File: enqueue_read_buffer.h

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (143 lines) | stat: -rw-r--r-- 5,851 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*
 * Copyright (C) 2018-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#pragma once
#include "shared/source/built_ins/built_ins.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/helpers/cache_policy.h"
#include "shared/source/helpers/engine_node_helper.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "shared/source/os_interface/os_context.h"

#include "opencl/source/command_queue/command_queue_hw.h"
#include "opencl/source/command_queue/enqueue_common.h"
#include "opencl/source/helpers/hardware_commands_helper.h"
#include "opencl/source/mem_obj/buffer.h"
#include "opencl/source/memory_manager/mem_obj_surface.h"

#include <new>

namespace NEO {

template <typename GfxFamily>
cl_int CommandQueueHw<GfxFamily>::enqueueReadBuffer(
    Buffer *buffer,
    cl_bool blockingRead,
    size_t offset,
    size_t size,
    void *ptr,
    GraphicsAllocation *mapAllocation,
    cl_uint numEventsInWaitList,
    const cl_event *eventWaitList,
    cl_event *event) {
    const cl_command_type cmdType = CL_COMMAND_READ_BUFFER;

    CsrSelectionArgs csrSelectionArgs{cmdType, buffer, {}, device->getRootDeviceIndex(), &size};
    CommandStreamReceiver &csr = selectCsrForBuiltinOperation(csrSelectionArgs);
    return enqueueReadBufferImpl(buffer, blockingRead, offset, size, ptr, mapAllocation, numEventsInWaitList, eventWaitList, event, csr);
}

template <typename GfxFamily>
cl_int CommandQueueHw<GfxFamily>::enqueueReadBufferImpl(
    Buffer *buffer,
    cl_bool blockingRead,
    size_t offset,
    size_t size,
    void *ptr,
    GraphicsAllocation *mapAllocation,
    cl_uint numEventsInWaitList,
    const cl_event *eventWaitList,
    cl_event *event, CommandStreamReceiver &csr) {

    const cl_command_type cmdType = CL_COMMAND_READ_BUFFER;

    CsrSelectionArgs csrSelectionArgs{cmdType, buffer, {}, device->getRootDeviceIndex(), &size};

    if (nullptr == mapAllocation) {
        notifyEnqueueReadBuffer(buffer, !!blockingRead, EngineHelpers::isBcs(csr.getOsContext().getEngineType()));
    }

    auto rootDeviceIndex = getDevice().getRootDeviceIndex();
    bool isMemTransferNeeded = buffer->isMemObjZeroCopy() ? buffer->checkIfMemoryTransferIsRequired(offset, 0, ptr, cmdType) : true;
    bool isCpuCopyAllowed = bufferCpuCopyAllowed(buffer, cmdType, blockingRead, size, ptr,
                                                 numEventsInWaitList, eventWaitList);
    InternalMemoryType memoryType = InternalMemoryType::notSpecified;

    if (!mapAllocation) {
        cl_int retVal = getContext().tryGetExistingHostPtrAllocation(ptr, size, rootDeviceIndex, mapAllocation, memoryType, isCpuCopyAllowed);
        if (retVal != CL_SUCCESS) {
            return retVal;
        }
    }

    if (isCpuCopyAllowed) {
        if (isMemTransferNeeded) {
            return enqueueReadWriteBufferOnCpuWithMemoryTransfer(cmdType, buffer, offset, size, ptr,
                                                                 numEventsInWaitList, eventWaitList, event);
        } else {
            return enqueueReadWriteBufferOnCpuWithoutMemoryTransfer(cmdType, buffer, offset, size, ptr,
                                                                    numEventsInWaitList, eventWaitList, event);
        }
    } else if (!isMemTransferNeeded) {
        return enqueueMarkerForReadWriteOperation(buffer, ptr, cmdType, blockingRead,
                                                  numEventsInWaitList, eventWaitList, event);
    }

    const bool isStateless = forceStateless(buffer->getSize());
    const bool useHeapless = this->getHeaplessModeEnabled();
    auto builtInType = EBuiltInOps::adjustBuiltinType<EBuiltInOps::copyBufferToBuffer>(isStateless, useHeapless);

    void *dstPtr = ptr;

    MemObjSurface bufferSurf(buffer);
    HostPtrSurface hostPtrSurf(dstPtr, size);
    GeneralSurface mapSurface;
    Surface *surfaces[] = {&bufferSurf, nullptr};

    auto bcsSplit = this->isSplitEnqueueBlitNeeded(csrSelectionArgs.direction, size, csr);

    if (mapAllocation) {
        surfaces[1] = &mapSurface;
        mapSurface.setGraphicsAllocation(mapAllocation);
        dstPtr = convertAddressWithOffsetToGpuVa(dstPtr, memoryType, *mapAllocation);
    } else {
        surfaces[1] = &hostPtrSurf;
        if (size != 0) {
            bool status = selectCsrForHostPtrAllocation(bcsSplit, csr).createAllocationForHostSurface(hostPtrSurf, true);
            if (!status) {
                return CL_OUT_OF_RESOURCES;
            }
            this->prepareHostPtrSurfaceForSplit(bcsSplit, *hostPtrSurf.getAllocation());
            dstPtr = reinterpret_cast<void *>(hostPtrSurf.getAllocation()->getGpuAddress());
        }
    }
    void *alignedDstPtr = alignDown(dstPtr, 4);
    size_t dstPtrOffset = ptrDiff(dstPtr, alignedDstPtr);

    BuiltinOpParams dc;
    dc.dstPtr = alignedDstPtr;
    dc.dstOffset = {dstPtrOffset, 0, 0};
    dc.srcMemObj = buffer;
    dc.srcOffset = {offset, 0, 0};
    dc.size = {size, 0, 0};
    dc.transferAllocation = mapAllocation ? mapAllocation : hostPtrSurf.getAllocation();
    dc.bcsSplit = bcsSplit;
    dc.direction = csrSelectionArgs.direction;

    MultiDispatchInfo dispatchInfo(dc);

    if (context->isProvidingPerformanceHints()) {
        context->providePerformanceHintForMemoryTransfer(CL_COMMAND_READ_BUFFER, true, static_cast<cl_mem>(buffer), ptr);
        if (!isL3Capable(ptr, size)) {
            context->providePerformanceHint(CL_CONTEXT_DIAGNOSTICS_LEVEL_BAD_INTEL, CL_ENQUEUE_READ_BUFFER_DOESNT_MEET_ALIGNMENT_RESTRICTIONS, ptr, size, MemoryConstants::pageSize, MemoryConstants::pageSize);
        }
    }

    return dispatchBcsOrGpgpuEnqueue<CL_COMMAND_READ_BUFFER>(dispatchInfo, surfaces, builtInType, numEventsInWaitList, eventWaitList, event, blockingRead, csr);
}

} // namespace NEO