File: cpu_data_transfer_handler.cpp

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (226 lines) | stat: -rw-r--r-- 10,613 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
 * Copyright (C) 2018-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/device/device.h"
#include "shared/source/helpers/flush_stamp.h"
#include "shared/source/helpers/get_info.h"
#include "shared/source/utilities/cpuintrinsics.h"
#include "shared/source/utilities/logger.h"

#include "opencl/source/command_queue/command_queue.h"
#include "opencl/source/context/context.h"
#include "opencl/source/event/event.h"
#include "opencl/source/event/event_builder.h"
#include "opencl/source/helpers/mipmap.h"
#include "opencl/source/mem_obj/buffer.h"
#include "opencl/source/mem_obj/image.h"

namespace NEO {
void cachelineFlushMemory(char *ptr, size_t size) {
    const auto lastPtr = ptr + size;
    while (ptr < lastPtr) {
        CpuIntrinsics::clFlushOpt(ptr);
        ptr += MemoryConstants::cacheLineSize;
    }
    CpuIntrinsics::sfence();
}

void *CommandQueue::cpuDataTransferHandler(TransferProperties &transferProperties, EventsRequest &eventsRequest, cl_int &retVal) {
    MapInfo unmapInfo;
    Event *outEventObj = nullptr;
    void *returnPtr = nullptr;
    EventBuilder eventBuilder;
    bool eventCompleted = false;
    bool mapOperation = transferProperties.cmdType == CL_COMMAND_MAP_BUFFER || transferProperties.cmdType == CL_COMMAND_MAP_IMAGE;

    ErrorCodeHelper err(&retVal, CL_SUCCESS);

    if (mapOperation) {
        returnPtr = ptrOffset(transferProperties.memObj->getCpuAddressForMapping(),
                              transferProperties.memObj->calculateOffsetForMapping(transferProperties.offset) + transferProperties.mipPtrOffset);

        if (!transferProperties.memObj->addMappedPtr(returnPtr, transferProperties.memObj->calculateMappedPtrLength(transferProperties.size),
                                                     transferProperties.mapFlags, transferProperties.size, transferProperties.offset, transferProperties.mipLevel, nullptr)) {
            err.set(CL_INVALID_OPERATION);
            return nullptr;
        }
    } else if (transferProperties.cmdType == CL_COMMAND_UNMAP_MEM_OBJECT) {
        if (!transferProperties.memObj->findMappedPtr(transferProperties.ptr, unmapInfo)) {
            err.set(CL_INVALID_VALUE);
            return nullptr;
        }
        transferProperties.memObj->removeMappedPtr(unmapInfo.ptr);
    }
    auto blockQueue = false;
    TaskCountType taskLevel = 0u;
    TakeOwnershipWrapper<CommandQueue> queueOwnership(*this);
    auto commandStreamReceiverOwnership = getGpgpuCommandStreamReceiver().obtainUniqueOwnership();
    obtainTaskLevelAndBlockedStatus(taskLevel, eventsRequest.numEventsInWaitList, eventsRequest.eventWaitList, blockQueue, transferProperties.cmdType);
    bool isMarkerRequiredForEventSignal = !blockQueue &&
                                          !transferProperties.blocking &&
                                          !transferProperties.finishRequired &&
                                          !isOOQEnabled() &&
                                          eventsRequest.outEvent != nullptr;

    if (eventsRequest.outEvent && !isMarkerRequiredForEventSignal) {
        eventBuilder.create<Event>(this, transferProperties.cmdType, CompletionStamp::notReady, CompletionStamp::notReady);
        outEventObj = eventBuilder.getEvent();
        outEventObj->setQueueTimeStamp();
        outEventObj->setCPUProfilingPath(true);
        *eventsRequest.outEvent = outEventObj;
    }

    DBG_LOG(LogTaskCounts, __FUNCTION__, "taskLevel", taskLevel);

    if (outEventObj) {
        outEventObj->taskLevel = taskLevel;
    }

    if (blockQueue &&
        (transferProperties.cmdType == CL_COMMAND_MAP_BUFFER ||
         transferProperties.cmdType == CL_COMMAND_MAP_IMAGE ||
         transferProperties.cmdType == CL_COMMAND_UNMAP_MEM_OBJECT)) {
        // Pass size and offset only. Unblocked command will call transferData(size, offset) method
        enqueueBlockedMapUnmapOperation(eventsRequest.eventWaitList,
                                        static_cast<size_t>(eventsRequest.numEventsInWaitList),
                                        mapOperation ? MapOperationType::map : MapOperationType::unmap,
                                        transferProperties.memObj,
                                        mapOperation ? transferProperties.size : unmapInfo.size,
                                        mapOperation ? transferProperties.offset : unmapInfo.offset,
                                        mapOperation ? transferProperties.mapFlags == CL_MAP_READ : unmapInfo.readOnly,
                                        eventBuilder);
    }
    if (!isMarkerRequiredForEventSignal) {
        commandStreamReceiverOwnership.unlock();
        queueOwnership.unlock();
    }

    // read/write buffers are always blocking
    if (!blockQueue || transferProperties.blocking) {
        err.set(Event::waitForEvents(eventsRequest.numEventsInWaitList, eventsRequest.eventWaitList));
        bool modifySimulationFlags = false;

        if (outEventObj) {
            outEventObj->setSubmitTimeStamp();
        }
        // wait for the completeness of previous commands
        if (transferProperties.finishRequired) {
            auto ret = finish(true);

            if (ret != CL_SUCCESS) {
                err.set(ret);
                return nullptr;
            }
            eventCompleted = true;
        }

        if (outEventObj) {
            outEventObj->setStartTimeStamp();
        }

        UNRECOVERABLE_IF((transferProperties.memObj->isMemObjZeroCopy() == false) && isMipMapped(transferProperties.memObj));
        switch (transferProperties.cmdType) {
        case CL_COMMAND_MAP_BUFFER:
            if (!transferProperties.memObj->isMemObjZeroCopy()) {
                if (transferProperties.mapFlags != CL_MAP_WRITE_INVALIDATE_REGION) {
                    transferProperties.memObj->transferDataToHostPtr(transferProperties.size, transferProperties.offset);
                }
                eventCompleted = true;
            } else if (debugManager.flags.AllowZeroCopyWithoutCoherency.get() == 1) {
                cachelineFlushMemory(static_cast<char *>(transferProperties.getCpuPtrForReadWrite()), transferProperties.size[0]);
            }
            break;
        case CL_COMMAND_MAP_IMAGE:
            if (!transferProperties.memObj->isMemObjZeroCopy()) {
                if (transferProperties.mapFlags != CL_MAP_WRITE_INVALIDATE_REGION) {
                    transferProperties.memObj->transferDataToHostPtr(transferProperties.size, transferProperties.offset);
                }
                eventCompleted = true;
            }
            break;
        case CL_COMMAND_UNMAP_MEM_OBJECT:
            if (!transferProperties.memObj->isMemObjZeroCopy()) {
                if (!unmapInfo.readOnly) {
                    transferProperties.memObj->transferDataFromHostPtr(unmapInfo.size, unmapInfo.offset);
                }
                eventCompleted = true;
            } else if (debugManager.flags.AllowZeroCopyWithoutCoherency.get() == 1) {
                cachelineFlushMemory(static_cast<char *>(transferProperties.getCpuPtrForReadWrite()), transferProperties.memObj->getSize());
            }
            if (!unmapInfo.readOnly) {
                modifySimulationFlags = true;
            }
            break;
        case CL_COMMAND_READ_BUFFER:
            memcpy_s(transferProperties.ptr, transferProperties.size[0], transferProperties.getCpuPtrForReadWrite(), transferProperties.size[0]);
            eventCompleted = true;
            break;
        case CL_COMMAND_WRITE_BUFFER:
            memcpy_s(transferProperties.getCpuPtrForReadWrite(), transferProperties.size[0], transferProperties.ptr, transferProperties.size[0]);
            eventCompleted = true;
            modifySimulationFlags = true;
            break;
        case CL_COMMAND_MARKER:
            break;
        default:
            err.set(CL_INVALID_OPERATION);
        }

        if (outEventObj) {
            outEventObj->setEndTimeStamp();
            outEventObj->updateTaskCount(this->taskCount, outEventObj->peekBcsTaskCountFromCommandQueue());
            outEventObj->flushStamp->replaceStampObject(this->flushStamp->getStampReference());
            if (eventCompleted) {
                outEventObj->setStatus(CL_COMPLETE);
            } else {
                outEventObj->updateExecutionStatus();
            }
        } else if (isMarkerRequiredForEventSignal) {
            enqueueMarkerWithWaitList(0, nullptr, eventsRequest.outEvent);
            commandStreamReceiverOwnership.unlock();
            queueOwnership.unlock();
            outEventObj = castToObject<Event>(*eventsRequest.outEvent);
            outEventObj->setCmdType(transferProperties.cmdType);
        }
        if (modifySimulationFlags) {
            auto graphicsAllocation = transferProperties.memObj->getGraphicsAllocation(getDevice().getRootDeviceIndex());
            graphicsAllocation->setAubWritable(true, GraphicsAllocation::defaultBank);
            graphicsAllocation->setTbxWritable(true, GraphicsAllocation::defaultBank);
        }
    }

    if (context->isProvidingPerformanceHints()) {
        providePerformanceHint(transferProperties);
    }

    return returnPtr; // only map returns pointer
}

void CommandQueue::providePerformanceHint(TransferProperties &transferProperties) {
    switch (transferProperties.cmdType) {
    case CL_COMMAND_MAP_BUFFER:
    case CL_COMMAND_MAP_IMAGE:
        context->providePerformanceHintForMemoryTransfer(transferProperties.cmdType, !transferProperties.memObj->isMemObjZeroCopy(),
                                                         static_cast<cl_mem>(transferProperties.memObj));
        break;
    case CL_COMMAND_UNMAP_MEM_OBJECT:
        if (!transferProperties.memObj->isMemObjZeroCopy()) {
            context->providePerformanceHintForMemoryTransfer(transferProperties.cmdType, true,
                                                             transferProperties.ptr, static_cast<cl_mem>(transferProperties.memObj));
            break;
        }
        context->providePerformanceHintForMemoryTransfer(transferProperties.cmdType, false, transferProperties.ptr);
        break;
    case CL_COMMAND_READ_BUFFER:
    case CL_COMMAND_WRITE_BUFFER:
        context->providePerformanceHintForMemoryTransfer(transferProperties.cmdType, true,
                                                         static_cast<cl_mem>(transferProperties.memObj), transferProperties.ptr);
        break;
    }
}
} // namespace NEO