File: os_scheduler_imp.cpp

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (459 lines) | stat: -rw-r--r-- 21,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/*
 * Copyright (C) 2020-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "level_zero/tools/source/sysman/scheduler/linux/os_scheduler_imp.h"

#include "shared/source/debug_settings/debug_settings_manager.h"

#include "level_zero/tools/source/sysman/linux/fs_access.h"
#include "level_zero/tools/source/sysman/linux/os_sysman_imp.h"

namespace L0 {

const std::string LinuxSchedulerImp::preemptTimeoutMilliSecs("preempt_timeout_ms");
const std::string LinuxSchedulerImp::defaultPreemptTimeouttMilliSecs(".defaults/preempt_timeout_ms");
const std::string LinuxSchedulerImp::timesliceDurationMilliSecs("timeslice_duration_ms");
const std::string LinuxSchedulerImp::defaultTimesliceDurationMilliSecs(".defaults/timeslice_duration_ms");
const std::string LinuxSchedulerImp::heartbeatIntervalMilliSecs("heartbeat_interval_ms");
const std::string LinuxSchedulerImp::defaultHeartbeatIntervalMilliSecs(".defaults/heartbeat_interval_ms");
const std::string LinuxSchedulerImp::enableEuDebug("");
const std::string LinuxSchedulerImp::engineDir("engine");

static const std::multimap<zes_engine_type_flag_t, std::string> level0EngineTypeToSysfsEngineMap = {
    {ZES_ENGINE_TYPE_FLAG_RENDER, "rcs"},
    {ZES_ENGINE_TYPE_FLAG_DMA, "bcs"},
    {ZES_ENGINE_TYPE_FLAG_MEDIA, "vcs"},
    {ZES_ENGINE_TYPE_FLAG_OTHER, "vecs"}};

ze_result_t LinuxSchedulerImp::getProperties(zes_sched_properties_t &schedProperties) {
    schedProperties.onSubdevice = onSubdevice;
    schedProperties.subdeviceId = subdeviceId;
    schedProperties.canControl = canControlScheduler();
    schedProperties.engines = this->engineType;
    schedProperties.supportedModes = (1 << ZES_SCHED_MODE_TIMEOUT) | (1 << ZES_SCHED_MODE_TIMESLICE) | (1 << ZES_SCHED_MODE_EXCLUSIVE);
    return ZE_RESULT_SUCCESS;
}

ze_result_t LinuxSchedulerImp::getCurrentMode(zes_sched_mode_t *pMode) {
    uint64_t timeout = 0;
    uint64_t timeslice = 0;
    uint64_t heartbeat = 0;
    ze_result_t result = getPreemptTimeout(timeout, false);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to get preempt timeout and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    result = getTimesliceDuration(timeslice, false);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to get timeslice duration and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    result = getHeartbeatInterval(heartbeat, false);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to get heartbeat interval and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }

    if (timeslice > 0) {
        *pMode = ZES_SCHED_MODE_TIMESLICE;
    } else {
        if (timeout > 0) {
            *pMode = ZES_SCHED_MODE_TIMEOUT;
        } else {
            if (heartbeat == 0) {
                // If we are here, it means heartbeat = 0, timeout = 0, timeslice = 0.
                if (isComputeUnitDebugModeEnabled()) {
                    *pMode = ZES_SCHED_MODE_COMPUTE_UNIT_DEBUG;
                } else {
                    *pMode = ZES_SCHED_MODE_EXCLUSIVE;
                }
            } else {
                // If we are here it means heartbeat > 0, timeout = 0, timeslice = 0.
                // And we dont know what that mode is.
                *pMode = ZES_SCHED_MODE_FORCE_UINT32;
                result = ZE_RESULT_ERROR_UNKNOWN;
            }
        }
    }
    return result;
}

ze_result_t LinuxSchedulerImp::setExclusiveModeImp() {
    uint64_t timeslice = 0, timeout = 0, heartbeat = 0;
    ze_result_t result = setPreemptTimeout(timeout);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to set preempt timeout and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    result = setTimesliceDuration(timeslice);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to set timeslice duration and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    result = setHeartbeatInterval(heartbeat);
    return result;
}

ze_result_t LinuxSchedulerImp::setExclusiveMode(ze_bool_t *pNeedReload) {
    *pNeedReload = false;

    zes_sched_mode_t currMode;
    ze_result_t result = getCurrentMode(&currMode);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to get current mode and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }

    if (currMode == ZES_SCHED_MODE_COMPUTE_UNIT_DEBUG) {
        // Unset this mode
        result = disableComputeUnitDebugMode(pNeedReload);
        if (result != ZE_RESULT_SUCCESS) {
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to disable COMPUTE_UNIT_DEBUG mode and returning error:0x%x \n", __FUNCTION__, result);
            return result;
        }
    }

    return setExclusiveModeImp();
}

ze_result_t LinuxSchedulerImp::getTimeoutModeProperties(ze_bool_t getDefaults, zes_sched_timeout_properties_t *pConfig) {
    uint64_t heartbeat = 0;
    ze_result_t result = getHeartbeatInterval(heartbeat, getDefaults);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to get heart beat interval and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    pConfig->watchdogTimeout = heartbeat;

    return result;
}

ze_result_t LinuxSchedulerImp::getTimesliceModeProperties(ze_bool_t getDefaults, zes_sched_timeslice_properties_t *pConfig) {
    uint64_t timeout = 0, timeslice = 0;
    ze_result_t result = getPreemptTimeout(timeout, getDefaults);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to get preempt timeout and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    result = getTimesliceDuration(timeslice, getDefaults);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to get timeslice duration and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    pConfig->interval = timeslice;
    pConfig->yieldTimeout = timeout;
    return result;
}

ze_result_t LinuxSchedulerImp::setTimeoutMode(zes_sched_timeout_properties_t *pProperties, ze_bool_t *pNeedReload) {
    *pNeedReload = false;
    zes_sched_mode_t currMode;
    ze_result_t result = getCurrentMode(&currMode);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to get current mode and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }

    if (pProperties->watchdogTimeout < minTimeoutModeHeartbeat) {
        // watchdogTimeout(in usec) less than 5000 would be computed to
        // 0 milli seconds preempt timeout, and then after returning from
        // this method, we would end up in EXCLUSIVE mode
        return ZE_RESULT_ERROR_INVALID_ARGUMENT;
    }

    if (currMode == ZES_SCHED_MODE_COMPUTE_UNIT_DEBUG) {
        // Unset this mode
        result = disableComputeUnitDebugMode(pNeedReload);
        if (result != ZE_RESULT_SUCCESS) {
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to disable COMPUTE_UNIT_DEBUG mode and returning error:0x%x \n", __FUNCTION__, result);
            return result;
        }
    }

    result = setHeartbeatInterval(pProperties->watchdogTimeout);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to set heartbeat interval and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }

    uint64_t timeout = (pProperties->watchdogTimeout) / 5;
    result = setPreemptTimeout(timeout);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to set preempt timeout and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }

    uint64_t timeslice = 0;
    result = setTimesliceDuration(timeslice);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to set timeslice duration and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    return result;
}

ze_result_t LinuxSchedulerImp::setTimesliceMode(zes_sched_timeslice_properties_t *pProperties, ze_bool_t *pNeedReload) {
    if (pProperties->interval < minTimeoutInMicroSeconds) {
        // interval(in usec) less than 1000 would be computed to
        // 0 milli seconds interval.
        return ZE_RESULT_ERROR_INVALID_ARGUMENT;
    }
    *pNeedReload = false;

    zes_sched_mode_t currMode;
    ze_result_t result = getCurrentMode(&currMode);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to get current mode and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }

    if (currMode == ZES_SCHED_MODE_COMPUTE_UNIT_DEBUG) {
        // Unset this mode
        result = disableComputeUnitDebugMode(pNeedReload);
        if (result != ZE_RESULT_SUCCESS) {
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to disable COMPUTE_UNIT_DEBUG mode and returning error:0x%x \n", __FUNCTION__, result);
            return result;
        }
    }

    result = setPreemptTimeout(pProperties->yieldTimeout);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to set preempt timeout and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    result = setTimesliceDuration(pProperties->interval);
    if (result != ZE_RESULT_SUCCESS) {
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to set timeslice duration and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    uint64_t heartbeat = 2500 * (pProperties->interval);
    return setHeartbeatInterval(heartbeat);
}

ze_result_t LinuxSchedulerImp::getPreemptTimeout(uint64_t &timeout, ze_bool_t getDefault) {
    ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
    uint32_t i = 0;
    std::vector<uint64_t> timeoutVec = {};
    std::string path = "";
    timeoutVec.resize(listOfEngines.size());
    for (const auto &engineName : listOfEngines) {
        if (getDefault) {
            path = engineDir + "/" + engineName + "/" + defaultPreemptTimeouttMilliSecs;
            result = pSysfsAccess->read(path, timeout);
        } else {
            path = engineDir + "/" + engineName + "/" + preemptTimeoutMilliSecs;
            result = pSysfsAccess->read(path, timeout);
        }
        if (result == ZE_RESULT_SUCCESS) {
            timeout = timeout * milliSecsToMicroSecs;
            timeoutVec[i] = timeout;
            i++;
        } else {
            if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
                result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
            }
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to read preempt timeout from %s and returning error:0x%x \n", __FUNCTION__, path.c_str(), result);
            return result;
        }
    }
    // check if all engines of the same type have the same scheduling param values
    if (std::adjacent_find(timeoutVec.begin(), timeoutVec.end(), std::not_equal_to<>()) == timeoutVec.end()) {
        timeout = timeoutVec[0];
        return result;
    } else {
        return ZE_RESULT_ERROR_UNKNOWN;
    }
}

ze_result_t LinuxSchedulerImp::getTimesliceDuration(uint64_t &timeslice, ze_bool_t getDefault) {
    ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
    uint32_t i = 0;
    std::vector<uint64_t> timesliceVec = {};
    std::string path = "";
    timesliceVec.resize(listOfEngines.size());
    for (const auto &engineName : listOfEngines) {
        if (getDefault) {
            path = engineDir + "/" + engineName + "/" + defaultTimesliceDurationMilliSecs;
            result = pSysfsAccess->read(path, timeslice);
        } else {
            path = engineDir + "/" + engineName + "/" + timesliceDurationMilliSecs;
            result = pSysfsAccess->read(path, timeslice);
        }
        if (result == ZE_RESULT_SUCCESS) {
            timeslice = timeslice * milliSecsToMicroSecs;
            timesliceVec[i] = timeslice;
            i++;
        } else {
            if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
                result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
            }
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to read timeslice duration from %s and returning error:0x%x \n", __FUNCTION__, path.c_str(), result);
            return result;
        }
    }
    // check if all engines of the same type have the same scheduling param values
    if (std::adjacent_find(timesliceVec.begin(), timesliceVec.end(), std::not_equal_to<>()) == timesliceVec.end()) {
        timeslice = timesliceVec[0];
        return result;
    } else {
        return ZE_RESULT_ERROR_UNKNOWN;
    }
}

ze_result_t LinuxSchedulerImp::getHeartbeatInterval(uint64_t &heartbeat, ze_bool_t getDefault) {
    ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
    uint32_t i = 0;
    std::vector<uint64_t> heartbeatVec = {};
    std::string path = "";
    heartbeatVec.resize(listOfEngines.size());
    for (const auto &engineName : listOfEngines) {
        if (getDefault) {
            path = engineDir + "/" + engineName + "/" + defaultHeartbeatIntervalMilliSecs;
            result = pSysfsAccess->read(path, heartbeat);
        } else {
            path = engineDir + "/" + engineName + "/" + heartbeatIntervalMilliSecs;
            result = pSysfsAccess->read(path, heartbeat);
        }
        if (result == ZE_RESULT_SUCCESS) {
            heartbeat = heartbeat * milliSecsToMicroSecs;
            heartbeatVec[i] = heartbeat;
            i++;
        } else {
            if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
                result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
            }
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to read heartbeat interval from %s and returning error:0x%x \n", __FUNCTION__, path.c_str(), result);
            return result;
        }
    }
    // check if all engines of the same type have the same scheduling param values
    if (std::adjacent_find(heartbeatVec.begin(), heartbeatVec.end(), std::not_equal_to<>()) == heartbeatVec.end()) {
        heartbeat = heartbeatVec[0];
        return result;
    } else {
        return ZE_RESULT_ERROR_UNKNOWN;
    }
}

ze_result_t LinuxSchedulerImp::setPreemptTimeout(uint64_t timeout) {
    timeout = timeout / milliSecsToMicroSecs;
    ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
    for (const auto &engineName : listOfEngines) {
        result = pSysfsAccess->write(engineDir + "/" + engineName + "/" + preemptTimeoutMilliSecs, timeout);
        if (result != ZE_RESULT_SUCCESS) {
            if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
                result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
            }
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to write Preempt timeout into engineDir/%s/preemptTimeoutMilliSecs and returning error:0x%x \n", __FUNCTION__, engineName.c_str(), result);
            return result;
        }
    }
    return result;
}

ze_result_t LinuxSchedulerImp::setTimesliceDuration(uint64_t timeslice) {
    timeslice = timeslice / milliSecsToMicroSecs;
    ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
    for (const auto &engineName : listOfEngines) {
        result = pSysfsAccess->write(engineDir + "/" + engineName + "/" + timesliceDurationMilliSecs, timeslice);
        if (result != ZE_RESULT_SUCCESS) {
            if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
                result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
            }
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to write Timeslice duration into engineDir/%s/timesliceDurationMilliSecs and returning error:0x%x \n", __FUNCTION__, engineName.c_str(), result);
            return result;
        }
    }
    return result;
}

ze_result_t LinuxSchedulerImp::setHeartbeatInterval(uint64_t heartbeat) {
    heartbeat = heartbeat / milliSecsToMicroSecs;
    ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
    for (const auto &engineName : listOfEngines) {
        result = pSysfsAccess->write(engineDir + "/" + engineName + "/" + heartbeatIntervalMilliSecs, heartbeat);
        if (result != ZE_RESULT_SUCCESS) {
            if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
                result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
            }
            NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to write Heartbeat interval into engineDir/%s/heartbeatIntervalMilliSecs and returning error:0x%x \n", __FUNCTION__, engineName.c_str(), result);
            return result;
        }
    }
    return result;
}

ze_bool_t LinuxSchedulerImp::canControlScheduler() {
    return 1;
}

ze_result_t LinuxSchedulerImp::setComputeUnitDebugMode(ze_bool_t *pNeedReload) {
    *pNeedReload = false;
    return pSysfsAccess->write(enableEuDebug, 1);
}

bool LinuxSchedulerImp::isComputeUnitDebugModeEnabled() {
    return false;
}

ze_result_t LinuxSchedulerImp::disableComputeUnitDebugMode(ze_bool_t *pNeedReload) {
    *pNeedReload = false;
    return pSysfsAccess->write(enableEuDebug, 0);
}

static ze_result_t getNumEngineTypeAndInstancesForDevice(std::map<zes_engine_type_flag_t, std::vector<std::string>> &mapOfEngines, SysfsAccess *pSysfsAccess) {
    std::vector<std::string> localListOfAllEngines = {};
    auto result = pSysfsAccess->scanDirEntries(LinuxSchedulerImp::engineDir, localListOfAllEngines);
    if (ZE_RESULT_SUCCESS != result) {
        if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
            result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
        }
        NEO::printDebugString(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Error@ %s(): Failed to scan directory entries to list all engines and returning error:0x%x \n", __FUNCTION__, result);
        return result;
    }
    for_each(localListOfAllEngines.begin(), localListOfAllEngines.end(),
             [&](std::string &mappedEngine) {
                 for (auto itr = level0EngineTypeToSysfsEngineMap.begin(); itr != level0EngineTypeToSysfsEngineMap.end(); itr++) {
                     char digits[] = "0123456789";
                     auto mappedEngineName = mappedEngine.substr(0, mappedEngine.find_first_of(digits, 0));
                     if (0 == mappedEngineName.compare(itr->second.c_str())) {
                         auto ret = mapOfEngines.find(itr->first);
                         if (ret != mapOfEngines.end()) {
                             ret->second.push_back(mappedEngine);
                         } else {
                             std::vector<std::string> engineVec = {};
                             engineVec.push_back(mappedEngine);
                             mapOfEngines.emplace(itr->first, engineVec);
                         }
                     }
                 }
             });
    return result;
}

ze_result_t OsScheduler::getNumEngineTypeAndInstances(
    std::map<zes_engine_type_flag_t, std::vector<std::string>> &mapOfEngines, OsSysman *pOsSysman, ze_device_handle_t subdeviceHandle) {
    LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
    auto pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
    return getNumEngineTypeAndInstancesForDevice(mapOfEngines, pSysfsAccess);
}

LinuxSchedulerImp::LinuxSchedulerImp(
    OsSysman *pOsSysman, zes_engine_type_flag_t type, std::vector<std::string> &listOfEngines, ze_bool_t isSubdevice,
    uint32_t subdeviceId) : engineType(type), onSubdevice(isSubdevice), subdeviceId(subdeviceId) {
    LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
    pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
    this->listOfEngines = listOfEngines;
}

std::unique_ptr<OsScheduler> OsScheduler::create(
    OsSysman *pOsSysman, zes_engine_type_flag_t type, std::vector<std::string> &listOfEngines, ze_bool_t isSubdevice, uint32_t subdeviceId) {
    std::unique_ptr<LinuxSchedulerImp> pLinuxSchedulerImp = std::make_unique<LinuxSchedulerImp>(pOsSysman, type, listOfEngines, isSubdevice, subdeviceId);
    return pLinuxSchedulerImp;
}

} // namespace L0