File: sysman_os_ras_imp.cpp

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (164 lines) | stat: -rw-r--r-- 6,796 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
 * Copyright (C) 2023 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "level_zero/sysman/source/api/ras/linux/sysman_os_ras_imp.h"

#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/helpers/string.h"
#include "shared/source/os_interface/linux/system_info.h"

#include "level_zero/sysman/source/shared/linux/sysman_fs_access_interface.h"
#include "level_zero/sysman/source/shared/linux/zes_os_sysman_imp.h"

#include <algorithm>

namespace L0 {
namespace Sysman {

static bool isMemoryTypeHbm(LinuxSysmanImp *pLinuxSysmanImp) {
    uint32_t memType = pLinuxSysmanImp->getMemoryType();
    if (memType == NEO::DeviceBlobConstants::MemoryType::hbm2e || memType == NEO::DeviceBlobConstants::MemoryType::hbm2) {
        return true;
    }
    return false;
}

void OsRas::getSupportedRasErrorTypes(std::set<zes_ras_error_type_t> &errorType, OsSysman *pOsSysman, ze_bool_t isSubDevice, uint32_t subDeviceId) {

    constexpr auto maxErrorTypes = 2;
    LinuxRasSourceGt::getSupportedRasErrorTypes(errorType, pOsSysman, isSubDevice, subDeviceId);
    if (errorType.size() < maxErrorTypes) {
        auto pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
        if (isMemoryTypeHbm(pLinuxSysmanImp) == true) {
            LinuxRasSourceHbm::getSupportedRasErrorTypes(errorType, pOsSysman, isSubDevice, subDeviceId);
        }
    }
}

ze_result_t LinuxRasImp::osRasGetConfig(zes_ras_config_t *config) {
    config->totalThreshold = totalThreshold;
    memcpy_s(config->detailedThresholds.category, maxRasErrorCategoryCount * sizeof(uint64_t), categoryThreshold, maxRasErrorCategoryCount * sizeof(uint64_t));
    return ZE_RESULT_SUCCESS;
}

ze_result_t LinuxRasImp::osRasSetConfig(const zes_ras_config_t *config) {
    if (pFsAccess->isRootUser() == true) {
        totalThreshold = config->totalThreshold;
        memcpy_s(categoryThreshold, maxRasErrorCategoryCount * sizeof(uint64_t), config->detailedThresholds.category, maxRasErrorCategoryCount * sizeof(uint64_t));
        return ZE_RESULT_SUCCESS;
    }
    NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Insufficient permissions and returning error:0x%x \n", __FUNCTION__, ZE_RESULT_ERROR_INSUFFICIENT_PERMISSIONS);
    return ZE_RESULT_ERROR_INSUFFICIENT_PERMISSIONS;
}

ze_result_t LinuxRasImp::osRasGetProperties(zes_ras_properties_t &properties) {
    properties.pNext = nullptr;
    properties.type = osRasErrorType;
    properties.onSubdevice = isSubdevice;
    properties.subdeviceId = subdeviceId;
    return ZE_RESULT_SUCCESS;
}

ze_result_t LinuxRasImp::osRasGetState(zes_ras_state_t &state, ze_bool_t clear) {
    if (clear == true) {
        if (pFsAccess->isRootUser() == false) {
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Insufficient permissions and returning error:0x%x \n", __FUNCTION__, ZE_RESULT_ERROR_INSUFFICIENT_PERMISSIONS);
            return ZE_RESULT_ERROR_INSUFFICIENT_PERMISSIONS;
        }
    }

    ze_result_t result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    for (auto &rasSource : rasSources) {
        zes_ras_state_t localState = {};
        ze_result_t localResult = rasSource->osRasGetState(localState, clear);
        if (localResult != ZE_RESULT_SUCCESS) {
            continue;
        }
        for (uint32_t i = 0; i < maxRasErrorCategoryCount; i++) {
            state.category[i] += localState.category[i];
        }
        result = ZE_RESULT_SUCCESS;
    }
    return result;
}

ze_result_t LinuxRasImp::osRasGetStateExp(uint32_t *pCount, zes_ras_state_exp_t *pState) {
    ze_result_t result = ZE_RESULT_ERROR_DEPENDENCY_UNAVAILABLE;
    uint32_t totalCategoryCount = 0;
    std::vector<uint32_t> numCategoriesBySources = {};
    for (auto &rasSource : rasSources) {
        totalCategoryCount += rasSource->osRasGetCategoryCount();
        numCategoriesBySources.push_back(totalCategoryCount);
    }

    if (*pCount == 0) {
        *pCount = totalCategoryCount;
        return ZE_RESULT_SUCCESS;
    }

    uint32_t remainingCategories = std::min(totalCategoryCount, *pCount);
    uint32_t numCategoriesAssigned = 0u;
    for (uint32_t rasSourceIdx = 0u; rasSourceIdx < rasSources.size(); rasSourceIdx++) {
        auto &rasSource = rasSources[rasSourceIdx];
        uint32_t numCategoriesRequested = std::min(remainingCategories, numCategoriesBySources[rasSourceIdx]);
        ze_result_t localResult = rasSource->osRasGetStateExp(numCategoriesRequested, &pState[numCategoriesAssigned]);
        if (localResult != ZE_RESULT_SUCCESS) {
            continue;
        }
        remainingCategories -= numCategoriesRequested;
        numCategoriesAssigned += numCategoriesBySources[rasSourceIdx];
        result = localResult;
        if (remainingCategories == 0u) {
            break;
        }
    }
    return result;
}

ze_result_t LinuxRasImp::osRasClearStateExp(zes_ras_error_category_exp_t category) {
    if (pFsAccess->isRootUser() == false) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Insufficient permissions and returning error:0x%x \n", __FUNCTION__, ZE_RESULT_ERROR_INSUFFICIENT_PERMISSIONS);
        return ZE_RESULT_ERROR_INSUFFICIENT_PERMISSIONS;
    }

    if (ZES_RAS_ERROR_CATEGORY_EXP_L3FABRIC_ERRORS < category) {
        return ZE_RESULT_ERROR_INVALID_ENUMERATION;
    }

    ze_result_t result = ZE_RESULT_ERROR_NOT_AVAILABLE;
    for (auto &rasSource : rasSources) {
        result = rasSource->osRasClearStateExp(category);
        if (result != ZE_RESULT_SUCCESS) {
            if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
                continue;
            }
            return result;
        }
    }
    return result;
}

void LinuxRasImp::initSources() {
    rasSources.push_back(std::make_unique<L0::Sysman::LinuxRasSourceGt>(pLinuxSysmanImp, osRasErrorType, isSubdevice, subdeviceId));
    if (isMemoryTypeHbm(pLinuxSysmanImp) == true) {
        rasSources.push_back(std::make_unique<L0::Sysman::LinuxRasSourceHbm>(pLinuxSysmanImp, osRasErrorType, isSubdevice, subdeviceId));
    }
}

LinuxRasImp::LinuxRasImp(OsSysman *pOsSysman, zes_ras_error_type_t type, ze_bool_t onSubdevice, uint32_t subdeviceId) : osRasErrorType(type), isSubdevice(onSubdevice), subdeviceId(subdeviceId) {
    pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
    pFsAccess = &pLinuxSysmanImp->getFsAccess();
    initSources();
}

OsRas *OsRas::create(OsSysman *pOsSysman, zes_ras_error_type_t type, ze_bool_t onSubdevice, uint32_t subdeviceId) {
    LinuxRasImp *pLinuxRasImp = new LinuxRasImp(pOsSysman, type, onSubdevice, subdeviceId);
    return static_cast<OsRas *>(pLinuxRasImp);
}

} // namespace Sysman
} // namespace L0