1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
/*
* Copyright (C) 2022-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/offline_compiler/source/ocloc_interface.h"
#include "shared/offline_compiler/source/decoder/binary_decoder.h"
#include "shared/offline_compiler/source/decoder/binary_encoder.h"
#include "shared/offline_compiler/source/decoder/zebin_manipulator.h"
#include "shared/offline_compiler/source/multi_command.h"
#include "shared/offline_compiler/source/ocloc_api.h"
#include "shared/offline_compiler/source/ocloc_concat.h"
#include "shared/offline_compiler/source/ocloc_fatbinary.h"
#include "shared/offline_compiler/source/ocloc_validator.h"
#include "shared/offline_compiler/source/offline_compiler.h"
#include "shared/offline_compiler/source/offline_linker.h"
#include "shared/offline_compiler/source/utilities/safety_caller.h"
#include "shared/source/device_binary_format/elf/elf_decoder.h"
#include "shared/source/helpers/product_config_helper_former.h"
#include "shared/source/os_interface/os_library.h"
#include "neo_aot_platforms.h"
#include <memory>
namespace Ocloc {
using namespace NEO;
void printOclocCmdLine(OclocArgHelper &wrapper, const std::vector<std::string> &args) {
auto areQuotesRequired = [](std::string_view argName) -> bool {
return argName == "-options" || argName == "-internal_options";
};
wrapper.printf("Command was:");
bool useQuotes = false;
for (auto &currArg : args) {
if (useQuotes) {
wrapper.printf(" \"%s\"", currArg.c_str());
useQuotes = false;
} else {
wrapper.printf(" %s", currArg.c_str());
useQuotes = areQuotesRequired(currArg.c_str());
}
}
wrapper.printf("\n");
}
void printHelp(OclocArgHelper &wrapper) {
const char *help = R"===(ocloc is a tool for managing Intel Compute GPU device binary format.
It can be used for generation (as part of 'compile' command) as well as
manipulation (decoding/modifying - as part of 'disasm'/'asm' commands) of such
binary files.
Intel Compute GPU device binary is a format used by Intel Compute GPU runtime
(aka NEO). Intel Compute GPU runtime will return this binary format when queried
using clGetProgramInfo(..., CL_PROGRAM_BINARIES, ...). It will also honor
this format as input to clCreateProgramWithBinary function call.
ocloc does not require Intel GPU device to be present in the system nor does it
depend on Intel Compute GPU runtime driver to be installed. It does however rely
on the same set of compilers (IGC, common_clang) as the runtime driver.
Usage: ocloc [--help] <command> [<command_args>]
Available commands are listed below.
Use 'ocloc <command> --help' to get help about specific command.
Commands:
compile Compiles input to Intel Compute GPU device binary.
link Links several IR files.
disasm Disassembles Intel Compute GPU device binary.
asm Assembles Intel Compute GPU device binary.
multi Compiles multiple files using a config file.
validate Validates Intel Compute GPU device binary.
query Extracts versioning info.
ids Return matching versions <major>.<minor>.<revision>.
concat Concatenates multiple fat binaries.
Default command (when none provided) is 'compile'.
Examples:
Compile file to Intel Compute GPU device binary (out = source_file_Gen9core.bin)
ocloc -file source_file.cl -device skl
Link two SPIR-V files.
ocloc link -file sample1.spv -file sample2.spv -out_format LLVM_BC -out samples_merged.llvm_bc
Disassemble Intel Compute GPU device binary
ocloc disasm -file source_file_Gen9core.bin
Assemble to Intel Compute GPU device binary (after above disasm)
ocloc asm -out reassembled.bin
Validate Intel Compute GPU device binary
ocloc validate -file source_file_Gen9core.bin
Extract driver version
ocloc query OCL_DRIVER_VERSION
Return matching version for an acronym
ocloc ids dg1
Concatenate fat binaries
ocloc concat <fat binary> <fat binary> ... [-out <concatenated fat binary name>]
}
)===";
wrapper.printf("%s", help);
}
void printOclocOptionsReadFromFile(OclocArgHelper &wrapper, OfflineCompiler *pCompiler) {
if (pCompiler) {
std::string options = pCompiler->getOptionsReadFromFile();
if (options != "") {
wrapper.printf("Compiling options read from file were:\n%s\n", options.c_str());
}
std::string internalOptions = pCompiler->getInternalOptionsReadFromFile();
if (internalOptions != "") {
wrapper.printf("Internal options read from file were:\n%s\n", internalOptions.c_str());
}
}
}
std::string oclocCurrentLibName = std::string(NEO_OCLOC_CURRENT_LIB_NAME);
std::string oclocFormerLibName = std::string(NEO_OCLOC_FORMER_LIB_NAME);
static_assert(std::string_view(NEO_OCLOC_CURRENT_LIB_NAME) != std::string_view(NEO_OCLOC_FORMER_LIB_NAME), "Ocloc current and former names cannot be same");
const std::string &getOclocCurrentLibName() { return oclocCurrentLibName; }
const std::string &getOclocFormerLibName() { return oclocFormerLibName; }
namespace Commands {
std::optional<int> invokeFormerOclocWithHelper(OclocArgHelper *argHelper,
const std::vector<const char *> &argvPtrs,
uint32_t *numOutputs,
uint8_t ***dataOutputs,
uint64_t **lenOutputs,
char ***nameOutputs) {
// Prepare source data arrays for former ocloc
std::vector<const uint8_t *> dataSources;
std::vector<uint64_t> lenSources;
std::vector<const char *> nameSources;
const auto &inputs = argHelper->getInputs();
dataSources.reserve(inputs.size());
lenSources.reserve(inputs.size());
nameSources.reserve(inputs.size());
for (const auto &input : inputs) {
dataSources.push_back(input.data);
lenSources.push_back(input.length);
nameSources.push_back(input.name);
}
// Prepare header data arrays for former ocloc
std::vector<const uint8_t *> dataHeaders;
std::vector<uint64_t> lenHeaders;
std::vector<const char *> nameHeaders;
const auto &headers = argHelper->getHeaders();
dataHeaders.reserve(headers.size());
lenHeaders.reserve(headers.size());
nameHeaders.reserve(headers.size());
for (const auto &header : headers) {
dataHeaders.push_back(header.data);
lenHeaders.push_back(header.length);
nameHeaders.push_back(header.name);
}
return invokeFormerOcloc(Ocloc::getOclocFormerLibName(),
static_cast<unsigned int>(argvPtrs.size()),
const_cast<const char **>(argvPtrs.data()),
argHelper->getNumSources(),
dataSources.empty() ? nullptr : dataSources.data(),
lenSources.empty() ? nullptr : lenSources.data(),
nameSources.empty() ? nullptr : nameSources.data(),
argHelper->getNumHeaders(),
dataHeaders.empty() ? nullptr : dataHeaders.data(),
lenHeaders.empty() ? nullptr : lenHeaders.data(),
nameHeaders.empty() ? nullptr : nameHeaders.data(),
numOutputs ? numOutputs : argHelper->getNumOutputsPtr(),
dataOutputs ? dataOutputs : argHelper->getDataOutputsPtr(),
lenOutputs ? lenOutputs : argHelper->getLenOutputsPtr(),
nameOutputs ? nameOutputs : argHelper->getNameOutputsPtr());
}
bool isDeviceArgProvided(const std::vector<std::string> &args) {
for (size_t argIndex = 0; argIndex + 1 < args.size(); ++argIndex) {
if (ConstStringRef("-device") == args[argIndex]) {
return true;
}
}
return false;
}
int compile(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
std::vector<std::string> argsCopy(args);
int deviceArgIndex = NEO::getDeviceArgValueIdx(args);
if (NEO::requestedFatBinary(args, argHelper)) {
bool onlySpirV = NEO::isSpvOnly(args);
if (onlySpirV) {
UNRECOVERABLE_IF(deviceArgIndex < 0);
std::vector<ConstStringRef> targetProducts = NEO::getTargetProductsForFatbinary(ConstStringRef(args[deviceArgIndex]), argHelper);
ConstStringRef firstDevice = targetProducts.front();
argsCopy[deviceArgIndex] = firstDevice.str();
} else {
return NEO::buildFatBinary(args, argHelper);
}
}
int retVal = OCLOC_SUCCESS;
auto formerProductFallback = false;
if (isDeviceArgProvided(argsCopy)) {
UNRECOVERABLE_IF(deviceArgIndex < 0);
auto &formerProdHelper = *argHelper->formerProductConfigHelper;
auto product = formerProdHelper.getProductConfigFromDeviceName(argsCopy[deviceArgIndex]);
formerProductFallback = formerProdHelper.isSupportedProductConfig(product);
}
if (formerProductFallback) {
std::vector<const char *> argvPtrs;
argvPtrs.reserve(argsCopy.size());
for (const auto &arg : argsCopy) {
argvPtrs.push_back(arg.c_str());
}
auto retValFormerOcloc = invokeFormerOclocWithHelper(argHelper, argvPtrs, nullptr, nullptr, nullptr, nullptr);
if (retValFormerOcloc) {
retVal = retValFormerOcloc.value();
argHelper->dontSetupOutputs();
} else {
argHelper->printf("Build failed with error code: %d\n", retVal);
}
} else {
std::unique_ptr<OfflineCompiler> pCompiler{OfflineCompiler::create(argsCopy.size(), argsCopy, true, retVal, argHelper)};
if (retVal == OCLOC_SUCCESS) {
if (pCompiler->showHelpOnly()) {
return retVal;
}
retVal = buildWithSafetyGuard(pCompiler.get());
std::string buildLog = pCompiler->getBuildLog();
if (buildLog.empty() == false) {
argHelper->printf("%s\n", buildLog.c_str());
}
if (retVal == OCLOC_SUCCESS) {
if (!pCompiler->isQuiet()) {
argHelper->printf("Build succeeded.\n");
}
} else {
argHelper->printf("Build failed with error code: %d\n", retVal);
}
}
if (retVal != OCLOC_SUCCESS) {
printOclocOptionsReadFromFile(*argHelper, pCompiler.get());
}
}
return retVal;
};
int link(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
int createResult{OCLOC_SUCCESS};
const auto linker{OfflineLinker::create(args.size(), args, createResult, argHelper)};
const auto linkingResult{linkWithSafetyGuard(linker.get())};
const auto buildLog = linker->getBuildLog();
if (!buildLog.empty()) {
argHelper->printf("%s\n", buildLog.c_str());
}
if (createResult == OCLOC_SUCCESS && linkingResult == OCLOC_SUCCESS) {
argHelper->printf("Linker execution has succeeded!\n");
}
return createResult | linkingResult;
};
int disassemble(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
const auto binaryFormat = Zebin::Manipulator::getBinaryFormatForDisassemble(argHelper, args);
auto decode = [&args](auto &decoder) -> int {
int retVal = decoder.validateInput(args);
if (decoder.showHelp) {
decoder.printHelp();
return OCLOC_SUCCESS;
}
return (retVal == OCLOC_SUCCESS) ? decoder.decode() : retVal;
};
if (binaryFormat == Zebin::Manipulator::BinaryFormats::PatchTokens) {
BinaryDecoder disasm(argHelper);
return decode(disasm);
} else if (binaryFormat == Zebin::Manipulator::BinaryFormats::Zebin32b) {
Zebin::Manipulator::ZebinDecoder<Elf::EI_CLASS_32> decoder(argHelper);
return decode(decoder);
} else {
Zebin::Manipulator::ZebinDecoder<Elf::EI_CLASS_64> decoder(argHelper);
return decode(decoder);
}
}
int assemble(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
const auto binaryFormat = Zebin::Manipulator::getBinaryFormatForAssemble(argHelper, args);
auto encode = [&args](auto &encoder) -> int {
int retVal = encoder.validateInput(args);
if (encoder.showHelp) {
encoder.printHelp();
return OCLOC_SUCCESS;
}
return (retVal == OCLOC_SUCCESS) ? encoder.encode() : retVal;
};
if (binaryFormat == Zebin::Manipulator::BinaryFormats::PatchTokens) {
BinaryEncoder assembler(argHelper);
return encode(assembler);
} else if (binaryFormat == Zebin::Manipulator::BinaryFormats::Zebin32b) {
Zebin::Manipulator::ZebinEncoder<Elf::EI_CLASS_32> encoder(argHelper);
return encode(encoder);
} else {
Zebin::Manipulator::ZebinEncoder<Elf::EI_CLASS_64> encoder(argHelper);
return encode(encoder);
}
}
int multi(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
int retValue = OCLOC_SUCCESS;
std::unique_ptr<MultiCommand> pMulti{(MultiCommand::create(args, retValue, argHelper))};
return retValue;
}
int validate(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
return Ocloc::validate(args, argHelper);
}
int query(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
return OfflineCompiler::query(args.size(), args, argHelper);
}
int ids(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
return OfflineCompiler::queryAcronymIds(args.size(), args, argHelper);
}
int concat(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
auto arConcat = NEO::OclocConcat(argHelper);
auto error = arConcat.initialize(args);
if (OCLOC_SUCCESS != error) {
arConcat.printHelp();
return error;
}
error = arConcat.concatenate();
return error;
}
std::optional<int> invokeFormerOcloc(const std::string &formerOclocName, unsigned int numArgs, const char *argv[],
const uint32_t numSources, const uint8_t **dataSources, const uint64_t *lenSources, const char **nameSources,
const uint32_t numInputHeaders, const uint8_t **dataInputHeaders, const uint64_t *lenInputHeaders, const char **nameInputHeaders,
uint32_t *numOutputs, uint8_t ***dataOutputs, uint64_t **lenOutputs, char ***nameOutputs) {
if (formerOclocName.empty()) {
return {};
}
std::unique_ptr<OsLibrary> oclocLib(OsLibrary::loadFunc(formerOclocName));
if (!oclocLib) {
return {};
}
auto oclocInvokeFunc = reinterpret_cast<pOclocInvoke>(oclocLib->getProcAddress("oclocInvoke"));
return oclocInvokeFunc(numArgs, argv, numSources, dataSources, lenSources, nameSources, numInputHeaders, dataInputHeaders, lenInputHeaders, nameInputHeaders, numOutputs, dataOutputs, lenOutputs, nameOutputs);
}
std::optional<int> formerOclocFree(const std::string &formerOclocName, uint32_t *numOutputs, uint8_t ***dataOutputs, uint64_t **lenOutputs, char ***nameOutputs) {
if (formerOclocName.empty()) {
return {};
}
std::unique_ptr<OsLibrary> oclocLib(OsLibrary::loadFunc(formerOclocName));
if (!oclocLib) {
return {};
}
typedef int (*pOclocFreeOutput)(uint32_t * numOutputs, uint8_t * **dataOutputs, uint64_t * *lenOutputs, char ***nameOutputs);
auto oclocFreeFunc = reinterpret_cast<pOclocFreeOutput>(oclocLib->getProcAddress("oclocFreeOutput"));
if (!oclocFreeFunc) {
return {};
}
return oclocFreeFunc(numOutputs, dataOutputs, lenOutputs, nameOutputs);
}
} // namespace Commands
} // namespace Ocloc
|