File: process_device_binary.cpp

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (421 lines) | stat: -rw-r--r-- 22,931 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*
 * Copyright (C) 2020-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/compiler_interface/external_functions.h"
#include "shared/source/device/device.h"
#include "shared/source/device_binary_format/device_binary_formats.h"
#include "shared/source/device_binary_format/zebin/debug_zebin.h"
#include "shared/source/device_binary_format/zebin/zebin_decoder.h"
#include "shared/source/device_binary_format/zebin/zeinfo_decoder.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/compiler_product_helper.h"
#include "shared/source/helpers/debug_helpers.h"
#include "shared/source/helpers/file_io.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "shared/source/program/kernel_info.h"
#include "shared/source/program/program_info.h"
#include "shared/source/program/program_initialization.h"
#include "shared/source/utilities/time_measure_wrapper.h"

#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/context/context.h"
#include "opencl/source/program/program.h"

#include "program_debug_data.h"

#include <algorithm>

using namespace iOpenCL;

namespace NEO {
extern bool familyEnabled[];

const KernelInfo *Program::getKernelInfo(
    const char *kernelName, uint32_t rootDeviceIndex) const {
    if (kernelName == nullptr) {
        return nullptr;
    }

    if (kernelName == NEO::Zebin::Elf::SectionNames::externalFunctions) {
        return nullptr;
    }

    auto &kernelInfoArray = buildInfos[rootDeviceIndex].kernelInfoArray;

    auto it = std::find_if(kernelInfoArray.begin(), kernelInfoArray.end(),
                           [=](const KernelInfo *kInfo) { return (0 == strcmp(kInfo->kernelDescriptor.kernelMetadata.kernelName.c_str(), kernelName)); });

    return (it != kernelInfoArray.end()) ? *it : nullptr;
}

size_t Program::getNumKernels() const {
    auto pClDevice = this->getDevicesInProgram();
    auto rootDeviceIndex = pClDevice.at(0)->getRootDeviceIndex();
    auto numKernels = buildInfos[rootDeviceIndex].kernelInfoArray.size();
    auto usesExportedFunctions = (exportedFunctionsKernelId != std::numeric_limits<size_t>::max());
    if (usesExportedFunctions) {
        numKernels--;
    }
    return numKernels;
}

const KernelInfo *Program::getKernelInfo(size_t ordinal, uint32_t rootDeviceIndex) const {
    auto &kernelInfoArray = buildInfos[rootDeviceIndex].kernelInfoArray;
    if (exportedFunctionsKernelId <= ordinal) {
        ordinal++;
    }
    DEBUG_BREAK_IF(ordinal >= kernelInfoArray.size());
    return kernelInfoArray[ordinal];
}

cl_int Program::linkBinary(Device *pDevice, const void *constantsInitData, size_t constantsInitDataSize, const void *variablesInitData, size_t variablesInitDataSize,
                           const ProgramInfo::GlobalSurfaceInfo &stringsInfo, std::vector<NEO::ExternalFunctionInfo> &extFuncInfos) {
    auto linkerInput = getLinkerInput(pDevice->getRootDeviceIndex());
    if (linkerInput == nullptr) {
        return CL_SUCCESS;
    }
    auto rootDeviceIndex = pDevice->getRootDeviceIndex();
    auto &kernelInfoArray = buildInfos[rootDeviceIndex].kernelInfoArray;
    buildInfos[rootDeviceIndex].constStringSectionData = stringsInfo;
    Linker linker(*linkerInput);
    Linker::SegmentInfo globals;
    Linker::SegmentInfo constants;
    Linker::SegmentInfo exportedFunctions;
    Linker::SegmentInfo strings;
    SharedPoolAllocation *globalsForPatching = getGlobalSurface(rootDeviceIndex);
    SharedPoolAllocation *constantsForPatching = getConstantSurface(rootDeviceIndex);
    if (globalsForPatching != nullptr) {
        globals.gpuAddress = static_cast<uintptr_t>(globalsForPatching->getGpuAddress());
        globals.segmentSize = globalsForPatching->getSize();
    }
    if (constantsForPatching != nullptr) {
        constants.gpuAddress = static_cast<uintptr_t>(constantsForPatching->getGpuAddress());
        constants.segmentSize = constantsForPatching->getSize();
    }
    if (stringsInfo.initData != nullptr) {
        strings.gpuAddress = reinterpret_cast<uintptr_t>(stringsInfo.initData);
        strings.segmentSize = stringsInfo.size;
    }
    if (linkerInput->getExportedFunctionsSegmentId() >= 0) {
        exportedFunctionsKernelId = static_cast<size_t>(linkerInput->getExportedFunctionsSegmentId());
        // Exported functions reside in instruction heap of one of kernels
        auto exportedFunctionHeapId = linkerInput->getExportedFunctionsSegmentId();
        buildInfos[rootDeviceIndex].exportedFunctionsSurface = kernelInfoArray[exportedFunctionHeapId]->getGraphicsAllocation();
        auto &compilerProductHelper = pDevice->getCompilerProductHelper();
        if (compilerProductHelper.isHeaplessModeEnabled(pDevice->getHardwareInfo())) {
            exportedFunctions.gpuAddress = static_cast<uintptr_t>(buildInfos[rootDeviceIndex].exportedFunctionsSurface->getGpuAddress());
        } else {
            exportedFunctions.gpuAddress = static_cast<uintptr_t>(buildInfos[rootDeviceIndex].exportedFunctionsSurface->getGpuAddressToPatch());
        }
        exportedFunctions.segmentSize = buildInfos[rootDeviceIndex].exportedFunctionsSurface->getUnderlyingBufferSize();
    }
    Linker::PatchableSegments isaSegmentsForPatching;
    std::vector<std::vector<char>> patchedIsaTempStorage;
    Linker::KernelDescriptorsT kernelDescriptors;
    if (linkerInput->getTraits().requiresPatchingOfInstructionSegments) {
        patchedIsaTempStorage.reserve(kernelInfoArray.size());
        kernelDescriptors.reserve(kernelInfoArray.size());
        for (const auto &kernelInfo : kernelInfoArray) {
            auto &kernHeapInfo = kernelInfo->heapInfo;
            const char *originalIsa = reinterpret_cast<const char *>(kernHeapInfo.pKernelHeap);
            patchedIsaTempStorage.push_back(std::vector<char>(originalIsa, originalIsa + kernHeapInfo.kernelHeapSize));
            DEBUG_BREAK_IF(nullptr == kernelInfo->getGraphicsAllocation());
            isaSegmentsForPatching.push_back(Linker::PatchableSegment{patchedIsaTempStorage.rbegin()->data(), static_cast<uintptr_t>(kernelInfo->getGraphicsAllocation()->getGpuAddressToPatch()), kernHeapInfo.kernelHeapSize});
            kernelDescriptors.push_back(&kernelInfo->kernelDescriptor);
        }
    }

    Linker::UnresolvedExternals unresolvedExternalsInfo;
    bool linkSuccess = LinkingStatus::linkedFully == linker.link(globals, constants, exportedFunctions, strings,
                                                                 globalsForPatching, constantsForPatching,
                                                                 isaSegmentsForPatching, unresolvedExternalsInfo,
                                                                 pDevice, constantsInitData, constantsInitDataSize,
                                                                 variablesInitData, variablesInitDataSize,
                                                                 kernelDescriptors, extFuncInfos);
    setSymbols(rootDeviceIndex, linker.extractRelocatedSymbols());
    if (false == linkSuccess) {
        std::vector<std::string> kernelNames;
        for (const auto &kernelInfo : kernelInfoArray) {
            kernelNames.push_back("kernel : " + kernelInfo->kernelDescriptor.kernelMetadata.kernelName);
        }
        auto error = constructLinkerErrorMessage(unresolvedExternalsInfo, kernelNames);
        updateBuildLog(pDevice->getRootDeviceIndex(), error.c_str(), error.size());
        return CL_INVALID_BINARY;
    } else if (linkerInput->getTraits().requiresPatchingOfInstructionSegments) {
        for (auto kernelId = 0u; kernelId < kernelInfoArray.size(); kernelId++) {
            const auto &kernelInfo = kernelInfoArray[kernelId];
            auto &kernHeapInfo = kernelInfo->heapInfo;
            auto segmentId = &kernelInfo - &kernelInfoArray[0];
            auto &rootDeviceEnvironment = pDevice->getRootDeviceEnvironment();
            const auto &productHelper = pDevice->getProductHelper();
            MemoryTransferHelper::transferMemoryToAllocation(productHelper.isBlitCopyRequiredForLocalMemory(rootDeviceEnvironment, *kernelInfo->getGraphicsAllocation()),
                                                             *pDevice, kernelInfo->getGraphicsAllocation(), 0, isaSegmentsForPatching[segmentId].hostPointer,
                                                             static_cast<size_t>(kernHeapInfo.kernelHeapSize));
        }
    }
    DBG_LOG(PrintRelocations, NEO::constructRelocationsDebugMessage(this->getSymbols(pDevice->getRootDeviceIndex())));
    return CL_SUCCESS;
}

cl_int Program::processGenBinaries(const ClDeviceVector &clDevices, std::unordered_map<uint32_t, BuildPhase> &phaseReached) {
    cl_int retVal = CL_SUCCESS;
    for (auto &clDevice : clDevices) {
        if (BuildPhase::binaryProcessing == phaseReached[clDevice->getRootDeviceIndex()]) {
            continue;
        }
        if (debugManager.flags.PrintProgramBinaryProcessingTime.get()) {
            retVal = TimeMeasureWrapper::functionExecution(*this, &Program::processGenBinary, *clDevice);
        } else {
            retVal = processGenBinary(*clDevice);
        }

        if (retVal != CL_SUCCESS) {
            break;
        }
        phaseReached[clDevice->getRootDeviceIndex()] = BuildPhase::binaryProcessing;
    }
    return retVal;
}

cl_int Program::processGenBinary(const ClDevice &clDevice) {
    auto rootDeviceIndex = clDevice.getRootDeviceIndex();
    if (nullptr == this->buildInfos[rootDeviceIndex].unpackedDeviceBinary) {
        ArrayRef<const uint8_t> archive(reinterpret_cast<uint8_t *>(this->buildInfos[rootDeviceIndex].packedDeviceBinary.get()), this->buildInfos[rootDeviceIndex].packedDeviceBinarySize);
        if (isAnyPackedDeviceBinaryFormat(archive)) {
            std::string outErrReason, outWarning;
            auto productAbbreviation = NEO::hardwarePrefix[clDevice.getHardwareInfo().platform.eProductFamily];
            NEO::TargetDevice targetDevice = NEO::getTargetDevice(clDevice.getRootDeviceEnvironment());

            auto singleDeviceBinary = unpackSingleDeviceBinary(archive, ConstStringRef(productAbbreviation, strlen(productAbbreviation)), targetDevice, outErrReason, outWarning);
            auto singleDeviceBinarySize = singleDeviceBinary.deviceBinary.size();

            this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = makeCopy<char>(reinterpret_cast<const char *>(singleDeviceBinary.deviceBinary.begin()), singleDeviceBinarySize);
            this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = singleDeviceBinarySize;

            this->isGeneratedByIgc = singleDeviceBinary.generator == GeneratorType::igc;
            this->indirectDetectionVersion = singleDeviceBinary.generatorFeatureVersions.indirectMemoryAccessDetection;
            this->indirectAccessBufferMajorVersion = singleDeviceBinary.generatorFeatureVersions.indirectAccessBuffer;

        } else {
            return CL_INVALID_BINARY;
        }
    } else {
        if (NEO::debugManager.flags.DumpZEBin.get() == 1 && isDeviceBinaryFormat<DeviceBinaryFormat::zebin>(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.get()), this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize))) {
            dumpFileIncrement(this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.get(), this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize, "dumped_zebin_module", ".elf");
        }
    }

    cleanCurrentKernelInfo(rootDeviceIndex);
    auto &buildInfo = buildInfos[rootDeviceIndex];

    if (buildInfo.constantSurface) {
        auto gpuAddress = reinterpret_cast<void *>(buildInfo.constantSurface->getGpuAddress());
        if (auto usmPool = clDevice.getDevice().getUsmConstantSurfaceAllocPool();
            usmPool && usmPool->isInPool(gpuAddress)) {
            [[maybe_unused]] auto ret = usmPool->freeSVMAlloc(gpuAddress, false);
            DEBUG_BREAK_IF(!ret);
        } else if (auto &pool = clDevice.getDevice().getConstantSurfacePoolAllocator();
                   pool.isPoolBuffer(buildInfo.constantSurface->getGraphicsAllocation())) {
            pool.freeSharedAllocation(buildInfo.constantSurface.release());
        } else {
            clDevice.getMemoryManager()->freeGraphicsMemory(buildInfo.constantSurface->getGraphicsAllocation());
        }
        buildInfo.constantSurface.reset();
    }
    if (buildInfo.globalSurface) {
        auto gpuAddress = reinterpret_cast<void *>(buildInfo.globalSurface->getGpuAddress());
        if (auto usmPool = clDevice.getDevice().getUsmGlobalSurfaceAllocPool();
            usmPool && usmPool->isInPool(gpuAddress)) {
            [[maybe_unused]] auto ret = usmPool->freeSVMAlloc(gpuAddress, false);
            DEBUG_BREAK_IF(!ret);
        } else if (auto &pool = clDevice.getDevice().getGlobalSurfacePoolAllocator();
                   pool.isPoolBuffer(buildInfo.globalSurface->getGraphicsAllocation())) {
            pool.freeSharedAllocation(buildInfo.globalSurface.release());
        } else {
            clDevice.getMemoryManager()->freeGraphicsMemory(buildInfo.globalSurface->getGraphicsAllocation());
        }
        buildInfo.globalSurface.reset();
    }

    if (!decodedSingleDeviceBinary.isSet) {
        decodedSingleDeviceBinary.programInfo = {};

        auto blob = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(buildInfo.unpackedDeviceBinary.get()), buildInfo.unpackedDeviceBinarySize);
        SingleDeviceBinary binary = {};
        binary.deviceBinary = blob;
        binary.targetDevice = NEO::getTargetDevice(clDevice.getRootDeviceEnvironment());

        auto &gfxCoreHelper = clDevice.getGfxCoreHelper();
        std::tie(decodedSingleDeviceBinary.decodeError, std::ignore) = NEO::decodeSingleDeviceBinary(decodedSingleDeviceBinary.programInfo, binary, decodedSingleDeviceBinary.decodeErrors, decodedSingleDeviceBinary.decodeWarnings, gfxCoreHelper);
    } else {
        decodedSingleDeviceBinary.isSet = false;
    }

    if (decodedSingleDeviceBinary.decodeWarnings.empty() == false) {
        PRINT_DEBUG_STRING(debugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodedSingleDeviceBinary.decodeWarnings.c_str());
    }

    if (DecodeError::success != decodedSingleDeviceBinary.decodeError) {
        PRINT_DEBUG_STRING(debugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodedSingleDeviceBinary.decodeErrors.c_str());
        return CL_INVALID_BINARY;
    }

    return this->processProgramInfo(decodedSingleDeviceBinary.programInfo, clDevice);
}

cl_int Program::processProgramInfo(ProgramInfo &src, const ClDevice &clDevice) {
    auto rootDeviceIndex = clDevice.getRootDeviceIndex();
    auto &kernelInfoArray = buildInfos[rootDeviceIndex].kernelInfoArray;
    size_t slmNeeded = getMaxInlineSlmNeeded(src);
    size_t slmAvailable = 0U;
    NEO::DeviceInfoKernelPayloadConstants deviceInfoConstants;
    LinkerInput *linkerInput = nullptr;
    slmAvailable = static_cast<size_t>(clDevice.getSharedDeviceInfo().localMemSize);
    deviceInfoConstants.maxWorkGroupSize = static_cast<uint32_t>(clDevice.getSharedDeviceInfo().maxWorkGroupSize);
    deviceInfoConstants.computeUnitsUsedForScratch = clDevice.getSharedDeviceInfo().computeUnitsUsedForScratch;
    deviceInfoConstants.slmWindowSize = static_cast<uint32_t>(clDevice.getSharedDeviceInfo().localMemSize);
    if (requiresLocalMemoryWindowVA(src)) {
        deviceInfoConstants.slmWindow = this->executionEnvironment.memoryManager->getReservedMemory(MemoryConstants::slmWindowSize, MemoryConstants::slmWindowAlignment);
    }
    linkerInput = src.linkerInput.get();
    setLinkerInput(rootDeviceIndex, std::move(src.linkerInput));

    if (slmNeeded > slmAvailable) {
        PRINT_DEBUG_STRING(NEO::debugManager.flags.PrintDebugMessages.get(), stderr, "Size of SLM (%u) larger than available (%u)\n",
                           static_cast<uint32_t>(slmNeeded), static_cast<uint32_t>(slmAvailable));
        return CL_OUT_OF_RESOURCES;
    }

    kernelInfoArray = std::move(src.kernelInfos);

    bool isBindlessKernelPresent = false;
    for (auto &kernelInfo : kernelInfoArray) {
        if (NEO::KernelDescriptor::isBindlessAddressingKernel(kernelInfo->kernelDescriptor)) {
            isBindlessKernelPresent = true;
            break;
        }
    }

    auto svmAllocsManager = context ? context->getSVMAllocsManager() : nullptr;
    auto globalConstDataSize = src.globalConstants.size + src.globalConstants.zeroInitSize;
    if (globalConstDataSize != 0) {
        buildInfos[rootDeviceIndex].constantSurface.reset(allocateGlobalsSurface(svmAllocsManager, clDevice.getDevice(), globalConstDataSize, src.globalConstants.zeroInitSize, true, linkerInput, src.globalConstants.initData));
        if (isBindlessKernelPresent) {
            if (!clDevice.getMemoryManager()->allocateBindlessSlot(buildInfos[rootDeviceIndex].constantSurface->getGraphicsAllocation())) {
                return CL_OUT_OF_HOST_MEMORY;
            }
        }
    }

    auto globalVariablesDataSize = src.globalVariables.size + src.globalVariables.zeroInitSize;
    buildInfos[rootDeviceIndex].globalVarTotalSize = globalVariablesDataSize;
    if (globalVariablesDataSize != 0) {
        buildInfos[rootDeviceIndex].globalSurface.reset(allocateGlobalsSurface(svmAllocsManager, clDevice.getDevice(), globalVariablesDataSize, src.globalVariables.zeroInitSize, false, linkerInput, src.globalVariables.initData));
        if (isBindlessKernelPresent) {
            if (!clDevice.getMemoryManager()->allocateBindlessSlot(buildInfos[rootDeviceIndex].globalSurface->getGraphicsAllocation())) {
                return CL_OUT_OF_HOST_MEMORY;
            }
        }
    }
    buildInfos[rootDeviceIndex].kernelMiscInfoPos = src.kernelMiscInfoPos;

    for (auto &kernelInfo : kernelInfoArray) {
        cl_int retVal = CL_SUCCESS;
        if (kernelInfo->heapInfo.kernelHeapSize) {
            retVal = kernelInfo->createKernelAllocation(clDevice.getDevice(), isBuiltIn) ? CL_SUCCESS : CL_OUT_OF_HOST_MEMORY;
        }

        if (retVal != CL_SUCCESS) {
            return retVal;
        }

        kernelInfo->apply(deviceInfoConstants);
    }

    indirectDetectionVersion = src.indirectDetectionVersion;
    indirectAccessBufferMajorVersion = src.indirectAccessBufferMajorVersion;

    return linkBinary(&clDevice.getDevice(), src.globalConstants.initData, src.globalConstants.size, src.globalVariables.initData,
                      src.globalVariables.size, src.globalStrings, src.externalFunctions);
}

void Program::processDebugData(uint32_t rootDeviceIndex) {
    if (this->buildInfos[rootDeviceIndex].debugData != nullptr) {
        auto &kernelInfoArray = buildInfos[rootDeviceIndex].kernelInfoArray;
        SProgramDebugDataHeaderIGC *programDebugHeader = reinterpret_cast<SProgramDebugDataHeaderIGC *>(this->buildInfos[rootDeviceIndex].debugData.get());

        DEBUG_BREAK_IF(programDebugHeader->NumberOfKernels != kernelInfoArray.size());

        const SKernelDebugDataHeaderIGC *kernelDebugHeader = reinterpret_cast<SKernelDebugDataHeaderIGC *>(ptrOffset(programDebugHeader, sizeof(SProgramDebugDataHeaderIGC)));
        const char *kernelName = nullptr;
        const char *kernelDebugData = nullptr;

        for (uint32_t i = 0; i < programDebugHeader->NumberOfKernels; i++) {
            kernelName = reinterpret_cast<const char *>(ptrOffset(kernelDebugHeader, sizeof(SKernelDebugDataHeaderIGC)));

            auto kernelInfo = kernelInfoArray[i];
            UNRECOVERABLE_IF(kernelInfo->kernelDescriptor.kernelMetadata.kernelName.compare(0, kernelInfo->kernelDescriptor.kernelMetadata.kernelName.size(), kernelName) != 0);

            kernelDebugData = ptrOffset(kernelName, kernelDebugHeader->KernelNameSize);

            kernelInfo->debugData.vIsa = kernelDebugData;
            kernelInfo->debugData.genIsa = ptrOffset(kernelDebugData, kernelDebugHeader->SizeVisaDbgInBytes);
            kernelInfo->debugData.vIsaSize = kernelDebugHeader->SizeVisaDbgInBytes;
            kernelInfo->debugData.genIsaSize = kernelDebugHeader->SizeGenIsaDbgInBytes;

            kernelDebugData = ptrOffset(kernelDebugData, kernelDebugHeader->SizeVisaDbgInBytes + kernelDebugHeader->SizeGenIsaDbgInBytes);
            kernelDebugHeader = reinterpret_cast<const SKernelDebugDataHeaderIGC *>(kernelDebugData);
        }
    }
}

Zebin::Debug::Segments Program::getZebinSegments(uint32_t rootDeviceIndex) {
    ArrayRef<const uint8_t> strings = {reinterpret_cast<const uint8_t *>(buildInfos[rootDeviceIndex].constStringSectionData.initData),
                                       buildInfos[rootDeviceIndex].constStringSectionData.size};
    std::vector<NEO::Zebin::Debug::Segments::KernelNameIsaTupleT> kernels;
    for (const auto &kernelInfo : buildInfos[rootDeviceIndex].kernelInfoArray) {

        NEO::Zebin::Debug::Segments::Segment segment = {static_cast<uintptr_t>(kernelInfo->getGraphicsAllocation()->getGpuAddress()), kernelInfo->getGraphicsAllocation()->getUnderlyingBufferSize()};
        kernels.push_back({kernelInfo->kernelDescriptor.kernelMetadata.kernelName, segment});
    }
    return Zebin::Debug::Segments(getGlobalSurface(rootDeviceIndex), getConstantSurface(rootDeviceIndex), strings, kernels);
}

void Program::createDebugZebin(uint32_t rootDeviceIndex) {
    if (this->buildInfos[rootDeviceIndex].debugDataSize != 0) {
        return;
    }
    auto &debugDataRef = this->buildInfos[rootDeviceIndex].debugData;
    auto &debugDataSizeRef = this->buildInfos[rootDeviceIndex].debugDataSize;

    auto refBin = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(buildInfos[rootDeviceIndex].unpackedDeviceBinary.get()), buildInfos[rootDeviceIndex].unpackedDeviceBinarySize);
    auto segments = getZebinSegments(rootDeviceIndex);
    auto debugZebin = Zebin::Debug::createDebugZebin(refBin, segments);

    debugDataSizeRef = debugZebin.size();
    debugDataRef.reset(new char[debugDataSizeRef]);
    memcpy_s(debugDataRef.get(), debugDataSizeRef,
             debugZebin.data(), debugZebin.size());
}

void Program::createDebugData(ClDevice *clDevice) {
    auto rootDeviceIndex = clDevice->getRootDeviceIndex();
    auto &buildInfo = this->buildInfos[rootDeviceIndex];
    auto refBin = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(buildInfo.unpackedDeviceBinary.get()), buildInfo.unpackedDeviceBinarySize);
    if (NEO::isDeviceBinaryFormat<NEO::DeviceBinaryFormat::zebin>(refBin)) {
        createDebugZebin(rootDeviceIndex);
    } else {
        processDebugData(rootDeviceIndex);
    }
}

} // namespace NEO