1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
/*
* Copyright (C) 2020-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/sysman/linux/os_sysman_imp.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/helpers/sleep.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/os_interface/device_factory.h"
#include "shared/source/os_interface/linux/file_descriptor.h"
#include "shared/source/os_interface/linux/system_info.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/core/source/driver/driver_handle_imp.h"
#include "level_zero/tools/source/sysman/firmware_util/firmware_util.h"
#include "level_zero/tools/source/sysman/linux/fs_access.h"
#include "level_zero/tools/source/sysman/linux/pmt/pmt.h"
#include "level_zero/tools/source/sysman/linux/pmu/pmu_imp.h"
#include "level_zero/tools/source/sysman/pci/linux/os_pci_imp.h"
#include "level_zero/tools/source/sysman/pci/pci_utils.h"
#include "level_zero/tools/source/sysman/sysman_imp.h"
namespace L0 {
const std::string LinuxSysmanImp::deviceDir("device");
ze_result_t LinuxSysmanImp::init() {
pFsAccess = FsAccess::create();
DEBUG_BREAK_IF(nullptr == pFsAccess);
if (pProcfsAccess == nullptr) {
pProcfsAccess = ProcfsAccess::create();
}
DEBUG_BREAK_IF(nullptr == pProcfsAccess);
auto result = initLocalDeviceAndDrmHandles();
if (ZE_RESULT_SUCCESS != result) {
return result;
}
int myDeviceFd = pDrm->getFileDescriptor();
std::string myDeviceName;
result = pProcfsAccess->getFileName(pProcfsAccess->myProcessId(), myDeviceFd, myDeviceName);
if (ZE_RESULT_SUCCESS != result) {
return result;
}
std::string prelimVersion{};
pDrm->getPrelimVersion(prelimVersion);
if (prelimVersion != "") {
isUsingPrelimEnabledKmd = true;
}
if (pSysfsAccess == nullptr) {
pSysfsAccess = SysfsAccess::create(myDeviceName);
}
DEBUG_BREAK_IF(nullptr == pSysfsAccess);
pPmuInterface = PmuInterface::create(this);
DEBUG_BREAK_IF(nullptr == pPmuInterface);
getMemoryType();
return createPmtHandles();
}
void LinuxSysmanImp::createFwUtilInterface() {
ze_pci_ext_properties_t pPciProperties;
if (ZE_RESULT_SUCCESS != pDevice->getPciProperties(&pPciProperties)) {
return;
}
uint16_t domain = static_cast<uint16_t>(pPciProperties.address.domain);
uint8_t bus = static_cast<uint8_t>(pPciProperties.address.bus);
uint8_t device = static_cast<uint8_t>(pPciProperties.address.device);
uint8_t function = static_cast<uint8_t>(pPciProperties.address.function);
pFwUtilInterface = FirmwareUtil::create(domain, bus, device, function);
}
ze_result_t LinuxSysmanImp::createPmtHandles() {
std::string gtDevicePCIPath;
auto result = pSysfsAccess->getRealPath("device", gtDevicePCIPath);
if (ZE_RESULT_SUCCESS != result) {
return result;
}
auto gpuUpstreamPortPath = getPciCardBusDirectoryPath(gtDevicePCIPath);
PlatformMonitoringTech::create(pParentSysmanDeviceImp->deviceHandles, pFsAccess, gpuUpstreamPortPath, mapOfSubDeviceIdToPmtObject);
return result;
}
PmuInterface *LinuxSysmanImp::getPmuInterface() {
return pPmuInterface;
}
FirmwareUtil *LinuxSysmanImp::getFwUtilInterface() {
const std::lock_guard<std::mutex> lock(this->fwLock);
if (pFwUtilInterface == nullptr) {
createFwUtilInterface();
}
return pFwUtilInterface;
}
FsAccess &LinuxSysmanImp::getFsAccess() {
UNRECOVERABLE_IF(nullptr == pFsAccess);
return *pFsAccess;
}
ProcfsAccess &LinuxSysmanImp::getProcfsAccess() {
UNRECOVERABLE_IF(nullptr == pProcfsAccess);
return *pProcfsAccess;
}
SysfsAccess &LinuxSysmanImp::getSysfsAccess() {
UNRECOVERABLE_IF(nullptr == pSysfsAccess);
return *pSysfsAccess;
}
ze_result_t LinuxSysmanImp::initLocalDeviceAndDrmHandles() {
pDevice = Device::fromHandle(pParentSysmanDeviceImp->hCoreDevice);
DEBUG_BREAK_IF(nullptr == pDevice);
NEO::OSInterface &osInterface = *pDevice->getOsInterface();
if (osInterface.getDriverModel()->getDriverModelType() != NEO::DriverModelType::drm) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
pDrm = osInterface.getDriverModel()->as<NEO::Drm>();
return ZE_RESULT_SUCCESS;
}
NEO::Drm &LinuxSysmanImp::getDrm() {
if (pDrm == nullptr) {
initLocalDeviceAndDrmHandles();
}
UNRECOVERABLE_IF(nullptr == pDrm);
return *pDrm;
}
void LinuxSysmanImp::releaseLocalDrmHandle() {
pDrm = nullptr;
}
Device *LinuxSysmanImp::getDeviceHandle() {
return pDevice;
}
SysmanDeviceImp *LinuxSysmanImp::getSysmanDeviceImp() {
return pParentSysmanDeviceImp;
}
ze_bool_t LinuxSysmanImp::isDriverModelSupported() {
auto drmVersion = getDrm().getDrmVersion(getDrm().getFileDescriptor());
if ("i915" == drmVersion) {
return true;
} else {
return false;
}
}
static std::string modifyPathOnLevel(std::string realPciPath, uint8_t nLevel) {
size_t loc;
// we need to change the absolute path to 'nLevel' levels up
while (nLevel > 0) {
loc = realPciPath.find_last_of('/');
if (loc == std::string::npos) {
break;
}
realPciPath = realPciPath.substr(0, loc);
nLevel--;
}
return realPciPath;
}
std::string LinuxSysmanImp::getPciRootPortDirectoryPath(std::string realPciPath) {
// the rootport is always the first pci folder after the pcie slot.
// +-[0000:89]-+-00.0
// | +-00.1
// | +-00.2
// | +-00.4
// | \-02.0-[8a-8e]----00.0-[8b-8e]--+-01.0-[8c-8d]----00.0
// | \-02.0-[8e]--+-00.0
// | +-00.1
// | \-00.2
// /sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/0000:8b:01.0/0000:8c:00.0
// '/sys/devices/pci0000:89/0000:89:02.0/' will always be the same distance.
// from 0000:8c:00.0 i.e the 3rd PCI address from the gt tile
return modifyPathOnLevel(realPciPath, 3);
}
std::string LinuxSysmanImp::getPciCardBusDirectoryPath(std::string realPciPath) {
// the cardbus is always the second pci folder after the pcie slot.
// +-[0000:89]-+-00.0
// | +-00.1
// | +-00.2
// | +-00.4
// | \-02.0-[8a-8e]----00.0-[8b-8e]--+-01.0-[8c-8d]----00.0
// | \-02.0-[8e]--+-00.0
// | +-00.1
// | \-00.2
// /sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/0000:8b:01.0/0000:8c:00.0
// '/sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0/' will always be the same distance.
// from 0000:8c:00.0 i.e the 2nd PCI address from the gt tile.
return modifyPathOnLevel(realPciPath, 2);
}
PlatformMonitoringTech *LinuxSysmanImp::getPlatformMonitoringTechAccess(uint32_t subDeviceId) {
auto subDeviceIdToPmtEntry = mapOfSubDeviceIdToPmtObject.find(subDeviceId);
if (subDeviceIdToPmtEntry == mapOfSubDeviceIdToPmtObject.end()) {
return nullptr;
}
return subDeviceIdToPmtEntry->second;
}
LinuxSysmanImp::LinuxSysmanImp(SysmanDeviceImp *pParentSysmanDeviceImp) {
this->pParentSysmanDeviceImp = pParentSysmanDeviceImp;
}
void LinuxSysmanImp::releasePmtObject() {
for (auto &subDeviceIdToPmtEntry : mapOfSubDeviceIdToPmtObject) {
if (subDeviceIdToPmtEntry.second) {
delete subDeviceIdToPmtEntry.second;
subDeviceIdToPmtEntry.second = nullptr;
}
}
mapOfSubDeviceIdToPmtObject.clear();
}
void LinuxSysmanImp::releaseFwUtilInterface() {
if (nullptr != pFwUtilInterface) {
delete pFwUtilInterface;
pFwUtilInterface = nullptr;
}
}
LinuxSysmanImp::~LinuxSysmanImp() {
if (nullptr != pSysfsAccess) {
delete pSysfsAccess;
pSysfsAccess = nullptr;
}
if (nullptr != pProcfsAccess) {
delete pProcfsAccess;
pProcfsAccess = nullptr;
}
if (nullptr != pFsAccess) {
delete pFsAccess;
pFsAccess = nullptr;
}
if (nullptr != pPmuInterface) {
delete pPmuInterface;
pPmuInterface = nullptr;
}
releaseFwUtilInterface();
releasePmtObject();
}
void LinuxSysmanImp::getPidFdsForOpenDevice(ProcfsAccess *pProcfsAccess, SysfsAccess *pSysfsAccess, const ::pid_t pid, std::vector<int> &deviceFds) {
// Return a list of all the file descriptors of this process that point to this device
std::vector<int> fds;
deviceFds.clear();
if (ZE_RESULT_SUCCESS != pProcfsAccess->getFileDescriptors(pid, fds)) {
// Process exited. Not an error. Just ignore.
return;
}
for (auto &&fd : fds) {
std::string file;
if (pProcfsAccess->getFileName(pid, fd, file) != ZE_RESULT_SUCCESS) {
// Process closed this file. Not an error. Just ignore.
continue;
}
if (pSysfsAccess->isMyDeviceFile(file)) {
deviceFds.push_back(fd);
}
}
}
ze_result_t LinuxSysmanImp::gpuProcessCleanup(ze_bool_t force) {
::pid_t myPid = pProcfsAccess->myProcessId();
std::vector<::pid_t> processes;
std::vector<int> myPidFds;
ze_result_t result = pProcfsAccess->listProcesses(processes);
if (ZE_RESULT_SUCCESS != result) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr,
"gpuProcessCleanup: listProcesses() failed with error code: %ld\n", result);
return result;
}
for (auto &&pid : processes) {
std::vector<int> fds;
getPidFdsForOpenDevice(pProcfsAccess, pSysfsAccess, pid, fds);
if (pid == myPid) {
// L0 is expected to have this file open.
// Keep list of fds. Close before unbind.
myPidFds = fds;
continue;
}
if (!fds.empty()) {
if (force) {
pProcfsAccess->kill(pid);
} else {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Device in use by another process, returning error:0x%x \n", __FUNCTION__, ZE_RESULT_ERROR_HANDLE_OBJECT_IN_USE);
return ZE_RESULT_ERROR_HANDLE_OBJECT_IN_USE;
}
}
}
for (auto &&fd : myPidFds) {
// Close open filedescriptors to the device
// before unbinding device.
// From this point forward, there is no
// graceful way to fail the reset call.
// All future ze calls by this process for this
// device will fail.
NEO::SysCalls::close(fd);
}
return ZE_RESULT_SUCCESS;
}
void LinuxSysmanImp::releaseSysmanDeviceResources() {
getSysmanDeviceImp()->pEngineHandleContext->releaseEngines();
getSysmanDeviceImp()->pRasHandleContext->releaseRasHandles();
getSysmanDeviceImp()->pMemoryHandleContext->releaseMemoryHandles();
getSysmanDeviceImp()->pTempHandleContext->releaseTemperatureHandles();
getSysmanDeviceImp()->pPowerHandleContext->releasePowerHandles();
if (!diagnosticsReset) {
getSysmanDeviceImp()->pDiagnosticsHandleContext->releaseDiagnosticsHandles();
}
getSysmanDeviceImp()->pFirmwareHandleContext->releaseFwHandles();
releasePmtObject();
if (!diagnosticsReset) {
releaseFwUtilInterface();
}
releaseLocalDrmHandle();
}
void LinuxSysmanImp::releaseDeviceResources() {
auto devicePtr = static_cast<DeviceImp *>(pDevice);
executionEnvironment = devicePtr->getNEODevice()->getExecutionEnvironment();
devicePciBdf = devicePtr->getNEODevice()->getRootDeviceEnvironment().osInterface->getDriverModel()->as<NEO::Drm>()->getPciPath();
rootDeviceIndex = devicePtr->getNEODevice()->getRootDeviceIndex();
pSysfsAccess->getRealPath(deviceDir, gtDevicePath);
releaseSysmanDeviceResources();
auto device = static_cast<DeviceImp *>(getDeviceHandle());
executionEnvironment = device->getNEODevice()->getExecutionEnvironment();
device->releaseResources();
executionEnvironment->memoryManager->releaseDeviceSpecificMemResources(rootDeviceIndex);
executionEnvironment->releaseRootDeviceEnvironmentResources(executionEnvironment->rootDeviceEnvironments[rootDeviceIndex].get());
executionEnvironment->rootDeviceEnvironments[rootDeviceIndex].reset();
executionEnvironment->memoryManager->releaseDeviceSpecificGfxPartition(rootDeviceIndex);
}
void LinuxSysmanImp::reInitSysmanDeviceResources() {
getSysmanDeviceImp()->updateSubDeviceHandlesLocally();
createPmtHandles();
if (!diagnosticsReset) {
createFwUtilInterface();
}
if (getSysmanDeviceImp()->pRasHandleContext->isRasInitDone()) {
getSysmanDeviceImp()->pRasHandleContext->init(getSysmanDeviceImp()->deviceHandles);
}
if (getSysmanDeviceImp()->pEngineHandleContext->isEngineInitDone()) {
getSysmanDeviceImp()->pEngineHandleContext->init(getSysmanDeviceImp()->deviceHandles);
}
if (!diagnosticsReset) {
if (getSysmanDeviceImp()->pDiagnosticsHandleContext->isDiagnosticsInitDone()) {
getSysmanDeviceImp()->pDiagnosticsHandleContext->init();
}
}
this->diagnosticsReset = false;
isMemoryDiagnostics = false;
if (getSysmanDeviceImp()->pFirmwareHandleContext->isFirmwareInitDone()) {
getSysmanDeviceImp()->pFirmwareHandleContext->init();
}
if (getSysmanDeviceImp()->pMemoryHandleContext->isMemoryInitDone()) {
getSysmanDeviceImp()->pMemoryHandleContext->init(getSysmanDeviceImp()->deviceHandles);
}
if (getSysmanDeviceImp()->pTempHandleContext->isTempInitDone()) {
getSysmanDeviceImp()->pTempHandleContext->init(getSysmanDeviceImp()->deviceHandles);
}
if (getSysmanDeviceImp()->pPowerHandleContext->isPowerInitDone()) {
getSysmanDeviceImp()->pPowerHandleContext->init(getSysmanDeviceImp()->deviceHandles, getCoreDeviceHandle());
}
}
ze_result_t LinuxSysmanImp::initDevice() {
ze_result_t result = ZE_RESULT_SUCCESS;
auto device = static_cast<DeviceImp *>(getDeviceHandle());
auto neoDevice = NEO::DeviceFactory::createDevice(*executionEnvironment, devicePciBdf, rootDeviceIndex);
if (neoDevice == nullptr) {
return ZE_RESULT_ERROR_DEVICE_LOST;
}
static_cast<L0::DriverHandleImp *>(device->getDriverHandle())->updateRootDeviceBitFields(neoDevice);
Device::deviceReinit(device->getDriverHandle(), device, neoDevice, &result);
reInitSysmanDeviceResources();
return ZE_RESULT_SUCCESS;
}
// function to clear Hot-Plug interrupt enable bit in the slot control register
// this is required to prevent interrupts from being raised in the warm reset path.
void LinuxSysmanImp::clearHPIE(int fd) {
uint8_t value = 0x00;
uint8_t resetValue = 0x00;
uint8_t offset = 0x0;
this->preadFunction(fd, &offset, 0x01, PCI_CAPABILITY_LIST);
// Bottom two bits of capability pointer register are reserved and
// software should mask these bits to get pointer to capability list.
// PCI_EXP_SLTCTL - offset for slot control register.
offset = (offset & 0xfc) + PCI_EXP_SLTCTL;
this->preadFunction(fd, &value, 0x01, offset);
resetValue = value & (~PCI_EXP_SLTCTL_HPIE);
this->pwriteFunction(fd, &resetValue, 0x01, offset);
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds just to make sure the change is propagated.
}
// Function to adjust VF BAR size i.e Modify VF BAR Control register.
// size param is an encoded value described as follows:
// 0 - 1 MB (2^20 bytes)
// 1 - 2 MB (2^21 bytes)
// 2 - 4 MB (2^22 bytes)
// 3 - 8 MB (2^23 bytes)
// .
// .
// .
// b - 2 GB (2^31 bytes)
// 43 - 8 EB (2^63 bytes)
ze_result_t LinuxSysmanImp::resizeVfBar(uint8_t size) {
std::string pciConfigNode;
pciConfigNode = gtDevicePath + "/config";
auto fdConfig = NEO::FileDescriptor(pciConfigNode.c_str(), O_RDWR);
if (fdConfig < 0) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stdout,
"Config node open failed\n");
return ZE_RESULT_ERROR_UNKNOWN;
}
std::unique_ptr<uint8_t[]> configMemory = std::make_unique<uint8_t[]>(PCI_CFG_SPACE_EXP_SIZE);
memset(configMemory.get(), 0, PCI_CFG_SPACE_EXP_SIZE);
if (this->preadFunction(fdConfig, configMemory.get(), PCI_CFG_SPACE_EXP_SIZE, 0) < 0) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stdout,
"Read to get config space failed\n");
return ZE_RESULT_ERROR_UNKNOWN;
}
auto reBarCapPos = L0::LinuxPciImp::getRebarCapabilityPos(configMemory.get(), true);
if (!reBarCapPos) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stdout,
"VF BAR capability not found\n");
return ZE_RESULT_ERROR_UNKNOWN;
}
auto barSizePos = reBarCapPos + PCI_REBAR_CTRL + 1; // position of VF(0) BAR SIZE.
if (this->pwriteFunction(fdConfig, &size, 0x01, barSizePos) < 0) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stdout,
"Write to change VF bar size failed\n");
return ZE_RESULT_ERROR_UNKNOWN;
}
return ZE_RESULT_SUCCESS;
}
// A 'warm reset' is a conventional reset that is triggered across a PCI express link.
// A warm reset is triggered either when a link is forced into electrical idle or
// by sending TS1 and TS2 ordered sets with the hot reset bit set.
// Software can initiate a warm reset by setting and then clearing the secondary bus reset bit
// in the bridge control register in the PCI configuration space of the bridge port upstream of the device.
ze_result_t LinuxSysmanImp::osWarmReset() {
std::string rootPortPath;
rootPortPath = getPciRootPortDirectoryPath(gtDevicePath);
std::string configFilePath = rootPortPath + '/' + "config";
auto fd = NEO::FileDescriptor(configFilePath.c_str(), O_RDWR);
if (fd < 0) {
return ZE_RESULT_ERROR_UNKNOWN;
}
std::string cardBusPath = getPciCardBusDirectoryPath(gtDevicePath);
ze_result_t result = pFsAccess->write(cardBusPath + '/' + "remove", "1");
if (ZE_RESULT_SUCCESS != result) {
return result;
}
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds to make sure that the config spaces of all devices are saved correctly.
clearHPIE(fd);
uint8_t offset = PCI_BRIDGE_CONTROL; // Bridge control offset in Header of PCI config space
uint8_t value = 0x00;
uint8_t resetValue = 0x00;
this->preadFunction(fd, &value, 0x01, offset);
resetValue = value | PCI_BRIDGE_CTL_BUS_RESET;
this->pwriteFunction(fd, &resetValue, 0x01, offset);
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds just to make sure the change is propagated.
this->pwriteFunction(fd, &value, 0x01, offset);
if (isMemoryDiagnostics) {
int32_t delayDurationForPPR = 6; // Sleep for 6 minutes to allow PPR to complete.
if (NEO::debugManager.flags.DebugSetMemoryDiagnosticsDelay.get() != -1) {
delayDurationForPPR = NEO::debugManager.flags.DebugSetMemoryDiagnosticsDelay.get();
}
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stdout,
"Delay of %d mins introduced to allow HBM IFR to complete\n", delayDurationForPPR);
NEO::sleep(std::chrono::seconds(delayDurationForPPR * 60));
} else {
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10 seconds to make sure writing to bridge control offset is propagated.
}
result = pFsAccess->write(rootPortPath + '/' + "rescan", "1");
if (ZE_RESULT_SUCCESS != result) {
return result;
}
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds, allows the rescan to complete on all devices attached to the root port.
// PCIe port driver uses the BIOS allocated VF bars on bootup. A known bug exists in pcie port driver
// and is causing VF bar allocation failure in PCIe port driver after an SBR - https://bugzilla.kernel.org/show_bug.cgi?id=216795
// WA to adjust VF bar size to 2GB. The default VF bar size is 8GB and for 63VFs, 504GB need to be allocated which is failing on SBR.
// When configured VF bar size to 2GB, an allocation of 126GB is successful. This WA resizes VF0 bar to 2GB. Once pcie port driver
// issue is resolved, this WA may not be necessary. Description for 0xb is explained at function definition - resizeVfVar.
if (NEO::debugManager.flags.VfBarResourceAllocationWa.get()) {
if (ZE_RESULT_SUCCESS != (result = resizeVfBar(0xb))) {
return result;
}
result = pFsAccess->write(cardBusPath + '/' + "remove", "1");
if (ZE_RESULT_SUCCESS != result) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stdout,
"Card Bus remove after resizing VF bar failed\n");
return result;
}
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds to make sure that the config spaces of all devices are saved correctly.
result = pFsAccess->write(rootPortPath + '/' + "rescan", "1");
if (ZE_RESULT_SUCCESS != result) {
NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stdout,
"Rescanning root port failed after resizing VF bar failed\n");
return result;
}
NEO::sleep(std::chrono::seconds(10)); // Sleep for 10seconds, allows the rescan to complete on all devices attached to the root port.
}
return result;
}
std::string LinuxSysmanImp::getAddressFromPath(std::string &cardBusPath) {
size_t loc;
loc = cardBusPath.find_last_of('/'); // we get the pci address of the upstream port from card bus Path
auto uspAddress = cardBusPath.substr(loc + 1, std::string::npos);
loc = uspAddress.find_last_of('.'); // we remove the function number from the pci address
return uspAddress.substr(0, loc);
}
ze_result_t LinuxSysmanImp::osColdReset() {
const std::string slotPath("/sys/bus/pci/slots/"); // holds the directories matching to the number of slots in the PC
std::string cardBusPath; // will hold the PCIe Root port directory path (the address of the PCIe slot). // will hold the absolute real path (not symlink) to the selected Device
cardBusPath = getPciCardBusDirectoryPath(gtDevicePath); // e.g cardBusPath=/sys/devices/pci0000:89/0000:89:02.0/0000:8a:00.0
std::string uspAddress = getAddressFromPath(cardBusPath); // e.g upstreamPortAddress = 0000:8a:00
std::vector<std::string> dir;
ze_result_t result = pFsAccess->listDirectory(slotPath, dir); // get list of slot directories from /sys/bus/pci/slots/
if (ZE_RESULT_SUCCESS != result) {
return result;
}
for (auto &slot : dir) {
std::string slotAddress;
result = pFsAccess->read((slotPath + slot + "/address"), slotAddress); // extract slot address from the slot directory /sys/bus/pci/slots/<slot num>/address
if (ZE_RESULT_SUCCESS != result) {
return result;
}
if (slotAddress.compare(uspAddress) == 0) { // compare slot address to upstream port address
result = pFsAccess->write((slotPath + slot + "/power"), "0"); // turn off power
if (ZE_RESULT_SUCCESS != result) {
return result;
}
NEO::sleep(std::chrono::milliseconds(100)); // Sleep for 100 milliseconds just to make sure, 1 ms is defined as part of spec
result = pFsAccess->write((slotPath + slot + "/power"), "1"); // turn on power
if (ZE_RESULT_SUCCESS != result) {
return result;
}
return ZE_RESULT_SUCCESS;
}
}
return ZE_RESULT_ERROR_DEVICE_LOST; // in case the reset fails inform upper layers.
}
uint32_t LinuxSysmanImp::getMemoryType() {
if (isMemTypeRetrieved == false) {
auto pDrm = &getDrm();
if (pDrm->querySystemInfo()) {
auto memSystemInfo = pDrm->getSystemInfo();
if (memSystemInfo != nullptr) {
memType = memSystemInfo->getMemoryType();
isMemTypeRetrieved = true;
}
}
}
return memType;
}
OsSysman *OsSysman::create(SysmanDeviceImp *pParentSysmanDeviceImp) {
LinuxSysmanImp *pLinuxSysmanImp = new LinuxSysmanImp(pParentSysmanDeviceImp);
return static_cast<OsSysman *>(pLinuxSysmanImp);
}
std::vector<ze_device_handle_t> &LinuxSysmanImp::getDeviceHandles() {
return pParentSysmanDeviceImp->deviceHandles;
}
ze_device_handle_t LinuxSysmanImp::getCoreDeviceHandle() {
return pParentSysmanDeviceImp->hCoreDevice;
}
} // namespace L0
|