1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
/*
* Copyright (C) 2022-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/metrics/metric_ip_sampling_streamer.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "level_zero/core/source/device/device.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/core/source/gfx_core_helpers/l0_gfx_core_helper.h"
#include "level_zero/tools/source/metrics/metric.h"
#include "level_zero/tools/source/metrics/metric_ip_sampling_source.h"
#include "level_zero/tools/source/metrics/os_interface_metric.h"
#include <level_zero/zet_api.h>
#include <set>
#include <string.h>
namespace L0 {
ze_result_t IpSamplingMetricGroupImp::streamerOpen(
zet_context_handle_t hContext,
zet_device_handle_t hDevice,
zet_metric_streamer_desc_t *desc,
ze_event_handle_t hNotificationEvent,
zet_metric_streamer_handle_t *phMetricStreamer) {
auto device = Device::fromHandle(hDevice);
// Check whether metric group is activated.
IpSamplingMetricSourceImp &source = device->getMetricDeviceContext().getMetricSource<IpSamplingMetricSourceImp>();
if (!source.isMetricGroupActivated(this->toHandle())) {
return ZE_RESULT_NOT_READY;
}
// Check whether metric streamer is already open.
if (source.pActiveStreamer != nullptr) {
return ZE_RESULT_ERROR_HANDLE_OBJECT_IN_USE;
}
auto pStreamerImp = new IpSamplingMetricStreamerImp(source);
UNRECOVERABLE_IF(pStreamerImp == nullptr);
const ze_result_t result = source.getMetricOsInterface()->startMeasurement(desc->notifyEveryNReports, desc->samplingPeriod);
if (result == ZE_RESULT_SUCCESS) {
source.pActiveStreamer = pStreamerImp;
pStreamerImp->attachEvent(hNotificationEvent);
} else {
delete pStreamerImp;
pStreamerImp = nullptr;
return result;
}
*phMetricStreamer = pStreamerImp->toHandle();
auto hwBufferSizeDesc = MetricSource::getHwBufferSizeDesc(static_cast<zet_base_desc_t *>(const_cast<void *>(desc->pNext)));
if (hwBufferSizeDesc.has_value()) {
// EUSS uses fixed max hw buffer size
hwBufferSizeDesc.value()->sizeInBytes = source.getMetricOsInterface()->getRequiredBufferSize(UINT32_MAX);
}
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricStreamerImp::readData(uint32_t maxReportCount, size_t *pRawDataSize, uint8_t *pRawData) {
// Return required size if requested.
if (*pRawDataSize == 0) {
*pRawDataSize = ipSamplingSource.getMetricOsInterface()->getRequiredBufferSize(maxReportCount);
return ZE_RESULT_SUCCESS;
}
// If there is a difference in pRawDataSize and maxReportCount, use the minimum value for reading.
if (maxReportCount != UINT32_MAX) {
size_t maxSizeRequired = ipSamplingSource.getMetricOsInterface()->getRequiredBufferSize(maxReportCount);
*pRawDataSize = std::min(maxSizeRequired, *pRawDataSize);
}
return ipSamplingSource.getMetricOsInterface()->readData(pRawData, pRawDataSize);
}
ze_result_t IpSamplingMetricStreamerImp::close() {
const ze_result_t result = ipSamplingSource.getMetricOsInterface()->stopMeasurement();
detachEvent();
ipSamplingSource.pActiveStreamer = nullptr;
delete this;
return result;
}
Event::State IpSamplingMetricStreamerImp::getNotificationState() {
return ipSamplingSource.getMetricOsInterface()->isNReportsAvailable()
? Event::State::STATE_SIGNALED
: Event::State::STATE_INITIAL;
}
uint32_t IpSamplingMetricStreamerImp::getMaxSupportedReportCount() {
const auto unitReportSize = ipSamplingSource.getMetricOsInterface()->getUnitReportSize();
UNRECOVERABLE_IF(unitReportSize == 0);
return ipSamplingSource.getMetricOsInterface()->getRequiredBufferSize(UINT32_MAX) / unitReportSize;
}
IpSamplingMetricCalcOpImp::IpSamplingMetricCalcOpImp(bool multidevice,
const std::vector<MetricScopeImp *> &metricScopesInCalcOp,
std::vector<MetricImp *> &metricsInReport,
const std::vector<MetricScopeImp *> &metricScopesInReport,
IpSamplingMetricSourceImp &metricSource,
std::vector<uint32_t> &includedMetricIndexes)
: MetricCalcOpImp(multidevice, metricScopesInReport, metricsInReport, std::vector<MetricImp *>()),
metricSource(metricSource), includedMetricIndexes(includedMetricIndexes), metricScopesInCalcOp(metricScopesInCalcOp) {
// Create an IP data cache for each scope in the calcOp
for (auto &scope : metricScopesInCalcOp) {
auto scopeId = scope->getId();
perScopeIpDataCaches[scopeId] = new std::map<uint64_t, void *>{};
if (scope->isAggregated()) {
isAggregateScopeIncluded = true;
aggregateScopeId = scope->getId();
}
}
const auto deviceImp = static_cast<DeviceImp *>(&(metricSource.getMetricDeviceContext().getDevice()));
l0GfxCoreHelper = &(deviceImp->getNEODevice()->getRootDeviceEnvironment().getHelper<L0GfxCoreHelper>());
}
void IpSamplingMetricCalcOpImp::clearScopesCaches() {
for (auto &entry : perScopeIpDataCaches) {
l0GfxCoreHelper->stallIpDataMapDeleteSumData(*entry.second);
entry.second->clear();
}
}
ze_result_t IpSamplingMetricCalcOpImp::destroy() {
clearScopesCaches();
for (auto &it : perScopeIpDataCaches) {
delete it.second;
it.second = nullptr;
}
perScopeIpDataCaches.clear();
delete this;
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricCalcOpImp::create(bool isMultiDevice,
const std::vector<MetricScopeImp *> &metricScopes,
IpSamplingMetricSourceImp &metricSource,
zet_intel_metric_calculation_exp_desc_t *pCalculationDesc,
zet_intel_metric_calculation_operation_exp_handle_t *phCalculationOperation) {
// There is only one valid metric group in IP sampling and time filtering is not supported
// So only metrics handles are used to filter the metrics
// avoid duplicates
std::set<zet_metric_handle_t> uniqueMetricHandles(pCalculationDesc->phMetrics, pCalculationDesc->phMetrics + pCalculationDesc->metricCount);
// The order of metrics in the report should be the same as the one in the HW report to optimize calculation
uint32_t metricGroupCount = 1;
zet_metric_group_handle_t hMetricGroup = {};
if (auto ret = metricSource.metricGroupGet(&metricGroupCount, &hMetricGroup); ret != ZE_RESULT_SUCCESS) {
return ret;
}
uint32_t metricCount = 0;
MetricGroup::fromHandle(hMetricGroup)->metricGet(&metricCount, nullptr);
std::vector<zet_metric_handle_t> hMetrics(metricCount);
MetricGroup::fromHandle(hMetricGroup)->metricGet(&metricCount, hMetrics.data());
std::vector<MetricImp *> includedMetrics = {};
std::vector<uint32_t> includedMetricIndexes = {};
for (uint32_t i = 0; i < metricCount; i++) {
auto metric = static_cast<MetricImp *>(Metric::fromHandle(hMetrics[i]));
if (pCalculationDesc->metricGroupCount > 0) {
includedMetrics.push_back(metric);
includedMetricIndexes.push_back(i);
} else {
if (uniqueMetricHandles.find(hMetrics[i]) != uniqueMetricHandles.end()) {
includedMetrics.push_back(metric);
includedMetricIndexes.push_back(i);
}
}
}
// Create metricsInReport and corresponding scopes in metricScopesInReport
std::vector<MetricImp *> metricsInReport = {};
std::vector<MetricScopeImp *> metricScopesInReport = {};
for (uint32_t scopeIndex = 0; scopeIndex < metricScopes.size(); scopeIndex++) {
for (uint32_t metricIndex = 0; metricIndex < includedMetrics.size(); metricIndex++) {
metricsInReport.push_back(includedMetrics[metricIndex]);
metricScopesInReport.push_back(metricScopes[scopeIndex]);
}
}
auto calcOp = new IpSamplingMetricCalcOpImp(isMultiDevice, metricScopes, metricsInReport,
metricScopesInReport, metricSource, includedMetricIndexes);
*phCalculationOperation = calcOp->toHandle();
ze_result_t status = ZE_RESULT_SUCCESS;
if ((pCalculationDesc->timeWindowsCount > 0) || (pCalculationDesc->timeAggregationWindow != 0)) {
// Time filtering is not supported in IP sampling
status = ZE_INTEL_RESULT_WARNING_TIME_PARAMS_IGNORED_EXP;
METRICS_LOG_INFO("%s", "Time filtering is not supported in IP sampling, ignoring time windows and aggregation window");
}
return status;
}
ze_result_t IpSamplingMetricCalcOpImp::getSingleComputeScopeReportCount(const size_t rawDataSize, const uint8_t *pRawData,
bool newData, uint32_t scopeId, uint32_t *pTotalMetricReportCount) {
ze_result_t status = ZE_RESULT_ERROR_UNKNOWN;
auto ipSamplingCalculation = metricSource.ipSamplingCalculation.get();
std::unordered_set<uint64_t> iPs{};
if (newData) {
status = ipSamplingCalculation->getIpsInRawData(rawDataSize, pRawData, iPs);
if (status != ZE_RESULT_SUCCESS) {
*pTotalMetricReportCount = 0;
return status;
}
}
*pTotalMetricReportCount = getUniqueIpCountForScope(scopeId, iPs);
DEBUG_BREAK_IF(*pTotalMetricReportCount == 0);
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricCalcOpImp::getMultiScopeReportCount(const size_t rawDataSize, const uint8_t *pRawData,
bool newData, uint32_t *pTotalMetricReportCount) {
ze_result_t status = ZE_RESULT_ERROR_UNKNOWN;
auto ipSamplingCalculation = metricSource.ipSamplingCalculation.get();
// IPs are shared across sub-devices. So, if aggregated scope is provided, the number of reports is the total
// number of unique IPs across all sub-devices data.
// Otherwise, the number of reports is the number of IPs in the sub-device compute scope that has the most IPs, and
// results will have invalid status for reports in compute scopes that have fewer IPs.
if (newData) {
std::unordered_set<uint64_t> iPs{};
std::vector<uint32_t> subDeviceIndexes{};
std::vector<MetricScopeImp *>::iterator it = metricScopesInCalcOp.begin();
if (isAggregateScopeIncluded) {
DeviceImp *deviceImp = static_cast<DeviceImp *>(&metricSource.getMetricDeviceContext().getDevice());
uint32_t subDeviceCount = deviceImp->numSubDevices;
std::vector<ze_device_handle_t> subDevices(subDeviceCount);
deviceImp->getSubDevices(&subDeviceCount, subDevices.data());
for (auto &subDeviceHandle : subDevices) {
auto neoSubDevice = static_cast<NEO::SubDevice *>(Device::fromHandle(subDeviceHandle)->getNEODevice());
subDeviceIndexes.push_back(neoSubDevice->getSubDeviceIndex());
}
} else {
for (auto &scope : metricScopesInCalcOp) {
subDeviceIndexes.push_back(scope->getComputeSubDeviceIndex());
}
}
for (auto &subdevIndex : subDeviceIndexes) {
status = ipSamplingCalculation->getIpsInRawDataForSubDevIndex(rawDataSize, pRawData, subdevIndex, iPs);
if (status != ZE_RESULT_SUCCESS) {
*pTotalMetricReportCount = 0;
return status;
}
if (!isAggregateScopeIncluded) {
*pTotalMetricReportCount = std::max(*pTotalMetricReportCount, getUniqueIpCountForScope((*it)->getId(), iPs));
it++;
iPs.clear();
}
}
if (isAggregateScopeIncluded) {
*pTotalMetricReportCount = getUniqueIpCountForScope(aggregateScopeId, iPs);
}
} else {
*pTotalMetricReportCount = getLargestCacheSize();
}
DEBUG_BREAK_IF(*pTotalMetricReportCount == 0);
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricCalcOpImp::updateCacheForSingleScope(const size_t rawDataSize, const uint8_t *pRawData,
bool newData, std::map<uint64_t, void *> &reportDataMap, bool &dataOverflow) {
if (newData) {
ze_result_t status = ZE_RESULT_ERROR_UNKNOWN;
auto ipSamplingCalculation = metricSource.ipSamplingCalculation.get();
status = ipSamplingCalculation->updateStallDataMapFromData(rawDataSize, pRawData,
reportDataMap, &dataOverflow);
if (status != ZE_RESULT_SUCCESS) {
METRICS_LOG_ERR("%s", "Failed to update stall data map");
return status;
}
}
DEBUG_BREAK_IF(reportDataMap.empty());
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricCalcOpImp::updateCachesForMultiScopes(const size_t rawDataSize, const uint8_t *pRawData,
bool newData, bool &dataOverflow) {
// Process new data only once per sub-device.
// Aggregated scope update needs metrics only from new data. So:
// a) Save sub-devices data in temporary caches for each compute scope
// b) Update aggregated scope temporary caches data.
// For compute scopes use the temporary caches to update each compute scope cache accordingly
if (newData) {
MetricScopeImp *aggregatedScope = nullptr;
std::map<uint32_t, std::map<uint64_t, void *> *> computeNewIpsCaches{};
std::vector<uint32_t> subDevIndexesForComputeScopes{};
ze_result_t status = ZE_RESULT_ERROR_UNKNOWN;
auto traverseDataAndUpdateCache = [this, rawDataSize, pRawData, newData, &dataOverflow](uint32_t subDeviceIndex, std::map<uint64_t, void *> &reportDataMap) -> ze_result_t {
auto processedSize = 0u;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
while (processedSize < rawDataSize) {
auto processMetricData = pRawData + processedSize;
auto header = reinterpret_cast<const IpSamplingMultiDevDataHeader *>(processMetricData);
processedSize += sizeof(IpSamplingMultiDevDataHeader) + header->rawDataSize;
if (header->setIndex != subDeviceIndex) {
continue;
}
result = updateCacheForSingleScope(header->rawDataSize,
(processMetricData + sizeof(IpSamplingMultiDevDataHeader)),
newData, reportDataMap, dataOverflow);
if (result != ZE_RESULT_SUCCESS) {
return result;
}
}
return ZE_RESULT_SUCCESS;
};
auto clearTempCaches = [&computeNewIpsCaches, this]() {
for (auto &it : computeNewIpsCaches) {
l0GfxCoreHelper->stallIpDataMapDeleteSumData(*it.second);
it.second->clear();
delete it.second;
}
computeNewIpsCaches.clear();
};
for (auto &scope : metricScopesInCalcOp) {
if (!scope->isAggregated()) {
uint32_t subDeviceIndex = scope->getComputeSubDeviceIndex();
subDevIndexesForComputeScopes.push_back(subDeviceIndex);
// Temporary cache for new data per compute scope to allow updating aggregated and compute cached independently
computeNewIpsCaches[scope->getId()] = new std::map<uint64_t, void *>{};
status = traverseDataAndUpdateCache(subDeviceIndex, *computeNewIpsCaches[scope->getId()]);
if (status != ZE_RESULT_SUCCESS) {
clearTempCaches();
return status;
}
} else {
aggregatedScope = scope;
}
}
if (aggregatedScope) {
// Process data for the sub-devices not already processed above.
std::map<uint64_t, void *> *aggregatedScopeCache = perScopeIpDataCaches[aggregatedScope->getId()];
DeviceImp *deviceImp = static_cast<DeviceImp *>(&metricSource.getMetricDeviceContext().getDevice());
uint32_t subDeviceCount = deviceImp->numSubDevices;
std::vector<ze_device_handle_t> subDevices(subDeviceCount);
deviceImp->getSubDevices(&subDeviceCount, subDevices.data());
std::vector<uint32_t> pendingSubDeviceIndexes{};
for (auto &subDeviceHandle : subDevices) {
auto neoSubDevice = static_cast<NEO::SubDevice *>(Device::fromHandle(subDeviceHandle)->getNEODevice());
uint32_t subdevIndex = neoSubDevice->getSubDeviceIndex();
if (std::find(subDevIndexesForComputeScopes.begin(), subDevIndexesForComputeScopes.end(), subdevIndex) == subDevIndexesForComputeScopes.end()) {
pendingSubDeviceIndexes.push_back(subdevIndex);
}
}
for (auto &subDeviceIndex : pendingSubDeviceIndexes) {
status = traverseDataAndUpdateCache(subDeviceIndex, *aggregatedScopeCache);
if (status != ZE_RESULT_SUCCESS) {
clearTempCaches();
return status;
}
}
// Update aggregated scope cache with Ips from new data in sub-devices caches.
for (auto &it : computeNewIpsCaches) {
l0GfxCoreHelper->stallIpDataMapUpdateFromMap(*it.second, *aggregatedScopeCache);
}
}
// Update each compute scope cache with its data and free the temporary caches
for (auto &it : computeNewIpsCaches) {
l0GfxCoreHelper->stallIpDataMapUpdateFromMap(*it.second, *perScopeIpDataCaches[it.first]);
}
clearTempCaches();
}
return ZE_RESULT_SUCCESS;
}
ze_result_t IpSamplingMetricCalcOpImp::metricCalculateValues(const size_t rawDataSize, const uint8_t *pRawData,
bool final, size_t *usedSize,
uint32_t *pTotalMetricReportCount,
zet_intel_metric_result_exp_t *pMetricResults) {
*usedSize = 0;
uint32_t metricReportCount = 0;
bool dataOverflow = false;
auto ipSamplingCalculation = metricSource.ipSamplingCalculation.get();
bool getSize = (*pTotalMetricReportCount == 0);
bool newData = false; // Track if there is fresh new raw data that requires updating caches
uint64_t dataSize = rawDataSize;
const uint8_t *rawDataStart = pRawData;
ze_result_t status = ZE_RESULT_SUCCESS;
if (areAllCachesEmpty()) {
// All data is new: user asked to calculate all results available in the raw data. So, all caches are empty
newData = true;
} else if (rawDataSize > processedSize) {
// Previous call user requested fewer results than available. So, algo cached pending results and
// processed size = input size - rawReportSize because returned used size = rawReportSize.
// Then user is expected to move pRawData by rawReportSize. If data gets appended user must update
// new size accordingly.
newData = true;
rawDataStart += processedSize;
dataSize = rawDataSize - processedSize;
}
if (newData) { // only check on new data. Otherwise, cached values are guaranteed to be valid
isMultiDeviceData = IpSamplingCalculation::isMultiDeviceCaptureData(dataSize, rawDataStart);
}
if (!isMultiDevice) {
if (isMultiDeviceData) {
METRICS_LOG_ERR("%s", "Cannot use root device raw data in a sub-device calculation operation handle");
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
uint32_t scopeId = metricScopesInCalcOp[0]->getId(); // Sub-devices calcOp can only have single scope
DEBUG_BREAK_IF(metricScopesInCalcOp[0]->isAggregated());
DEBUG_BREAK_IF(scopeId != 0);
if (getSize) {
return getSingleComputeScopeReportCount(dataSize, rawDataStart, newData, scopeId, pTotalMetricReportCount);
}
status = updateCacheForSingleScope(dataSize, rawDataStart, newData, *perScopeIpDataCaches[scopeId], dataOverflow);
if (status != ZE_RESULT_SUCCESS) {
clearScopesCaches();
METRICS_LOG_ERR("%s", "Failed to update stall data");
return status;
}
metricReportCount = std::min<uint32_t>(*pTotalMetricReportCount, getLargestCacheSize());
ipSamplingCalculation->stallDataMapToMetricResults(*getScopeCache(scopeId), metricReportCount, includedMetricIndexes, pMetricResults);
} else {
if (!isMultiDeviceData) {
METRICS_LOG_ERR("%s", "Cannot use sub-device raw data in a root device calculation operation handle");
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
if (getSize) {
return getMultiScopeReportCount(dataSize, rawDataStart, newData, pTotalMetricReportCount);
}
status = updateCachesForMultiScopes(dataSize, rawDataStart, newData, dataOverflow);
if (status != ZE_RESULT_SUCCESS) {
// clearScopesCaches();
METRICS_LOG_ERR("%s", "Failed to update stall data map");
return status;
}
metricReportCount = std::min<uint32_t>(*pTotalMetricReportCount, getLargestCacheSize());
ipSamplingCalculation->multiDataMapToMetricResults(perScopeIpDataCaches, metricReportCount, includedMetricIndexes, pMetricResults);
}
// Update with the actual number of reports calculated
*pTotalMetricReportCount = metricReportCount;
if (final || areAllCachesEmpty()) {
clearScopesCaches();
*usedSize = rawDataSize;
processedSize = 0;
} else {
*usedSize = IpSamplingCalculation::rawReportSize;
processedSize = rawDataSize - IpSamplingCalculation::rawReportSize;
}
return dataOverflow ? ZE_RESULT_WARNING_DROPPED_DATA : ZE_RESULT_SUCCESS;
}
ze_result_t MultiDeviceIpSamplingMetricGroupImp::streamerOpen(
zet_context_handle_t hContext,
zet_device_handle_t hDevice,
zet_metric_streamer_desc_t *desc,
ze_event_handle_t hNotificationEvent,
zet_metric_streamer_handle_t *phMetricStreamer) {
ze_result_t result = ZE_RESULT_SUCCESS;
std::vector<IpSamplingMetricStreamerImp *> subDeviceStreamers = {};
const auto numSubDevices = subDeviceMetricGroup.size();
subDeviceStreamers.reserve(numSubDevices);
// Open SubDevice Streamers
for (auto &metricGroup : subDeviceMetricGroup) {
zet_metric_streamer_handle_t subDeviceMetricStreamer = {};
zet_device_handle_t hSubDevice = metricGroup->getMetricSource().getMetricDeviceContext().getDevice().toHandle();
result = metricGroup->streamerOpen(hContext, hSubDevice, desc, nullptr, &subDeviceMetricStreamer);
if (result != ZE_RESULT_SUCCESS) {
closeSubDeviceStreamers(subDeviceStreamers);
return result;
}
subDeviceStreamers.push_back(static_cast<IpSamplingMetricStreamerImp *>(MetricStreamer::fromHandle(subDeviceMetricStreamer)));
}
auto pStreamerImp = new MultiDeviceIpSamplingMetricStreamerImp(subDeviceStreamers);
UNRECOVERABLE_IF(pStreamerImp == nullptr);
pStreamerImp->attachEvent(hNotificationEvent);
*phMetricStreamer = pStreamerImp->toHandle();
auto hwBufferSizeDesc = MetricSource::getHwBufferSizeDesc(static_cast<zet_base_desc_t *>(const_cast<void *>(desc->pNext)));
if (hwBufferSizeDesc.has_value()) {
auto device = Device::fromHandle(hDevice);
IpSamplingMetricSourceImp &source = device->getMetricDeviceContext().getMetricSource<IpSamplingMetricSourceImp>();
// EUSS uses fixed max hw buffer size
hwBufferSizeDesc.value()->sizeInBytes = source.getMetricOsInterface()->getRequiredBufferSize(UINT32_MAX) * numSubDevices;
}
return result;
}
ze_result_t MultiDeviceIpSamplingMetricStreamerImp::readData(uint32_t maxReportCount, size_t *pRawDataSize, uint8_t *pRawData) {
const int32_t totalHeaderSize = static_cast<int32_t>(sizeof(IpSamplingMultiDevDataHeader) * subDeviceStreamers.size());
// Find single report size
size_t singleReportSize = 0;
subDeviceStreamers[0]->readData(1, &singleReportSize, nullptr);
// Trim report count to the maximum possible report count
const uint32_t maxSupportedReportCount = subDeviceStreamers[0]->getMaxSupportedReportCount() *
static_cast<uint32_t>(subDeviceStreamers.size());
maxReportCount = std::min(maxSupportedReportCount, maxReportCount);
if (*pRawDataSize == 0) {
*pRawDataSize = singleReportSize * maxReportCount;
*pRawDataSize += totalHeaderSize;
return ZE_RESULT_SUCCESS;
}
// Remove header size from actual data size
size_t calcRawDataSize = std::max<int32_t>(0, static_cast<int32_t>(*pRawDataSize - totalHeaderSize));
// Recalculate maximum possible report count for the raw data size
calcRawDataSize = std::min(calcRawDataSize, singleReportSize * maxReportCount);
maxReportCount = static_cast<uint32_t>(calcRawDataSize / singleReportSize);
uint8_t *pCurrRawData = pRawData;
size_t currRawDataSize = calcRawDataSize;
ze_result_t result = ZE_RESULT_SUCCESS;
for (uint32_t index = 0; index < subDeviceStreamers.size(); index++) {
auto &streamer = subDeviceStreamers[index];
// Get header address
auto header = reinterpret_cast<IpSamplingMultiDevDataHeader *>(pCurrRawData);
pCurrRawData += sizeof(IpSamplingMultiDevDataHeader);
result = streamer->readData(maxReportCount, &currRawDataSize, pCurrRawData);
if (result != ZE_RESULT_SUCCESS) {
*pRawDataSize = 0;
return result;
}
// Update to header
memset(header, 0, sizeof(IpSamplingMultiDevDataHeader));
header->magic = IpSamplingMultiDevDataHeader::magicValue;
header->rawDataSize = static_cast<uint32_t>(currRawDataSize);
header->setIndex = index;
calcRawDataSize -= currRawDataSize;
pCurrRawData += currRawDataSize;
// Check whether memory available for next read
if (calcRawDataSize < singleReportSize) {
break;
}
maxReportCount -= static_cast<uint32_t>(currRawDataSize / singleReportSize);
currRawDataSize = calcRawDataSize;
}
*pRawDataSize = pCurrRawData - pRawData;
return result;
}
ze_result_t MultiDeviceIpSamplingMetricStreamerImp::close() {
ze_result_t result = ZE_RESULT_SUCCESS;
for (auto &streamer : subDeviceStreamers) {
result = streamer->close();
if (result != ZE_RESULT_SUCCESS) {
break;
}
}
subDeviceStreamers.clear();
detachEvent();
delete this;
return result;
}
Event::State MultiDeviceIpSamplingMetricStreamerImp::getNotificationState() {
Event::State state = Event::State::STATE_INITIAL;
for (auto &streamer : subDeviceStreamers) {
state = streamer->getNotificationState();
if (state == Event::State::STATE_SIGNALED) {
break;
}
}
return state;
}
} // namespace L0
|