File: enqueue_read_image.h

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (166 lines) | stat: -rw-r--r-- 6,905 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/*
 * Copyright (C) 2018-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#pragma once
#include "shared/source/built_ins/built_ins.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/cache_policy.h"
#include "shared/source/helpers/engine_node_helper.h"
#include "shared/source/memory_manager/graphics_allocation.h"
#include "shared/source/os_interface/os_context.h"

#include "opencl/source/command_queue/command_queue_hw.h"
#include "opencl/source/context/context.h"
#include "opencl/source/helpers/mipmap.h"
#include "opencl/source/mem_obj/image.h"
#include "opencl/source/memory_manager/mem_obj_surface.h"

namespace NEO {

template <typename GfxFamily>
cl_int CommandQueueHw<GfxFamily>::enqueueReadImage(
    Image *srcImage,
    cl_bool blockingRead,
    const size_t *origin,
    const size_t *region,
    size_t inputRowPitch,
    size_t inputSlicePitch,
    void *ptr,
    GraphicsAllocation *mapAllocation,
    cl_uint numEventsInWaitList,
    const cl_event *eventWaitList,
    cl_event *event) {
    constexpr cl_command_type cmdType = CL_COMMAND_READ_IMAGE;

    CsrSelectionArgs csrSelectionArgs{cmdType, srcImage, {}, device->getRootDeviceIndex(), region, origin, nullptr};
    CommandStreamReceiver &csr = selectCsrForBuiltinOperation(csrSelectionArgs);
    return enqueueReadImageImpl(srcImage, blockingRead, origin, region, inputRowPitch, inputSlicePitch, ptr, mapAllocation, numEventsInWaitList, eventWaitList, event, csr);
}

template <typename GfxFamily>
cl_int CommandQueueHw<GfxFamily>::enqueueReadImageImpl(
    Image *srcImage,
    cl_bool blockingRead,
    const size_t *origin,
    const size_t *region,
    size_t inputRowPitch,
    size_t inputSlicePitch,
    void *ptr,
    GraphicsAllocation *mapAllocation,
    cl_uint numEventsInWaitList,
    const cl_event *eventWaitList,
    cl_event *event, CommandStreamReceiver &csr) {
    constexpr cl_command_type cmdType = CL_COMMAND_READ_IMAGE;

    CsrSelectionArgs csrSelectionArgs{cmdType, srcImage, {}, device->getRootDeviceIndex(), region, origin, nullptr};

    if (nullptr == mapAllocation) {
        notifyEnqueueReadImage(srcImage, static_cast<bool>(blockingRead), EngineHelpers::isBcs(csr.getOsContext().getEngineType()));
    }

    auto isMemTransferNeeded = true;
    if (srcImage->isMemObjZeroCopy()) {
        size_t hostOffset;
        Image::calculateHostPtrOffset(&hostOffset, origin, region, inputRowPitch, inputSlicePitch, srcImage->getImageDesc().image_type, srcImage->getSurfaceFormatInfo().surfaceFormat.imageElementSizeInBytes);
        isMemTransferNeeded = srcImage->checkIfMemoryTransferIsRequired(hostOffset, 0, ptr, cmdType);
    }
    if (!isMemTransferNeeded) {
        return enqueueMarkerForReadWriteOperation(srcImage, ptr, cmdType, blockingRead,
                                                  numEventsInWaitList, eventWaitList, event);
    }

    size_t hostPtrSize = calculateHostPtrSizeForImage(region, inputRowPitch, inputSlicePitch, srcImage);
    void *dstPtr = ptr;

    MemObjSurface srcImgSurf(srcImage);
    HostPtrSurface hostPtrSurf(dstPtr, hostPtrSize);
    GeneralSurface mapSurface;
    Surface *surfaces[] = {&srcImgSurf, nullptr};

    auto bcsSplit = this->isSplitEnqueueBlitNeeded(csrSelectionArgs.direction, getTotalSizeFromRectRegion(region), csr);

    bool tempAllocFallback = false;

    if (!mapAllocation) {
        InternalMemoryType memoryType = InternalMemoryType::notSpecified;
        bool isCpuCopyAllowed = false;
        cl_int retVal = getContext().tryGetExistingHostPtrAllocation(ptr, hostPtrSize, device->getRootDeviceIndex(), mapAllocation, memoryType, isCpuCopyAllowed);
        if (retVal != CL_SUCCESS) {
            return retVal;
        }
    }

    if (mapAllocation) {
        surfaces[1] = &mapSurface;
        mapSurface.setGraphicsAllocation(mapAllocation);
        // get offset between base cpu ptr of map allocation and dst ptr
        size_t dstOffset = ptrDiff(dstPtr, mapAllocation->getUnderlyingBuffer());
        dstPtr = reinterpret_cast<void *>(mapAllocation->getGpuAddress() + dstOffset);
    } else {
        surfaces[1] = &hostPtrSurf;
        if (region[0] != 0 &&
            region[1] != 0 &&
            region[2] != 0) {
            bool status = selectCsrForHostPtrAllocation(bcsSplit, csr).createAllocationForHostSurface(hostPtrSurf, true);
            if (!status) {
                if (CL_TRUE == blockingRead) {
                    hostPtrSurf.setIsPtrCopyAllowed(true);
                    status = selectCsrForHostPtrAllocation(bcsSplit, csr).createAllocationForHostSurface(hostPtrSurf, true);
                    if (!status) {
                        return CL_OUT_OF_RESOURCES;
                    }
                    tempAllocFallback = true;
                } else {
                    return CL_OUT_OF_RESOURCES;
                }
            }
            dstPtr = reinterpret_cast<void *>(hostPtrSurf.getAllocation()->getGpuAddress());
            this->prepareHostPtrSurfaceForSplit(bcsSplit, *hostPtrSurf.getAllocation());
        }
    }

    void *alignedDstPtr = alignDown(dstPtr, 4);
    size_t dstPtrOffset = ptrDiff(dstPtr, alignedDstPtr);

    BuiltinOpParams dc;
    dc.srcMemObj = srcImage;
    dc.dstPtr = alignedDstPtr;
    dc.dstOffset.x = dstPtrOffset;
    dc.srcOffset = origin;
    dc.size = region;
    dc.dstRowPitch = (srcImage->getImageDesc().image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY) ? inputSlicePitch : inputRowPitch;
    dc.dstSlicePitch = inputSlicePitch;
    if (isMipMapped(srcImage->getImageDesc())) {
        dc.srcMipLevel = findMipLevel(srcImage->getImageDesc().image_type, origin);
    }
    dc.transferAllocation = mapAllocation ? mapAllocation : hostPtrSurf.getAllocation();
    if (tempAllocFallback) {
        dc.userPtrForPostOperationCpuCopy = ptr;
    }
    dc.bcsSplit = bcsSplit;
    dc.direction = csrSelectionArgs.direction;

    const bool isStateless = forceStateless(srcImage->getSize());
    const bool useHeapless = this->getHeaplessModeEnabled();
    auto eBuiltInOps = EBuiltInOps::adjustBuiltinType<EBuiltInOps::copyImage3dToBuffer>(isStateless, useHeapless);
    MultiDispatchInfo dispatchInfo(dc);

    const auto dispatchResult = dispatchBcsOrGpgpuEnqueue<CL_COMMAND_READ_IMAGE>(dispatchInfo, surfaces, eBuiltInOps, numEventsInWaitList, eventWaitList, event, blockingRead == CL_TRUE, csr);
    if (dispatchResult != CL_SUCCESS) {
        return dispatchResult;
    }

    if (context->isProvidingPerformanceHints()) {
        if (!isL3Capable(ptr, hostPtrSize)) {
            context->providePerformanceHint(CL_CONTEXT_DIAGNOSTICS_LEVEL_BAD_INTEL, CL_ENQUEUE_READ_IMAGE_DOESNT_MEET_ALIGNMENT_RESTRICTIONS, ptr, hostPtrSize, MemoryConstants::pageSize, MemoryConstants::pageSize);
        }
    }

    return CL_SUCCESS;
}
} // namespace NEO