeciConstants::Cmd::getConfigurationCmd16, outBuf);
    if (result != ZE_RESULT_SUCCESS) {
        return result;
    }
    std::vector<uint8_t> inBuf(outBuf.begin() + GfspHeciConstants::GetCmd16BytePostition::pendingStateBytePosition, outBuf.begin() + GfspHeciConstants::GetCmd16BytePostition::pendingStateBytePosition + 4);
    inBuf[GfspHeciConstants::SetCmd15BytePostition::request] &= ~(1 << 1);
    inBuf[GfspHeciConstants::SetCmd15BytePostition::request] |= (requestedState << 1);
    result = pFwInterface->fwSetGfspConfig(GfspHeciConstants::Cmd::setConfigurationCmd15, inBuf, outBuf);
    if (result != ZE_RESULT_SUCCESS) {
        return result;
    }

    uint8_t pendingState = (outBuf[GfspHeciConstants::SetCmd15BytePostition::response] >> 1) & 0x1;
    *pendingAction = ZES_DEVICE_ACTION_NONE;
    uint32_t currentState = 0x0;

    auto pSysmanKmdInterface = pLinuxSysmanImp->getSysmanKmdInterface();
    result = pSysmanKmdInterface->readPcieDowngradeAttribute("pcieDowngradeStatus", currentState);
    if (result != ZE_RESULT_SUCCESS) {
        return result;
    }
    if (currentState != pendingState) {
        *pendingAction = ZES_DEVICE_ACTION_COLD_SYSTEM_REBOOT;
    }

    return result;
}

ze_result_t LinuxPciImp::getStats(zes_pci_stats_t *stats) {
    auto pSysmanProductHelper = pLinuxSysmanImp->getSysmanProductHelper();
    return pSysmanProductHelper->getPciStats(stats, pLinuxSysmanImp);
}

bool LinuxPciImp::getPciConfigMemory(std::string pciPath, std::vector<uint8_t> &configMem) {
    if (!pSysfsAccess->isRootUser()) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Need to be root to read config space \n", __FUNCTION__);
        return false;
    }

    auto fd = NEO::FileDescriptor(pciPath.c_str(), O_RDONLY);
    if (fd < 0) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s() Config File Open Failed \n", __FUNCTION__);
        return false;
    }
    if (this->preadFunction(fd, configMem.data(), configMem.size(), 0) < 0) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s() Config Mem Read Failed \n", __FUNCTION__);
        return false;
    }
    return true;
}

LinuxPciImp::LinuxPciImp(OsSysman *pOsSysman) {
    pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
    pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
}

OsPci *OsPci::create(OsSysman *pOsSysman) {
    LinuxPciImp *pLinuxPciImp = new LinuxPciImp(pOsSysman);
    return static_cast<OsPci *>(pLinuxPciImp);
}

} // namespace Sysman
} // namespace L0