1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*
* Copyright (C) 2020-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/device_binary_format/elf/elf_decoder.h"
#include "shared/source/device_binary_format/elf/elf.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/ptr_math.h"
#include <string.h>
namespace NEO {
namespace Elf {
template <ElfIdentifierClass numBits>
bool decodeNoteSection(ArrayRef<const uint8_t> sectionData, std::vector<DecodedNote> &out, std::string &outErrReason, std::string &outWarning) {
uint64_t pos = 0;
auto sectionSize = sectionData.size();
auto base = sectionData.begin();
while (pos < sectionSize) {
auto note = reinterpret_cast<const ElfNoteSection *>(base + pos);
auto alignedEntrySize = alignUp(sizeof(ElfNoteSection) + note->nameSize + note->descSize, 4);
if (pos + alignedEntrySize > sectionSize) {
outErrReason.append("Invalid elf note section - not enough data\n");
return false;
}
ConstStringRef name{reinterpret_cast<const char *>(note + 1), note->nameSize};
ConstStringRef desc{reinterpret_cast<const char *>(note + 1) + note->nameSize, note->descSize};
pos += alignedEntrySize;
out.push_back(DecodedNote{name, desc, note->type});
}
return true;
}
template bool decodeNoteSection<EI_CLASS_32>(ArrayRef<const uint8_t> sectionData, std::vector<DecodedNote> &out, std::string &outErrReason, std::string &outWarning);
template bool decodeNoteSection<EI_CLASS_64>(ArrayRef<const uint8_t> sectionData, std::vector<DecodedNote> &out, std::string &outErrReason, std::string &outWarning);
template <ElfIdentifierClass numBits>
const ElfFileHeader<numBits> *decodeElfFileHeader(const ArrayRef<const uint8_t> binary) {
if (binary.size() < sizeof(ElfFileHeader<numBits>)) {
return nullptr;
}
const ElfFileHeader<numBits> *header = reinterpret_cast<const ElfFileHeader<numBits> *>(binary.begin());
bool validHeader = (header->identity.magic[0] == elfMagic[0]);
validHeader &= (header->identity.magic[1] == elfMagic[1]);
validHeader &= (header->identity.magic[2] == elfMagic[2]);
validHeader &= (header->identity.magic[3] == elfMagic[3]);
validHeader &= (header->identity.eClass == numBits);
return validHeader ? header : nullptr;
}
template const ElfFileHeader<EI_CLASS_32> *decodeElfFileHeader<EI_CLASS_32>(const ArrayRef<const uint8_t>);
template const ElfFileHeader<EI_CLASS_64> *decodeElfFileHeader<EI_CLASS_64>(const ArrayRef<const uint8_t>);
template <ElfIdentifierClass numBits>
Elf<numBits> decodeElf(const ArrayRef<const uint8_t> binary, std::string &outErrReason, std::string &outWarning) {
Elf<numBits> ret = {};
ret.elfFileHeader = decodeElfFileHeader<numBits>(binary);
if (nullptr == ret.elfFileHeader) {
outErrReason = "Invalid or missing ELF header";
return {};
}
if (ret.elfFileHeader->phOff + static_cast<uint32_t>(ret.elfFileHeader->phNum * ret.elfFileHeader->phEntSize) > binary.size()) {
outErrReason = "Out of bounds program headers table";
return {};
}
if (ret.elfFileHeader->shOff + static_cast<uint32_t>(ret.elfFileHeader->shNum * ret.elfFileHeader->shEntSize) > binary.size()) {
outErrReason = "Out of bounds section headers table";
return {};
}
const ElfProgramHeader<numBits> *programHeader = reinterpret_cast<const ElfProgramHeader<numBits> *>(binary.begin() + ret.elfFileHeader->phOff);
for (decltype(ret.elfFileHeader->phNum) i = 0; i < ret.elfFileHeader->phNum; ++i) {
if (programHeader->offset + programHeader->fileSz > binary.size()) {
outErrReason = "Out of bounds program header offset/filesz, program header idx : " + std::to_string(i);
return {};
}
ArrayRef<const uint8_t> data(binary.begin() + programHeader->offset, static_cast<size_t>(programHeader->fileSz));
ret.programHeaders.push_back({programHeader, data});
programHeader = ptrOffset(programHeader, ret.elfFileHeader->phEntSize);
}
const ElfSectionHeader<numBits> *sectionHeader = reinterpret_cast<const ElfSectionHeader<numBits> *>(binary.begin() + ret.elfFileHeader->shOff);
for (decltype(ret.elfFileHeader->shNum) i = 0; i < ret.elfFileHeader->shNum; ++i) {
ArrayRef<const uint8_t> data;
if (SHT_NOBITS != sectionHeader->type) {
if (sectionHeader->offset + sectionHeader->size > binary.size()) {
outErrReason = "Out of bounds section header offset/size, section header idx : " + std::to_string(i);
return {};
}
data = ArrayRef<const uint8_t>(binary.begin() + sectionHeader->offset, static_cast<size_t>(sectionHeader->size));
}
ret.sectionHeaders.push_back({sectionHeader, data});
sectionHeader = ptrOffset(sectionHeader, ret.elfFileHeader->shEntSize);
}
if (!ret.decodeSections(outErrReason)) {
return {};
}
return ret;
}
template <ElfIdentifierClass numBits>
bool Elf<numBits>::decodeSymTab(SectionHeaderAndData<numBits> §ionHeaderData, std::string &outError) {
if (sectionHeaderData.header->type == SectionHeaderType::SHT_SYMTAB) {
auto symSize = sizeof(ElfSymbolEntry<numBits>);
if (symSize != sectionHeaderData.header->entsize) {
outError.append("Invalid symbol table entries size - expected : " + std::to_string(symSize) + ", got : " + std::to_string(sectionHeaderData.header->entsize) + "\n");
return false;
}
auto numberOfSymbols = static_cast<size_t>(sectionHeaderData.header->size / sectionHeaderData.header->entsize);
auto symbol = reinterpret_cast<const ElfSymbolEntry<numBits> *>(sectionHeaderData.data.begin());
symbolTable.resize(numberOfSymbols);
for (size_t i = 0; i < numberOfSymbols; i++) {
symbolTable[i] = *symbol;
symbol++;
}
}
return true;
}
template <ElfIdentifierClass numBits>
bool Elf<numBits>::decodeRelocations(SectionHeaderAndData<numBits> §ionHeaderData, std::string &outError) {
if (sectionHeaderData.header->type == SectionHeaderType::SHT_RELA) {
auto relaSize = sizeof(ElfRela<numBits>);
if (relaSize != sectionHeaderData.header->entsize) {
outError.append("Invalid rela entries size - expected : " + std::to_string(relaSize) + ", got : " + std::to_string(sectionHeaderData.header->entsize) + "\n");
return false;
}
size_t numberOfEntries = static_cast<size_t>(sectionHeaderData.header->size / sectionHeaderData.header->entsize);
auto sectionHeaderNamesData = sectionHeaders[elfFileHeader->shStrNdx].data;
int targetSectionIndex = sectionHeaderData.header->info;
auto sectionName = getSectionName(targetSectionIndex);
auto debugDataRelocation = isDebugDataRelocation(ConstStringRef(sectionName.c_str()));
Relocations &relocs = debugDataRelocation ? debugInfoRelocations : relocations;
auto rela = reinterpret_cast<const ElfRela<numBits> *>(sectionHeaderData.data.begin());
// there may be multiple rela sections, reserve additional size
auto previousEntries = relocations.size();
auto allEntries = previousEntries + numberOfEntries;
relocs.reserve(allEntries);
for (auto i = previousEntries; i < allEntries; i++) {
int symbolIndex = extractSymbolIndex<ElfRela<numBits>>(*rela);
auto relocType = extractRelocType<ElfRela<numBits>>(*rela);
int symbolSectionIndex = symbolTable[symbolIndex].shndx;
std::string name = std::string(reinterpret_cast<const char *>(sectionHeaderNamesData.begin()) + symbolTable[symbolIndex].name);
RelocationInfo relocInfo = {symbolSectionIndex, symbolIndex, targetSectionIndex, rela->addend, rela->offset, relocType, std::move(name)};
relocs.push_back(std::move(relocInfo));
rela++;
}
}
if (sectionHeaderData.header->type == SectionHeaderType::SHT_REL) {
auto relSize = sizeof(ElfRel<numBits>);
if (relSize != sectionHeaderData.header->entsize) {
outError.append("Invalid rel entries size - expected : " + std::to_string(relSize) + ", got : " + std::to_string(sectionHeaderData.header->entsize) + "\n");
return false;
}
auto numberOfEntries = static_cast<size_t>(sectionHeaderData.header->size / sectionHeaderData.header->entsize);
auto sectionHeaderNamesData = sectionHeaders[elfFileHeader->shStrNdx].data;
int targetSectionIndex = sectionHeaderData.header->info;
auto sectionName = getSectionName(targetSectionIndex);
auto debugDataRelocation = isDebugDataRelocation(ConstStringRef(sectionName.c_str()));
Relocations &relocs = debugDataRelocation ? debugInfoRelocations : relocations;
auto reloc = reinterpret_cast<const ElfRel<numBits> *>(sectionHeaderData.data.begin());
// there may be multiple rel sections, reserve additional size
auto previousEntries = relocations.size();
auto allEntries = previousEntries + numberOfEntries;
relocs.reserve(allEntries);
for (auto i = previousEntries; i < allEntries; i++) {
int symbolIndex = extractSymbolIndex<ElfRel<numBits>>(*reloc);
auto relocType = extractRelocType<ElfRel<numBits>>(*reloc);
int symbolSectionIndex = symbolTable[symbolIndex].shndx;
std::string name = std::string(reinterpret_cast<const char *>(sectionHeaderNamesData.begin()) + symbolTable[symbolIndex].name);
RelocationInfo relocInfo = {symbolSectionIndex, symbolIndex, targetSectionIndex, 0, reloc->offset, relocType, std::move(name)};
relocs.push_back(relocInfo);
reloc++;
}
}
return true;
}
template <ElfIdentifierClass numBits>
bool Elf<numBits>::decodeSections(std::string &outError) {
bool success = true;
for (size_t i = 0; i < sectionHeaders.size(); i++) {
success &= decodeSymTab(sectionHeaders[i], outError);
}
if (success) {
for (size_t i = 0; i < sectionHeaders.size(); i++) {
success &= decodeRelocations(sectionHeaders[i], outError);
}
}
return success;
}
template <ElfIdentifierClass numBits>
bool Elf<numBits>::isDebugDataRelocation(ConstStringRef sectionName) {
if (sectionName.startsWith(NEO::Elf::SpecialSectionNames::debug.data())) {
return true;
}
return false;
}
template <>
template <class ElfReloc>
int Elf<EI_CLASS_32>::extractSymbolIndex(const ElfReloc &elfReloc) const {
return static_cast<int>(elfReloc.info >> 8);
}
template <>
template <class ElfReloc>
int Elf<EI_CLASS_64>::extractSymbolIndex(const ElfReloc &elfReloc) const {
return static_cast<int>(elfReloc.info >> 32);
}
template <>
template <class ElfReloc>
uint32_t Elf<EI_CLASS_32>::extractRelocType(const ElfReloc &elfReloc) const {
return elfReloc.info & 0xff;
}
template <>
template <class ElfReloc>
uint32_t Elf<EI_CLASS_64>::extractRelocType(const ElfReloc &elfReloc) const {
return elfReloc.info & 0xffffffff;
}
template bool Elf<EI_CLASS_64>::decodeSections(std::string &outError);
template int Elf<EI_CLASS_32>::extractSymbolIndex(const ElfRel<EI_CLASS_32> &elfReloc) const;
template int Elf<EI_CLASS_64>::extractSymbolIndex(const ElfRel<EI_CLASS_64> &elfReloc) const;
template int Elf<EI_CLASS_32>::extractSymbolIndex(const ElfRela<EI_CLASS_32> &elfReloc) const;
template int Elf<EI_CLASS_64>::extractSymbolIndex(const ElfRela<EI_CLASS_64> &elfReloc) const;
template uint32_t Elf<EI_CLASS_32>::extractRelocType(const ElfRel<EI_CLASS_32> &elfReloc) const;
template uint32_t Elf<EI_CLASS_64>::extractRelocType(const ElfRel<EI_CLASS_64> &elfReloc) const;
template uint32_t Elf<EI_CLASS_32>::extractRelocType(const ElfRela<EI_CLASS_32> &elfReloc) const;
template uint32_t Elf<EI_CLASS_64>::extractRelocType(const ElfRela<EI_CLASS_64> &elfReloc) const;
template Elf<EI_CLASS_32> decodeElf<EI_CLASS_32>(const ArrayRef<const uint8_t>, std::string &, std::string &);
template Elf<EI_CLASS_64> decodeElf<EI_CLASS_64>(const ArrayRef<const uint8_t>, std::string &, std::string &);
} // namespace Elf
} // namespace NEO
|