1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
/*
* Copyright (C) 2018-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/built_ins/built_ins.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "opencl/source/command_queue/command_queue_hw.h"
#include "opencl/source/mem_obj/buffer.h"
#include "opencl/source/memory_manager/mem_obj_surface.h"
namespace NEO {
template <typename GfxFamily>
cl_int CommandQueueHw<GfxFamily>::enqueueWriteBuffer(
Buffer *buffer,
cl_bool blockingWrite,
size_t offset,
size_t size,
const void *ptr,
GraphicsAllocation *mapAllocation,
cl_uint numEventsInWaitList,
const cl_event *eventWaitList,
cl_event *event) {
const cl_command_type cmdType = CL_COMMAND_WRITE_BUFFER;
CsrSelectionArgs csrSelectionArgs{cmdType, {}, buffer, device->getRootDeviceIndex(), &size};
CommandStreamReceiver &csr = selectCsrForBuiltinOperation(csrSelectionArgs);
return enqueueWriteBufferImpl(buffer, blockingWrite, offset, size, ptr, mapAllocation, numEventsInWaitList, eventWaitList, event, csr);
}
template <typename GfxFamily>
cl_int CommandQueueHw<GfxFamily>::enqueueWriteBufferImpl(
Buffer *buffer,
cl_bool blockingWrite,
size_t offset,
size_t size,
const void *ptr,
GraphicsAllocation *mapAllocation,
cl_uint numEventsInWaitList,
const cl_event *eventWaitList,
cl_event *event,
CommandStreamReceiver &csr) {
const cl_command_type cmdType = CL_COMMAND_WRITE_BUFFER;
CsrSelectionArgs csrSelectionArgs{cmdType, {}, buffer, device->getRootDeviceIndex(), &size};
auto rootDeviceIndex = getDevice().getRootDeviceIndex();
auto isMemTransferNeeded = buffer->isMemObjZeroCopy() ? buffer->checkIfMemoryTransferIsRequired(offset, 0, ptr, cmdType) : true;
bool isCpuCopyAllowed = bufferCpuCopyAllowed(buffer, cmdType, blockingWrite, size, const_cast<void *>(ptr),
numEventsInWaitList, eventWaitList);
InternalMemoryType memoryType = InternalMemoryType::notSpecified;
if (!mapAllocation) {
cl_int retVal = getContext().tryGetExistingHostPtrAllocation(ptr, size, rootDeviceIndex, mapAllocation, memoryType, isCpuCopyAllowed);
if (retVal != CL_SUCCESS) {
return retVal;
}
if (mapAllocation) {
mapAllocation->setAubWritable(true, GraphicsAllocation::defaultBank);
mapAllocation->setTbxWritable(true, GraphicsAllocation::defaultBank);
}
}
if (isCpuCopyAllowed) {
if (isMemTransferNeeded) {
return enqueueReadWriteBufferOnCpuWithMemoryTransfer(cmdType, buffer, offset, size, const_cast<void *>(ptr),
numEventsInWaitList, eventWaitList, event);
} else {
return enqueueReadWriteBufferOnCpuWithoutMemoryTransfer(cmdType, buffer, offset, size, const_cast<void *>(ptr),
numEventsInWaitList, eventWaitList, event);
}
} else if (!isMemTransferNeeded) {
return enqueueMarkerForReadWriteOperation(buffer, const_cast<void *>(ptr), cmdType, blockingWrite,
numEventsInWaitList, eventWaitList, event);
}
const bool isStateless = forceStateless(buffer->getSize());
const bool useHeapless = this->getHeaplessModeEnabled();
auto builtInType = EBuiltInOps::adjustBuiltinType<EBuiltInOps::copyBufferToBuffer>(isStateless, useHeapless);
void *srcPtr = const_cast<void *>(ptr);
HostPtrSurface hostPtrSurf(srcPtr, size, true);
MemObjSurface bufferSurf(buffer);
GeneralSurface mapSurface;
Surface *surfaces[] = {&bufferSurf, nullptr};
auto bcsSplit = this->isSplitEnqueueBlitNeeded(csrSelectionArgs.direction, size, csr);
if (mapAllocation) {
surfaces[1] = &mapSurface;
mapSurface.setGraphicsAllocation(mapAllocation);
srcPtr = convertAddressWithOffsetToGpuVa(srcPtr, memoryType, *mapAllocation);
} else {
surfaces[1] = &hostPtrSurf;
if (size != 0) {
bool status = selectCsrForHostPtrAllocation(bcsSplit, csr).createAllocationForHostSurface(hostPtrSurf, false);
if (!status) {
return CL_OUT_OF_RESOURCES;
}
this->prepareHostPtrSurfaceForSplit(bcsSplit, *hostPtrSurf.getAllocation());
srcPtr = reinterpret_cast<void *>(hostPtrSurf.getAllocation()->getGpuAddress());
}
}
void *alignedSrcPtr = alignDown(srcPtr, 4);
size_t srcPtrOffset = ptrDiff(srcPtr, alignedSrcPtr);
BuiltinOpParams dc;
dc.srcPtr = alignedSrcPtr;
dc.srcOffset = {srcPtrOffset, 0, 0};
dc.dstMemObj = buffer;
dc.dstOffset = {offset, 0, 0};
dc.size = {size, 0, 0};
dc.transferAllocation = mapAllocation ? mapAllocation : hostPtrSurf.getAllocation();
dc.bcsSplit = bcsSplit;
dc.direction = csrSelectionArgs.direction;
MultiDispatchInfo dispatchInfo(dc);
const auto dispatchResult = dispatchBcsOrGpgpuEnqueue<CL_COMMAND_WRITE_BUFFER>(dispatchInfo, surfaces, builtInType, numEventsInWaitList, eventWaitList, event, blockingWrite, csr);
if (dispatchResult != CL_SUCCESS) {
return dispatchResult;
}
if (context->isProvidingPerformanceHints()) {
context->providePerformanceHint(CL_CONTEXT_DIAGNOSTICS_LEVEL_NEUTRAL_INTEL, CL_ENQUEUE_WRITE_BUFFER_REQUIRES_COPY_DATA, static_cast<cl_mem>(buffer));
}
return CL_SUCCESS;
}
} // namespace NEO
|