File: metric_ip_sampling_source.cpp

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (801 lines) | stat: -rw-r--r-- 37,593 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/*
 * Copyright (C) 2022-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "level_zero/tools/source/metrics/metric_ip_sampling_source.h"

#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/string.h"

#include "level_zero/core/source/device/device.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/core/source/gfx_core_helpers/l0_gfx_core_helper.h"
#include "level_zero/tools/source/metrics/metric.h"
#include "level_zero/tools/source/metrics/metric.inl"
#include "level_zero/tools/source/metrics/metric_ip_sampling_streamer.h"
#include "level_zero/tools/source/metrics/os_interface_metric.h"
#include "level_zero/zet_intel_gpu_metric.h"
#include "level_zero/zet_intel_gpu_metric_export.h"
#include <level_zero/zet_api.h>

#include <cstring>

namespace L0 {
constexpr uint32_t ipSamplinDomainId = 100u;

std::unique_ptr<IpSamplingMetricSourceImp> IpSamplingMetricSourceImp::create(const MetricDeviceContext &metricDeviceContext) {
    return std::unique_ptr<IpSamplingMetricSourceImp>(new (std::nothrow) IpSamplingMetricSourceImp(metricDeviceContext));
}

IpSamplingMetricSourceImp::IpSamplingMetricSourceImp(const MetricDeviceContext &metricDeviceContext) : metricDeviceContext(metricDeviceContext) {
    metricIPSamplingpOsInterface = MetricIpSamplingOsInterface::create(metricDeviceContext.getDevice());
    activationTracker = std::make_unique<MultiDomainDeferredActivationTracker>(metricDeviceContext.getSubDeviceIndex());
    type = MetricSource::metricSourceTypeIpSampling;

    const auto deviceImp = static_cast<DeviceImp *>(&metricDeviceContext.getDevice());
    L0::L0GfxCoreHelper &l0GfxCoreHelper = deviceImp->getNEODevice()->getRootDeviceEnvironment().getHelper<L0GfxCoreHelper>();
    ipSamplingCalculation = std::make_unique<IpSamplingCalculation>(l0GfxCoreHelper, *this);
}

ze_result_t IpSamplingMetricSourceImp::getTimerResolution(uint64_t &resolution) {
    resolution = metricDeviceContext.getDevice().getNEODevice()->getDeviceInfo().outProfilingTimerClock;
    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricSourceImp::getTimestampValidBits(uint64_t &validBits) {
    validBits = metricDeviceContext.getDevice().getNEODevice()->getHardwareInfo().capabilityTable.timestampValidBits;
    return ZE_RESULT_SUCCESS;
}

void IpSamplingMetricSourceImp::enable() {
    isEnabled = metricIPSamplingpOsInterface->isDependencyAvailable();
}

bool IpSamplingMetricSourceImp::isAvailable() {
    return isEnabled;
}

ze_result_t IpSamplingMetricSourceImp::cacheMetricGroup() {

    const auto deviceImp = static_cast<DeviceImp *>(&metricDeviceContext.getDevice());
    if (metricDeviceContext.isImplicitScalingCapable()) {
        std::vector<IpSamplingMetricGroupImp *> subDeviceMetricGroup = {};
        subDeviceMetricGroup.reserve(deviceImp->subDevices.size());

        // Prepare cached metric group for sub-devices
        for (auto &subDevice : deviceImp->subDevices) {
            IpSamplingMetricSourceImp &source = subDevice->getMetricDeviceContext().getMetricSource<IpSamplingMetricSourceImp>();
            // 1 metric group available for IP Sampling
            uint32_t count = 1;
            zet_metric_group_handle_t hMetricGroup = {};
            const auto result = source.metricGroupGet(&count, &hMetricGroup);
            if (result == ZE_RESULT_ERROR_UNSUPPORTED_FEATURE) {
                return result;
            }
            // Getting MetricGroup from sub-device cannot fail, since RootDevice is successful
            UNRECOVERABLE_IF(result != ZE_RESULT_SUCCESS);
            subDeviceMetricGroup.push_back(static_cast<IpSamplingMetricGroupImp *>(MetricGroup::fromHandle(hMetricGroup)));
        }

        IpSamplingMetricSourceImp &source = deviceImp->getMetricDeviceContext().getMetricSource<IpSamplingMetricSourceImp>();
        cachedMetricGroup = MultiDeviceIpSamplingMetricGroupImp::create(source, subDeviceMetricGroup);
        return ZE_RESULT_SUCCESS;
    }

    // Confirm whether sample collection is possible
    uint32_t referenceValues = 100;
    const ze_result_t sampleCheckResult = getMetricOsInterface()->startMeasurement(referenceValues, referenceValues);
    if (sampleCheckResult != ZE_RESULT_SUCCESS) {
        return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    } else {
        getMetricOsInterface()->stopMeasurement();
    }

    std::vector<IpSamplingMetricImp> metrics = {};
    auto &l0GfxCoreHelper = deviceImp->getNEODevice()->getRootDeviceEnvironment().getHelper<L0GfxCoreHelper>();
    metrics.reserve(l0GfxCoreHelper.getIpSamplingMetricCount());
    metricCount = l0GfxCoreHelper.getIpSamplingMetricCount();

    zet_metric_properties_t metricProperties = {};

    metricProperties.stype = ZET_STRUCTURE_TYPE_METRIC_PROPERTIES;
    metricProperties.pNext = nullptr;
    strcpy_s(metricProperties.component, ZET_MAX_METRIC_COMPONENT, "XVE");
    metricProperties.tierNumber = 4;
    metricProperties.resultType = ZET_VALUE_TYPE_UINT64;

    // Preparing properties for IP separately because of unique values
    strcpy_s(metricProperties.name, ZET_MAX_METRIC_NAME, "IP");
    strcpy_s(metricProperties.description, ZET_MAX_METRIC_DESCRIPTION, "IP address");
    metricProperties.metricType = ZET_METRIC_TYPE_IP;
    strcpy_s(metricProperties.resultUnits, ZET_MAX_METRIC_RESULT_UNITS, "Address");
    metrics.push_back(IpSamplingMetricImp(*this, metricProperties));

    std::vector<std::pair<const char *, const char *>> stallSamplingReportList = l0GfxCoreHelper.getStallSamplingReportMetrics();

    // Preparing properties for others because of common values
    metricProperties.metricType = ZET_METRIC_TYPE_EVENT;
    strcpy_s(metricProperties.resultUnits, ZET_MAX_METRIC_RESULT_UNITS, "Events");

    for (auto &property : stallSamplingReportList) {
        strcpy_s(metricProperties.name, ZET_MAX_METRIC_NAME, property.first);
        strcpy_s(metricProperties.description, ZET_MAX_METRIC_DESCRIPTION, property.second);
        metrics.push_back(IpSamplingMetricImp(*this, metricProperties));
    }

    cachedMetricGroup = IpSamplingMetricGroupImp::create(*this, metrics);
    DEBUG_BREAK_IF(cachedMetricGroup == nullptr);

    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricSourceImp::metricGroupGet(uint32_t *pCount, zet_metric_group_handle_t *phMetricGroups) {

    if (!isEnabled) {
        *pCount = 0;
        return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    }

    if (cachedMetricGroup == nullptr) {
        auto status = cacheMetricGroup();

        if (status != ZE_RESULT_SUCCESS || cachedMetricGroup == nullptr) {
            *pCount = 0;
            isEnabled = false;
            return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
        }
    }

    if (*pCount == 0) {
        *pCount = 1;
        return ZE_RESULT_SUCCESS;
    }

    DEBUG_BREAK_IF(phMetricGroups == nullptr);
    phMetricGroups[0] = cachedMetricGroup->toHandle();
    *pCount = 1;

    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricSourceImp::appendMetricMemoryBarrier(CommandList &commandList) {
    METRICS_LOG_ERR("%s", "Memory barrier not supported for IP Sampling");
    return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}

ze_result_t IpSamplingMetricSourceImp::activateMetricGroupsPreferDeferred(uint32_t count,
                                                                          zet_metric_group_handle_t *phMetricGroups) {

    DeviceImp &deviceImp = static_cast<DeviceImp &>(metricDeviceContext.getDevice());
    if (metricDeviceContext.isImplicitScalingCapable()) {
        return MetricSource::activatePreferDeferredHierarchical<IpSamplingMetricSourceImp>(&deviceImp, count, phMetricGroups);
    }

    auto status = activationTracker->activateMetricGroupsDeferred(count, phMetricGroups);
    if (!status) {
        METRICS_LOG_ERR("%s", "Metric group activation failed");
        return ZE_RESULT_ERROR_UNKNOWN;
    }
    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricSourceImp::activateMetricGroupsAlreadyDeferred() {
    return activationTracker->activateMetricGroupsAlreadyDeferred();
}

bool IpSamplingMetricSourceImp::isMetricGroupActivated(const zet_metric_group_handle_t hMetricGroup) const {
    return activationTracker->isMetricGroupActivated(hMetricGroup);
}

void IpSamplingMetricSourceImp::setMetricOsInterface(std::unique_ptr<MetricIpSamplingOsInterface> &metricIPSamplingpOsInterface) {
    this->metricIPSamplingpOsInterface = std::move(metricIPSamplingpOsInterface);
}

ze_result_t IpSamplingMetricGroupBase::getExportData(const uint8_t *pRawData, size_t rawDataSize, size_t *pExportDataSize,
                                                     uint8_t *pExportData) {
    const auto expectedExportDataSize = sizeof(zet_intel_metric_df_gpu_export_data_format_t) + rawDataSize;

    if (*pExportDataSize == 0u) {
        *pExportDataSize = expectedExportDataSize;
        return ZE_RESULT_SUCCESS;
    }

    if (*pExportDataSize < expectedExportDataSize) {
        METRICS_LOG_ERR("Incorrect Size Passed. Returning 0x%x", ZE_RESULT_ERROR_INVALID_SIZE);
        return ZE_RESULT_ERROR_INVALID_SIZE;
    }

    zet_intel_metric_df_gpu_export_data_format_t *exportData = reinterpret_cast<zet_intel_metric_df_gpu_export_data_format_t *>(pExportData);
    exportData->header.type = ZET_INTEL_METRIC_DF_SOURCE_TYPE_IPSAMPLING;
    exportData->header.version.major = ZET_INTEL_GPU_METRIC_EXPORT_VERSION_MAJOR;
    exportData->header.version.minor = ZET_INTEL_GPU_METRIC_EXPORT_VERSION_MINOR;
    exportData->header.rawDataOffset = sizeof(zet_intel_metric_df_gpu_export_data_format_t);
    exportData->header.rawDataSize = rawDataSize;

    // Append the rawData
    memcpy_s(reinterpret_cast<void *>(pExportData + exportData->header.rawDataOffset), rawDataSize, pRawData, rawDataSize);

    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricSourceImp::getConcurrentMetricGroups(std::vector<zet_metric_group_handle_t> &hMetricGroups,
                                                                 uint32_t *pConcurrentGroupCount,
                                                                 uint32_t *pCountPerConcurrentGroup) {

    if (*pConcurrentGroupCount == 0) {
        *pConcurrentGroupCount = static_cast<uint32_t>(hMetricGroups.size());
        return ZE_RESULT_SUCCESS;
    }

    *pConcurrentGroupCount = std::min(*pConcurrentGroupCount, static_cast<uint32_t>(hMetricGroups.size()));
    // Each metric group is in unique container
    for (uint32_t index = 0; index < *pConcurrentGroupCount; index++) {
        pCountPerConcurrentGroup[index] = 1;
    }
    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricSourceImp::handleMetricGroupExtendedProperties(zet_metric_group_handle_t hMetricGroup,
                                                                           zet_metric_group_properties_t *pBaseProperties,
                                                                           void *pNext) {
    ze_result_t retVal = ZE_RESULT_ERROR_INVALID_ARGUMENT;
    while (pNext) {
        auto extendedProperties = reinterpret_cast<zet_base_properties_t *>(pNext);

        if (static_cast<uint32_t>(extendedProperties->stype) == ZET_INTEL_STRUCTURE_TYPE_METRIC_SOURCE_ID_EXP) {

            getMetricGroupSourceIdProperty(extendedProperties);
            retVal = ZE_RESULT_SUCCESS;
        } else if (extendedProperties->stype == ZET_STRUCTURE_TYPE_METRIC_GLOBAL_TIMESTAMPS_RESOLUTION_EXP) {

            zet_metric_global_timestamps_resolution_exp_t *metricsTimestampProperties =
                reinterpret_cast<zet_metric_global_timestamps_resolution_exp_t *>(extendedProperties);

            getTimerResolution(metricsTimestampProperties->timerResolution);
            getTimestampValidBits(metricsTimestampProperties->timestampValidBits);
            retVal = ZE_RESULT_SUCCESS;
        } else if (extendedProperties->stype == ZET_STRUCTURE_TYPE_METRIC_GROUP_TYPE_EXP) {
            zet_metric_group_type_exp_t *groupType = reinterpret_cast<zet_metric_group_type_exp_t *>(extendedProperties);
            groupType->type = ZET_METRIC_GROUP_TYPE_EXP_FLAG_OTHER;
            retVal = ZE_RESULT_SUCCESS;
        } else if (static_cast<uint32_t>(extendedProperties->stype) == ZET_INTEL_STRUCTURE_TYPE_METRIC_GROUP_CALCULATION_EXP_PROPERTIES) {
            auto calcProperties = reinterpret_cast<zet_intel_metric_group_calculation_properties_exp_t *>(extendedProperties);
            calcProperties->isTimeFilterSupported = false;
            retVal = ZE_RESULT_SUCCESS;
        }

        pNext = extendedProperties->pNext;
    }

    return retVal;
}

ze_result_t IpSamplingMetricSourceImp::calcOperationCreate(MetricDeviceContext &metricDeviceContext,
                                                           zet_intel_metric_calculation_exp_desc_t *pCalculationDesc,
                                                           const std::vector<MetricScopeImp *> &metricScopes,
                                                           zet_intel_metric_calculation_operation_exp_handle_t *phCalculationOperation) {
    ze_result_t status = ZE_RESULT_ERROR_UNKNOWN;

    bool isMultiDevice = (metricDeviceContext.isImplicitScalingCapable()) ? true : false;
    status = IpSamplingMetricCalcOpImp::create(isMultiDevice, metricScopes, *this, pCalculationDesc, phCalculationOperation);
    return status;
}

bool IpSamplingMetricSourceImp::canDisable() {
    return !activationTracker->isAnyMetricGroupActivated();
}

void IpSamplingMetricSourceImp::initMetricScopes(MetricDeviceContext &metricDeviceContext) {
    if (!metricDeviceContext.isComputeMetricScopesInitialized()) {
        initComputeMetricScopes(metricDeviceContext);
    }
}

IpSamplingMetricGroupImp::IpSamplingMetricGroupImp(IpSamplingMetricSourceImp &metricSource,
                                                   std::vector<IpSamplingMetricImp> &metrics) : IpSamplingMetricGroupBase(metricSource) {
    this->metrics.reserve(metrics.size());
    for (const auto &metric : metrics) {
        this->metrics.push_back(std::make_unique<IpSamplingMetricImp>(metric));
    }

    properties.stype = ZET_STRUCTURE_TYPE_METRIC_GROUP_PROPERTIES;
    properties.pNext = nullptr;
    strcpy_s(properties.name, ZET_MAX_METRIC_GROUP_NAME, "EuStallSampling");
    strcpy_s(properties.description, ZET_MAX_METRIC_GROUP_DESCRIPTION, "EU stall sampling");
    properties.samplingType = ZET_METRIC_GROUP_SAMPLING_TYPE_FLAG_TIME_BASED;
    properties.domain = ipSamplinDomainId;
    properties.metricCount = this->getMetricSource().metricCount;
}

ze_result_t IpSamplingMetricGroupImp::getProperties(zet_metric_group_properties_t *pProperties) {
    void *pNext = pProperties->pNext;
    *pProperties = properties;
    pProperties->pNext = pNext;

    if (pNext) {
        return metricSource.handleMetricGroupExtendedProperties(toHandle(), pProperties, pNext);
    }

    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricGroupImp::metricGet(uint32_t *pCount, zet_metric_handle_t *phMetrics) {

    if (*pCount == 0) {
        *pCount = static_cast<uint32_t>(metrics.size());
        return ZE_RESULT_SUCCESS;
    }
    // User is expected to allocate space.
    DEBUG_BREAK_IF(phMetrics == nullptr);

    *pCount = std::min(*pCount, static_cast<uint32_t>(metrics.size()));

    for (uint32_t i = 0; i < *pCount; i++) {
        phMetrics[i] = metrics[i]->toHandle();
    }

    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricGroupImp::calculateMetricValues(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
                                                            const uint8_t *pRawData, uint32_t *pMetricValueCount,
                                                            zet_typed_value_t *pMetricValues) {
    return getMetricSource().ipSamplingCalculation->calculateMetricForSubdevice(type, rawDataSize, pRawData, pMetricValueCount, pMetricValues);
}

ze_result_t IpSamplingMetricGroupImp::calculateMetricValuesExp(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
                                                               const uint8_t *pRawData, uint32_t *pSetCount,
                                                               uint32_t *pTotalMetricValueCount, uint32_t *pMetricCounts,
                                                               zet_typed_value_t *pMetricValues) {
    ze_result_t result = ZE_RESULT_SUCCESS;
    const bool calculateCountOnly = (*pTotalMetricValueCount == 0) || (*pSetCount == 0);
    if (calculateCountOnly) {
        *pTotalMetricValueCount = 0;
        *pSetCount = 0;
    }

    if (!IpSamplingCalculation::isMultiDeviceCaptureData(rawDataSize, pRawData)) {
        result = this->calculateMetricValues(type, rawDataSize, pRawData, pTotalMetricValueCount, pMetricValues);
    } else {
        METRICS_LOG_ERR("%s", "Calculating sub-device results using root device captured data is not supported");
        return ZE_RESULT_ERROR_INVALID_ARGUMENT;
    }

    if ((result == ZE_RESULT_SUCCESS) || (result == ZE_RESULT_WARNING_DROPPED_DATA)) {
        *pSetCount = 1;
        if (!calculateCountOnly) {
            pMetricCounts[0] = *pTotalMetricValueCount;
        }
    } else if (!calculateCountOnly) {
        pMetricCounts[0] = 0;
    }

    return result;
}

ze_result_t getDeviceTimestamps(DeviceImp *deviceImp, const ze_bool_t synchronizedWithHost,
                                uint64_t *globalTimestamp, uint64_t *metricTimestamp) {

    ze_result_t result;
    uint64_t hostTimestamp;
    uint64_t deviceTimestamp;

    result = deviceImp->getGlobalTimestamps(&hostTimestamp, &deviceTimestamp);
    if (result != ZE_RESULT_SUCCESS) {
        *globalTimestamp = 0;
        *metricTimestamp = 0;
    } else {
        if (synchronizedWithHost) {
            *globalTimestamp = hostTimestamp;
        } else {
            *globalTimestamp = deviceTimestamp;
        }
        *metricTimestamp = deviceTimestamp;
        result = ZE_RESULT_SUCCESS;
    }

    return result;
}

ze_result_t IpSamplingMetricGroupImp::getMetricTimestampsExp(const ze_bool_t synchronizedWithHost,
                                                             uint64_t *globalTimestamp,
                                                             uint64_t *metricTimestamp) {
    DeviceImp *deviceImp = static_cast<DeviceImp *>(&getMetricSource().getMetricDeviceContext().getDevice());
    return getDeviceTimestamps(deviceImp, synchronizedWithHost, globalTimestamp, metricTimestamp);
}

zet_metric_group_handle_t IpSamplingMetricGroupImp::getMetricGroupForSubDevice(const uint32_t subDeviceIndex) {
    return toHandle();
}

std::unique_ptr<IpSamplingMetricGroupImp> IpSamplingMetricGroupImp::create(IpSamplingMetricSourceImp &metricSource,
                                                                           std::vector<IpSamplingMetricImp> &ipSamplingMetrics) {
    return std::unique_ptr<IpSamplingMetricGroupImp>(new (std::nothrow) IpSamplingMetricGroupImp(metricSource, ipSamplingMetrics));
}

ze_result_t MultiDeviceIpSamplingMetricGroupImp::getProperties(zet_metric_group_properties_t *pProperties) {
    return subDeviceMetricGroup[0]->getProperties(pProperties);
}

ze_result_t MultiDeviceIpSamplingMetricGroupImp::metricGet(uint32_t *pCount, zet_metric_handle_t *phMetrics) {
    return subDeviceMetricGroup[0]->metricGet(pCount, phMetrics);
}

ze_result_t MultiDeviceIpSamplingMetricGroupImp::calculateMetricValues(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
                                                                       const uint8_t *pRawData, uint32_t *pMetricValueCount,
                                                                       zet_typed_value_t *pMetricValues) {

    if (IpSamplingCalculation::isMultiDeviceCaptureData(rawDataSize, pRawData)) {
        METRICS_LOG_ERR("%s", "The API is not supported for root device captured data");
        METRICS_LOG_ERR("%s", "Please use zetMetricGroupCalculateMultipleMetricValuesExp instead");
    } else {
        METRICS_LOG_ERR("%s", "Cannot validate root device captured data. Input size or captured data are invalid");
    }

    return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}

ze_result_t MultiDeviceIpSamplingMetricGroupImp::calculateMetricValuesExp(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
                                                                          const uint8_t *pRawData, uint32_t *pSetCount,
                                                                          uint32_t *pTotalMetricValueCount, uint32_t *pMetricCounts,
                                                                          zet_typed_value_t *pMetricValues) {

    const bool calculateCountOnly = *pSetCount == 0 || *pTotalMetricValueCount == 0;
    bool isDroppedData = false;
    ze_result_t result = ZE_RESULT_SUCCESS;

    auto calcUtils = getMetricSource().ipSamplingCalculation.get();
    if (calculateCountOnly) {
        *pSetCount = 0;
        *pTotalMetricValueCount = 0;
        for (uint32_t setIndex = 0; setIndex < subDeviceMetricGroup.size(); setIndex++) {
            uint32_t currTotalMetricValueCount = 0;
            result = calcUtils->getMetricValueCountSubDevIndex(rawDataSize, pRawData, currTotalMetricValueCount, setIndex);
            if (result != ZE_RESULT_SUCCESS) {
                return result;
            }
            *pTotalMetricValueCount += currTotalMetricValueCount;
        }
        *pSetCount = static_cast<uint32_t>(subDeviceMetricGroup.size());
    } else {
        memset(pMetricCounts, 0, *pSetCount);
        const auto maxSets = std::min<uint32_t>(static_cast<uint32_t>(subDeviceMetricGroup.size()), *pSetCount);

        auto tempTotalMetricValueCount = *pTotalMetricValueCount;
        for (uint32_t setIndex = 0; setIndex < maxSets; setIndex++) {
            uint32_t currTotalMetricValueCount = tempTotalMetricValueCount;
            result = calcUtils->calculateMetricValuesSubDevIndex(type, rawDataSize, pRawData, currTotalMetricValueCount, pMetricValues, setIndex);
            if (result != ZE_RESULT_SUCCESS) {
                if (result == ZE_RESULT_WARNING_DROPPED_DATA) {
                    isDroppedData = true;
                } else {
                    memset(pMetricCounts, 0, *pSetCount);
                    return result;
                }
            }

            pMetricCounts[setIndex] = currTotalMetricValueCount;
            pMetricValues += currTotalMetricValueCount;
            tempTotalMetricValueCount -= currTotalMetricValueCount;
        }
        *pTotalMetricValueCount -= tempTotalMetricValueCount;
    }

    return isDroppedData ? ZE_RESULT_WARNING_DROPPED_DATA : ZE_RESULT_SUCCESS;
}

zet_metric_group_handle_t MultiDeviceIpSamplingMetricGroupImp::getMetricGroupForSubDevice(const uint32_t subDeviceIndex) {
    return subDeviceMetricGroup[subDeviceIndex]->toHandle();
}

void MultiDeviceIpSamplingMetricGroupImp::closeSubDeviceStreamers(std::vector<IpSamplingMetricStreamerImp *> &subDeviceStreamers) {
    for (auto streamer : subDeviceStreamers) {
        streamer->close();
    }
}

ze_result_t MultiDeviceIpSamplingMetricGroupImp::getMetricTimestampsExp(const ze_bool_t synchronizedWithHost,
                                                                        uint64_t *globalTimestamp,
                                                                        uint64_t *metricTimestamp) {
    DeviceImp *deviceImp = static_cast<DeviceImp *>(&subDeviceMetricGroup[0]->getMetricSource().getMetricDeviceContext().getDevice());
    return getDeviceTimestamps(deviceImp, synchronizedWithHost, globalTimestamp, metricTimestamp);
}

std::unique_ptr<MultiDeviceIpSamplingMetricGroupImp> MultiDeviceIpSamplingMetricGroupImp::create(
    MetricSource &metricSource,
    std::vector<IpSamplingMetricGroupImp *> &subDeviceMetricGroup) {
    UNRECOVERABLE_IF(subDeviceMetricGroup.size() == 0);
    return std::unique_ptr<MultiDeviceIpSamplingMetricGroupImp>(new (std::nothrow) MultiDeviceIpSamplingMetricGroupImp(metricSource, subDeviceMetricGroup));
}

IpSamplingMetricImp::IpSamplingMetricImp(MetricSource &metricSource, zet_metric_properties_t &properties) : MetricImp(metricSource), properties(properties) {
}

ze_result_t IpSamplingMetricImp::getProperties(zet_metric_properties_t *pProperties) {
    auto pNext = pProperties->pNext;
    *pProperties = properties;

    while (pNext != nullptr) {
        auto extendedProperties = reinterpret_cast<zet_base_properties_t *>(pNext);
        if (static_cast<uint32_t>(extendedProperties->stype) == ZET_INTEL_STRUCTURE_TYPE_METRIC_CALCULABLE_PROPERTIES_EXP) {
            auto calculableProperties = reinterpret_cast<zet_intel_metric_calculable_properties_exp_t *>(extendedProperties);
            // All metrics are calculable in IP Sampling
            calculableProperties->isCalculable = true;
        }
        pNext = extendedProperties->pNext;
    }

    return ZE_RESULT_SUCCESS;
}

bool IpSamplingCalculation::isMultiDeviceCaptureData(const size_t rawDataSize, const uint8_t *pRawData) {
    if (rawDataSize >= sizeof(IpSamplingMultiDevDataHeader)) {
        const auto header = reinterpret_cast<const IpSamplingMultiDevDataHeader *>(pRawData);
        return header->magic == IpSamplingMultiDevDataHeader::magicValue;
    }
    return false;
}

ze_result_t IpSamplingCalculation::getIpsInRawData(const size_t rawDataSize, const uint8_t *pRawData,
                                                   std::unordered_set<uint64_t> &iPs) {
    if ((rawDataSize % rawReportSize) != 0) {
        METRICS_LOG_ERR("%s", "Invalid input raw data size");
        return ZE_RESULT_ERROR_INVALID_SIZE;
    }

    const uint32_t rawReportCount = static_cast<uint32_t>(rawDataSize) / rawReportSize;

    for (const uint8_t *pRawIpData = pRawData; pRawIpData < pRawData + (rawReportCount * rawReportSize); pRawIpData += rawReportSize) {
        uint64_t ip = 0ULL;
        memcpy_s(reinterpret_cast<uint8_t *>(&ip), sizeof(ip), pRawIpData, sizeof(ip));
        ip &= gfxCoreHelper.getIpSamplingIpMask();
        iPs.insert(ip);
    }

    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingCalculation::getIpsInRawDataForSubDevIndex(const size_t rawDataSize, const uint8_t *pMultiMetricData, const uint32_t setIndex, std::unordered_set<uint64_t> &iPs) {
    // Iterate through headers and assign required sizes
    auto processedSize = 0u;
    while (processedSize < rawDataSize) {
        auto processMetricData = pMultiMetricData + processedSize;
        if (!isMultiDeviceCaptureData(rawDataSize - processedSize, processMetricData)) {
            METRICS_LOG_ERR("%s", "Cannot validate root device captured data. Input size or captured data are invalid");
            return ZE_RESULT_ERROR_INVALID_ARGUMENT;
        }

        auto header = reinterpret_cast<const IpSamplingMultiDevDataHeader *>(processMetricData);
        processedSize += sizeof(IpSamplingMultiDevDataHeader) + header->rawDataSize;
        if (header->setIndex != setIndex) {
            continue;
        }

        auto result = getIpsInRawData(header->rawDataSize, processMetricData + sizeof(IpSamplingMultiDevDataHeader), iPs);
        if (result != ZE_RESULT_SUCCESS) {
            iPs.clear();
            return result;
        }
    }
    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingCalculation::getMetricValueCount(const size_t rawDataSize, const uint8_t *pRawData,
                                                       uint32_t &metricValueCount) {
    ze_result_t status = ZE_RESULT_SUCCESS;
    std::unordered_set<uint64_t> stallReportIpCount{};

    status = getIpsInRawData(rawDataSize, pRawData, stallReportIpCount);
    if (status != ZE_RESULT_SUCCESS) {
        metricValueCount = 0;
        return status;
    }

    metricValueCount = static_cast<uint32_t>(stallReportIpCount.size()) * metricSource.metricCount;
    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingCalculation::getMetricValueCountSubDevIndex(const size_t rawDataSize, const uint8_t *pMultiMetricData, uint32_t &metricValueCount, const uint32_t setIndex) {

    ze_result_t status = ZE_RESULT_SUCCESS;
    std::unordered_set<uint64_t> stallReportIpCount{};

    status = getIpsInRawDataForSubDevIndex(rawDataSize, pMultiMetricData, setIndex, stallReportIpCount);
    if (status != ZE_RESULT_SUCCESS) {
        metricValueCount = 0;
        return status;
    }
    metricValueCount = static_cast<uint32_t>(stallReportIpCount.size()) * metricSource.metricCount;

    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingCalculation::calculateMetricValues(const zet_metric_group_calculation_type_t type, const size_t rawDataSize,
                                                         const uint8_t *pRawData, uint32_t &metricValueCount,
                                                         zet_typed_value_t *pCalculatedData) {
    bool dataOverflow = false;
    std::map<uint64_t, void *> stallReportDataMap;

    // MAX_METRIC_VALUES is not supported yet.
    if (type != ZET_METRIC_GROUP_CALCULATION_TYPE_METRIC_VALUES) {
        METRICS_LOG_ERR("%s", "IP sampling only supports ZET_METRIC_GROUP_CALCULATION_TYPE_METRIC_VALUES");
        return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    }

    DEBUG_BREAK_IF(pCalculatedData == nullptr);

    ze_result_t status = updateStallDataMapFromData(rawDataSize, pRawData, stallReportDataMap, &dataOverflow);
    if (status != ZE_RESULT_SUCCESS) {
        metricValueCount = 0;
        METRICS_LOG_ERR("%s", "Failed to update stall data map");
        return status;
    }

    stallDataMapToTypedValues(stallReportDataMap, metricValueCount, pCalculatedData);

    return dataOverflow ? ZE_RESULT_WARNING_DROPPED_DATA : ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingCalculation::calculateMetricValuesSubDevIndex(const zet_metric_group_calculation_type_t type, const size_t rawDataSize,
                                                                    const uint8_t *pMultiMetricData, uint32_t &metricValueCount,
                                                                    zet_typed_value_t *pCalculatedData, const uint32_t setIndex) {

    auto processedSize = 0u;
    auto isDataDropped = false;
    auto requestTotalMetricValueCount = metricValueCount;

    while (processedSize < rawDataSize && requestTotalMetricValueCount > 0) {
        auto processMetricData = pMultiMetricData + processedSize;
        if (!isMultiDeviceCaptureData(rawDataSize - processedSize, processMetricData)) {
            METRICS_LOG_ERR("%s", "Calculating root device results using sub-device captured data is not supported");
            return ZE_RESULT_ERROR_INVALID_ARGUMENT;
        }

        auto header = reinterpret_cast<const IpSamplingMultiDevDataHeader *>(processMetricData);
        processedSize += header->rawDataSize + sizeof(IpSamplingMultiDevDataHeader);
        if (header->setIndex != setIndex) {
            continue;
        }

        auto processMetricRawData = processMetricData + sizeof(IpSamplingMultiDevDataHeader);
        auto currTotalMetricValueCount = requestTotalMetricValueCount;
        auto result = calculateMetricValues(type, header->rawDataSize, processMetricRawData, currTotalMetricValueCount, pCalculatedData);
        if (result != ZE_RESULT_SUCCESS) {
            if (result == ZE_RESULT_WARNING_DROPPED_DATA) {
                isDataDropped = true;
            } else {
                metricValueCount = 0;
                return result;
            }
        }
        pCalculatedData += currTotalMetricValueCount;
        requestTotalMetricValueCount -= currTotalMetricValueCount;
    }

    metricValueCount -= requestTotalMetricValueCount;
    return isDataDropped ? ZE_RESULT_WARNING_DROPPED_DATA : ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingCalculation::calculateMetricForSubdevice(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
                                                               const uint8_t *pRawData, uint32_t *pMetricValueCount,
                                                               zet_typed_value_t *pMetricValues) {
    const bool calculateCountOnly = *pMetricValueCount == 0;

    if (isMultiDeviceCaptureData(rawDataSize, pRawData)) {
        METRICS_LOG_ERR("%s", "Calculating sub-device results using root device captured data is not supported");
        return ZE_RESULT_ERROR_INVALID_ARGUMENT;
    }

    if (calculateCountOnly) {
        return getMetricValueCount(rawDataSize, pRawData, *pMetricValueCount);
    } else {
        return calculateMetricValues(type, rawDataSize, pRawData, *pMetricValueCount, pMetricValues);
    }
}

ze_result_t IpSamplingCalculation::updateStallDataMapFromData(const size_t rawDataSize, const uint8_t *pRawData,
                                                              std::map<uint64_t, void *> &stallReportDataMap,
                                                              bool *dataOverflow) {

    if ((rawDataSize % rawReportSize) != 0) {
        METRICS_LOG_ERR("%s", "Invalid input raw data size");
        return ZE_RESULT_ERROR_INVALID_SIZE;
    }

    size_t processedSize = 0;
    const uint8_t *dataToProcess = pRawData;

    do {
        *dataOverflow |= gfxCoreHelper.stallIpDataMapUpdateFromData(dataToProcess, stallReportDataMap);
        processedSize += rawReportSize;
        dataToProcess += rawReportSize;
    } while (processedSize < rawDataSize);

    return ZE_RESULT_SUCCESS;
}

void IpSamplingCalculation::multiDataMapToMetricResults(std::map<uint32_t, std::map<uint64_t, void *> *> &perScopeIpDataCaches,
                                                        uint32_t metricReportCount,
                                                        std::vector<uint32_t> includedMetricIndexes,
                                                        zet_intel_metric_result_exp_t *pMetricResults) {

    // Every report includes the filtered metrics per scope
    std::vector<zet_typed_value_t> ipDataValues;
    uint32_t resultIndex = 0;
    for (uint32_t reportIndex = 0; reportIndex < metricReportCount; reportIndex++) {
        for (auto &entry : perScopeIpDataCaches) {
            ipDataValues.clear();

            std::map<uint64_t, void *> *scopeCache = entry.second;

            bool cacheEmpty = scopeCache->empty();
            if (!cacheEmpty) {
                auto it = scopeCache->begin();
                gfxCoreHelper.stallSumIpDataToTypedValues(it->first, it->second, ipDataValues);
                gfxCoreHelper.stallIpDataMapDeleteSumDataEntry(it);
                it = scopeCache->erase(it);
            }
            for (uint32_t j = 0; j < includedMetricIndexes.size(); j++) {
                if (cacheEmpty) {
                    (pMetricResults + resultIndex)->value.ui64 = 0;
                    (pMetricResults + resultIndex)->resultStatus = ZET_INTEL_METRIC_CALCULATION_EXP_RESULT_INVALID;
                } else {
                    (pMetricResults + resultIndex)->value = ipDataValues[includedMetricIndexes[j]].value;
                    (pMetricResults + resultIndex)->resultStatus = ZET_INTEL_METRIC_CALCULATION_EXP_RESULT_VALID;
                }
                resultIndex++;
            }
        }
    }
}

void IpSamplingCalculation::stallDataMapToMetricResults(std::map<uint64_t, void *> &stallReportDataMap,
                                                        uint32_t metricReportCount,
                                                        std::vector<uint32_t> includedMetricIndexes,
                                                        zet_intel_metric_result_exp_t *pMetricResults) {
    std::vector<zet_typed_value_t> ipDataValues;
    uint32_t i = 0;
    auto endIt = stallReportDataMap.begin();
    std::advance(endIt, metricReportCount);
    for (auto it = stallReportDataMap.begin(); it != endIt;) {
        ipDataValues.clear();
        gfxCoreHelper.stallSumIpDataToTypedValues(it->first, it->second, ipDataValues);
        for (uint32_t j = 0; j < includedMetricIndexes.size(); j++) {
            (pMetricResults + i)->value = ipDataValues[includedMetricIndexes[j]].value;
            (pMetricResults + i)->resultStatus = ZET_INTEL_METRIC_CALCULATION_EXP_RESULT_VALID;
            i++;
        }
        gfxCoreHelper.stallIpDataMapDeleteSumDataEntry(it);
        it = stallReportDataMap.erase(it);
    }
}

void IpSamplingCalculation::stallDataMapToTypedValues(std::map<uint64_t, void *> &stallReportDataMap,
                                                      uint32_t &metricValueCount,
                                                      zet_typed_value_t *pTypedValues) {

    metricValueCount = std::min<uint32_t>(metricValueCount, static_cast<uint32_t>(stallReportDataMap.size()) * metricSource.metricCount);
    std::vector<zet_typed_value_t> ipDataValues;
    uint32_t i = 0;

    for (auto it = stallReportDataMap.begin(); it != stallReportDataMap.end(); ++it) {
        gfxCoreHelper.stallSumIpDataToTypedValues(it->first, it->second, ipDataValues);
        for (auto jt = ipDataValues.begin(); (jt != ipDataValues.end()) && (i < metricValueCount); jt++, i++) {
            *(pTypedValues + i) = *jt;
        }
        ipDataValues.clear();
    }
    gfxCoreHelper.stallIpDataMapDeleteSumData(stallReportDataMap);
    stallReportDataMap.clear();
}

template <>
IpSamplingMetricSourceImp &MetricDeviceContext::getMetricSource<IpSamplingMetricSourceImp>() const {
    return static_cast<IpSamplingMetricSourceImp &>(*metricSources.at(MetricSource::metricSourceTypeIpSampling));
}

} // namespace L0