File: ocloc_interface.cpp

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (400 lines) | stat: -rw-r--r-- 16,065 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/*
 * Copyright (C) 2022-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/offline_compiler/source/ocloc_interface.h"

#include "shared/offline_compiler/source/decoder/binary_decoder.h"
#include "shared/offline_compiler/source/decoder/binary_encoder.h"
#include "shared/offline_compiler/source/decoder/zebin_manipulator.h"
#include "shared/offline_compiler/source/multi_command.h"
#include "shared/offline_compiler/source/ocloc_api.h"
#include "shared/offline_compiler/source/ocloc_concat.h"
#include "shared/offline_compiler/source/ocloc_fatbinary.h"
#include "shared/offline_compiler/source/ocloc_validator.h"
#include "shared/offline_compiler/source/offline_compiler.h"
#include "shared/offline_compiler/source/offline_linker.h"
#include "shared/offline_compiler/source/utilities/safety_caller.h"
#include "shared/source/device_binary_format/elf/elf_decoder.h"
#include "shared/source/helpers/product_config_helper_former.h"
#include "shared/source/os_interface/os_library.h"

#include "neo_aot_platforms.h"

#include <memory>

namespace Ocloc {
using namespace NEO;

void printOclocCmdLine(OclocArgHelper &wrapper, const std::vector<std::string> &args) {
    auto areQuotesRequired = [](std::string_view argName) -> bool {
        return argName == "-options" || argName == "-internal_options";
    };
    wrapper.printf("Command was:");
    bool useQuotes = false;
    for (auto &currArg : args) {
        if (useQuotes) {
            wrapper.printf(" \"%s\"", currArg.c_str());
            useQuotes = false;
        } else {
            wrapper.printf(" %s", currArg.c_str());
            useQuotes = areQuotesRequired(currArg.c_str());
        }
    }
    wrapper.printf("\n");
}

void printHelp(OclocArgHelper &wrapper) {
    const char *help = R"===(ocloc is a tool for managing Intel Compute GPU device binary format.
It can be used for generation (as part of 'compile' command) as well as
manipulation (decoding/modifying - as part of 'disasm'/'asm' commands) of such
binary files.
Intel Compute GPU device binary is a format used by Intel Compute GPU runtime
(aka NEO). Intel Compute GPU runtime will return this binary format when queried
using clGetProgramInfo(..., CL_PROGRAM_BINARIES, ...). It will also honor
this format as input to clCreateProgramWithBinary function call.
ocloc does not require Intel GPU device to be present in the system nor does it
depend on Intel Compute GPU runtime driver to be installed. It does however rely
on the same set of compilers (IGC, common_clang) as the runtime driver.

Usage: ocloc [--help] <command> [<command_args>]
Available commands are listed below.
Use 'ocloc <command> --help' to get help about specific command.

Commands:
  compile               Compiles input to Intel Compute GPU device binary.
  link                  Links several IR files.
  disasm                Disassembles Intel Compute GPU device binary.
  asm                   Assembles Intel Compute GPU device binary.
  multi                 Compiles multiple files using a config file.
  validate              Validates Intel Compute GPU device binary.
  query                 Extracts versioning info.
  ids                   Return matching versions <major>.<minor>.<revision>.
  concat                Concatenates multiple fat binaries.

Default command (when none provided) is 'compile'.

Examples:
  Compile file to Intel Compute GPU device binary (out = source_file_Gen9core.bin)
    ocloc -file source_file.cl -device skl

  Link two SPIR-V files.
    ocloc link -file sample1.spv -file sample2.spv -out_format LLVM_BC -out samples_merged.llvm_bc

  Disassemble Intel Compute GPU device binary
    ocloc disasm -file source_file_Gen9core.bin

  Assemble to Intel Compute GPU device binary (after above disasm)
    ocloc asm -out reassembled.bin

  Validate Intel Compute GPU device binary
    ocloc validate -file source_file_Gen9core.bin

  Extract driver version
    ocloc query OCL_DRIVER_VERSION

  Return matching version for an acronym
    ocloc ids dg1

  Concatenate fat binaries
    ocloc concat <fat binary> <fat binary> ... [-out <concatenated fat binary name>]
}
)===";
    wrapper.printf("%s", help);
}

void printOclocOptionsReadFromFile(OclocArgHelper &wrapper, OfflineCompiler *pCompiler) {
    if (pCompiler) {
        std::string options = pCompiler->getOptionsReadFromFile();
        if (options != "") {
            wrapper.printf("Compiling options read from file were:\n%s\n", options.c_str());
        }

        std::string internalOptions = pCompiler->getInternalOptionsReadFromFile();
        if (internalOptions != "") {
            wrapper.printf("Internal options read from file were:\n%s\n", internalOptions.c_str());
        }
    }
}

std::string oclocCurrentLibName = std::string(NEO_OCLOC_CURRENT_LIB_NAME);
std::string oclocFormerLibName = std::string(NEO_OCLOC_FORMER_LIB_NAME);

static_assert(std::string_view(NEO_OCLOC_CURRENT_LIB_NAME) != std::string_view(NEO_OCLOC_FORMER_LIB_NAME), "Ocloc current and former names cannot be same");

const std::string &getOclocCurrentLibName() { return oclocCurrentLibName; }
const std::string &getOclocFormerLibName() { return oclocFormerLibName; }

namespace Commands {

std::optional<int> invokeFormerOclocWithHelper(OclocArgHelper *argHelper,
                                               const std::vector<const char *> &argvPtrs,
                                               uint32_t *numOutputs,
                                               uint8_t ***dataOutputs,
                                               uint64_t **lenOutputs,
                                               char ***nameOutputs) {
    // Prepare source data arrays for former ocloc
    std::vector<const uint8_t *> dataSources;
    std::vector<uint64_t> lenSources;
    std::vector<const char *> nameSources;

    const auto &inputs = argHelper->getInputs();
    dataSources.reserve(inputs.size());
    lenSources.reserve(inputs.size());
    nameSources.reserve(inputs.size());

    for (const auto &input : inputs) {
        dataSources.push_back(input.data);
        lenSources.push_back(input.length);
        nameSources.push_back(input.name);
    }

    // Prepare header data arrays for former ocloc
    std::vector<const uint8_t *> dataHeaders;
    std::vector<uint64_t> lenHeaders;
    std::vector<const char *> nameHeaders;

    const auto &headers = argHelper->getHeaders();
    dataHeaders.reserve(headers.size());
    lenHeaders.reserve(headers.size());
    nameHeaders.reserve(headers.size());

    for (const auto &header : headers) {
        dataHeaders.push_back(header.data);
        lenHeaders.push_back(header.length);
        nameHeaders.push_back(header.name);
    }

    return invokeFormerOcloc(Ocloc::getOclocFormerLibName(),
                             static_cast<unsigned int>(argvPtrs.size()),
                             const_cast<const char **>(argvPtrs.data()),
                             argHelper->getNumSources(),
                             dataSources.empty() ? nullptr : dataSources.data(),
                             lenSources.empty() ? nullptr : lenSources.data(),
                             nameSources.empty() ? nullptr : nameSources.data(),
                             argHelper->getNumHeaders(),
                             dataHeaders.empty() ? nullptr : dataHeaders.data(),
                             lenHeaders.empty() ? nullptr : lenHeaders.data(),
                             nameHeaders.empty() ? nullptr : nameHeaders.data(),
                             numOutputs ? numOutputs : argHelper->getNumOutputsPtr(),
                             dataOutputs ? dataOutputs : argHelper->getDataOutputsPtr(),
                             lenOutputs ? lenOutputs : argHelper->getLenOutputsPtr(),
                             nameOutputs ? nameOutputs : argHelper->getNameOutputsPtr());
}

bool isDeviceArgProvided(const std::vector<std::string> &args) {
    for (size_t argIndex = 0; argIndex + 1 < args.size(); ++argIndex) {
        if (ConstStringRef("-device") == args[argIndex]) {
            return true;
        }
    }
    return false;
}

int compile(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
    std::vector<std::string> argsCopy(args);
    int deviceArgIndex = NEO::getDeviceArgValueIdx(args);

    if (NEO::requestedFatBinary(args, argHelper)) {
        bool onlySpirV = NEO::isSpvOnly(args);

        if (onlySpirV) {
            UNRECOVERABLE_IF(deviceArgIndex < 0);
            std::vector<ConstStringRef> targetProducts = NEO::getTargetProductsForFatbinary(ConstStringRef(args[deviceArgIndex]), argHelper);
            ConstStringRef firstDevice = targetProducts.front();
            argsCopy[deviceArgIndex] = firstDevice.str();
        } else {
            return NEO::buildFatBinary(args, argHelper);
        }
    }

    int retVal = OCLOC_SUCCESS;
    auto formerProductFallback = false;

    if (isDeviceArgProvided(argsCopy)) {
        UNRECOVERABLE_IF(deviceArgIndex < 0);
        auto &formerProdHelper = *argHelper->formerProductConfigHelper;
        auto product = formerProdHelper.getProductConfigFromDeviceName(argsCopy[deviceArgIndex]);
        formerProductFallback = formerProdHelper.isSupportedProductConfig(product);
    }

    if (formerProductFallback) {
        std::vector<const char *> argvPtrs;
        argvPtrs.reserve(argsCopy.size());
        for (const auto &arg : argsCopy) {
            argvPtrs.push_back(arg.c_str());
        }

        auto retValFormerOcloc = invokeFormerOclocWithHelper(argHelper, argvPtrs, nullptr, nullptr, nullptr, nullptr);
        if (retValFormerOcloc) {
            retVal = retValFormerOcloc.value();
            argHelper->dontSetupOutputs();
        } else {
            argHelper->printf("Build failed with error code: %d\n", retVal);
        }
    } else {
        std::unique_ptr<OfflineCompiler> pCompiler{OfflineCompiler::create(argsCopy.size(), argsCopy, true, retVal, argHelper)};
        if (retVal == OCLOC_SUCCESS) {
            if (pCompiler->showHelpOnly()) {
                return retVal;
            }
            retVal = buildWithSafetyGuard(pCompiler.get());

            std::string buildLog = pCompiler->getBuildLog();
            if (buildLog.empty() == false) {
                argHelper->printf("%s\n", buildLog.c_str());
            }

            if (retVal == OCLOC_SUCCESS) {
                if (!pCompiler->isQuiet()) {
                    argHelper->printf("Build succeeded.\n");
                }
            } else {
                argHelper->printf("Build failed with error code: %d\n", retVal);
            }
        }
        if (retVal != OCLOC_SUCCESS) {
            printOclocOptionsReadFromFile(*argHelper, pCompiler.get());
        }
    }

    return retVal;
};

int link(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
    int createResult{OCLOC_SUCCESS};
    const auto linker{OfflineLinker::create(args.size(), args, createResult, argHelper)};
    const auto linkingResult{linkWithSafetyGuard(linker.get())};

    const auto buildLog = linker->getBuildLog();
    if (!buildLog.empty()) {
        argHelper->printf("%s\n", buildLog.c_str());
    }

    if (createResult == OCLOC_SUCCESS && linkingResult == OCLOC_SUCCESS) {
        argHelper->printf("Linker execution has succeeded!\n");
    }

    return createResult | linkingResult;
};

int disassemble(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
    const auto binaryFormat = Zebin::Manipulator::getBinaryFormatForDisassemble(argHelper, args);
    auto decode = [&args](auto &decoder) -> int {
        int retVal = decoder.validateInput(args);
        if (decoder.showHelp) {
            decoder.printHelp();
            return OCLOC_SUCCESS;
        }
        return (retVal == OCLOC_SUCCESS) ? decoder.decode() : retVal;
    };

    if (binaryFormat == Zebin::Manipulator::BinaryFormats::PatchTokens) {
        BinaryDecoder disasm(argHelper);
        return decode(disasm);

    } else if (binaryFormat == Zebin::Manipulator::BinaryFormats::Zebin32b) {
        Zebin::Manipulator::ZebinDecoder<Elf::EI_CLASS_32> decoder(argHelper);
        return decode(decoder);
    } else {
        Zebin::Manipulator::ZebinDecoder<Elf::EI_CLASS_64> decoder(argHelper);
        return decode(decoder);
    }
}

int assemble(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
    const auto binaryFormat = Zebin::Manipulator::getBinaryFormatForAssemble(argHelper, args);
    auto encode = [&args](auto &encoder) -> int {
        int retVal = encoder.validateInput(args);
        if (encoder.showHelp) {
            encoder.printHelp();
            return OCLOC_SUCCESS;
        }
        return (retVal == OCLOC_SUCCESS) ? encoder.encode() : retVal;
    };
    if (binaryFormat == Zebin::Manipulator::BinaryFormats::PatchTokens) {
        BinaryEncoder assembler(argHelper);
        return encode(assembler);
    } else if (binaryFormat == Zebin::Manipulator::BinaryFormats::Zebin32b) {
        Zebin::Manipulator::ZebinEncoder<Elf::EI_CLASS_32> encoder(argHelper);
        return encode(encoder);
    } else {
        Zebin::Manipulator::ZebinEncoder<Elf::EI_CLASS_64> encoder(argHelper);
        return encode(encoder);
    }
}

int multi(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
    int retValue = OCLOC_SUCCESS;
    std::unique_ptr<MultiCommand> pMulti{(MultiCommand::create(args, retValue, argHelper))};
    return retValue;
}

int validate(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
    return Ocloc::validate(args, argHelper);
}

int query(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
    return OfflineCompiler::query(args.size(), args, argHelper);
}

int ids(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
    return OfflineCompiler::queryAcronymIds(args.size(), args, argHelper);
}

int concat(OclocArgHelper *argHelper, const std::vector<std::string> &args) {
    auto arConcat = NEO::OclocConcat(argHelper);
    auto error = arConcat.initialize(args);
    if (OCLOC_SUCCESS != error) {
        arConcat.printHelp();
        return error;
    }

    error = arConcat.concatenate();
    return error;
}
std::optional<int> invokeFormerOcloc(const std::string &formerOclocName, unsigned int numArgs, const char *argv[],
                                     const uint32_t numSources, const uint8_t **dataSources, const uint64_t *lenSources, const char **nameSources,
                                     const uint32_t numInputHeaders, const uint8_t **dataInputHeaders, const uint64_t *lenInputHeaders, const char **nameInputHeaders,
                                     uint32_t *numOutputs, uint8_t ***dataOutputs, uint64_t **lenOutputs, char ***nameOutputs) {
    if (formerOclocName.empty()) {
        return {};
    }

    std::unique_ptr<OsLibrary> oclocLib(OsLibrary::loadFunc(formerOclocName));

    if (!oclocLib) {
        return {};
    }

    auto oclocInvokeFunc = reinterpret_cast<pOclocInvoke>(oclocLib->getProcAddress("oclocInvoke"));

    return oclocInvokeFunc(numArgs, argv, numSources, dataSources, lenSources, nameSources, numInputHeaders, dataInputHeaders, lenInputHeaders, nameInputHeaders, numOutputs, dataOutputs, lenOutputs, nameOutputs);
}

std::optional<int> formerOclocFree(const std::string &formerOclocName, uint32_t *numOutputs, uint8_t ***dataOutputs, uint64_t **lenOutputs, char ***nameOutputs) {
    if (formerOclocName.empty()) {
        return {};
    }

    std::unique_ptr<OsLibrary> oclocLib(OsLibrary::loadFunc(formerOclocName));

    if (!oclocLib) {
        return {};
    }

    typedef int (*pOclocFreeOutput)(uint32_t * numOutputs, uint8_t * **dataOutputs, uint64_t * *lenOutputs, char ***nameOutputs);
    auto oclocFreeFunc = reinterpret_cast<pOclocFreeOutput>(oclocLib->getProcAddress("oclocFreeOutput"));

    if (!oclocFreeFunc) {
        return {};
    }

    return oclocFreeFunc(numOutputs, dataOutputs, lenOutputs, nameOutputs);
}

} // namespace Commands
} // namespace Ocloc