File: topology.cpp

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (130 lines) | stat: -rw-r--r-- 4,659 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
 * Copyright (C) 2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/helpers/topology.h"

#include "shared/source/helpers/hw_info.h"

#include <bit>
#include <cstdint>
#include <numeric>
#include <span>
#include <vector>

namespace NEO {

TopologyInfo getTopologyInfo(HardwareInfo &hwInfo, const TopologyBitmap &topologyBitmap, const TopologyLimits &topologyLimits, TopologyMapping &topologyMapping) {
    TopologyInfo topologyInfo{};

    std::vector<int> sliceIndices;
    sliceIndices.reserve(topologyLimits.maxSlices);

    std::vector<int> subSliceIndices;
    subSliceIndices.reserve(topologyLimits.maxSubSlicesPerSlice);

    auto processSubSlices = [&](std::span<const uint8_t> subSliceBitmap) -> std::pair<int, int> {
        int sliceCount = 0;
        int subSliceCountTotal = 0;

        for (auto sliceId = 0; sliceId < topologyLimits.maxSlices; ++sliceId) {
            int subSliceCount = 0;

            for (auto subSliceId = 0; subSliceId < topologyLimits.maxSubSlicesPerSlice; ++subSliceId) {
                const auto idx = sliceId * topologyLimits.maxSubSlicesPerSlice + subSliceId;
                const auto byte = idx / 8u;
                const auto bit = idx % 8u;

                if (idx >= std::ssize(subSliceBitmap) * 8) {
                    break;
                }

                if (subSliceBitmap[byte] & (1u << bit)) {
                    subSliceIndices.push_back(subSliceId);
                    subSliceCount += 1;
                    if (sliceId < GT_MAX_SLICE && subSliceId < GT_MAX_SUBSLICE_PER_SLICE) {
                        hwInfo.gtSystemInfo.SliceInfo[sliceId].SubSliceInfo[subSliceId].Enabled = true;
                    }
                }
            }

            if (subSliceCount) {
                sliceIndices.push_back(sliceId);
                sliceCount += 1;
                subSliceCountTotal += subSliceCount;
                if (sliceId < GT_MAX_SLICE) {
                    hwInfo.gtSystemInfo.SliceInfo[sliceId].Enabled = true;
                }
            }

            if (sliceCount == 1) {
                topologyMapping.subsliceIndices = std::move(subSliceIndices);
            }

            subSliceIndices.clear();
        }

        return {sliceCount, subSliceCountTotal};
    };

    auto [sliceCount, subSliceCount] = processSubSlices(topologyBitmap.dssCompute);

    if (!subSliceCount) {
        std::tie(sliceCount, subSliceCount) = processSubSlices(topologyBitmap.dssGeometry);
    }

    hwInfo.gtSystemInfo.IsDynamicallyPopulated = true;
    topologyMapping.sliceIndices = std::move(sliceIndices);
    if (sliceCount != 1) {
        topologyMapping.subsliceIndices.clear();
    }

    auto bitmapCount = [](std::span<const uint8_t> bitmap) {
        return std::transform_reduce(bitmap.begin(), bitmap.end(), 0, std::plus{}, std::popcount<uint8_t>);
    };

    topologyInfo.sliceCount = sliceCount;
    topologyInfo.subSliceCount = subSliceCount;
    topologyInfo.euCount = bitmapCount(topologyBitmap.eu) * topologyInfo.subSliceCount;
    topologyInfo.l3BankCount = bitmapCount(topologyBitmap.l3Banks);

    return topologyInfo;
}

TopologyInfo getTopologyInfoMultiTile(HardwareInfo &hwInfo, std::span<const TopologyBitmap> topologyBitmap, const TopologyLimits &topologyLimits, TopologyMap &topologyMap) {
    const auto numTiles = std::ssize(topologyBitmap);

    if (0 == numTiles) {
        return TopologyInfo{};
    }

    std::vector<TopologyInfo> topologyInfos;
    topologyInfos.reserve(numTiles);

    for (auto i = 0; i < numTiles; ++i) {
        topologyInfos.push_back(getTopologyInfo(hwInfo, topologyBitmap[i], topologyLimits, topologyMap[i]));
    }

    TopologyInfo topologyInfo{
        .sliceCount = std::numeric_limits<decltype(TopologyInfo::sliceCount)>::max(),
        .subSliceCount = std::numeric_limits<decltype(TopologyInfo::subSliceCount)>::max(),
        .euCount = std::numeric_limits<decltype(TopologyInfo::euCount)>::max(),
        .l3BankCount = std::numeric_limits<decltype(TopologyInfo::l3BankCount)>::max(),
    };

    topologyInfo = std::reduce(topologyInfos.cbegin(), topologyInfos.cend(), topologyInfo, [](const TopologyInfo &topoInfo1, const TopologyInfo &topoInfo2) {
        return TopologyInfo{
            .sliceCount = std::min(topoInfo1.sliceCount, topoInfo2.sliceCount),
            .subSliceCount = std::min(topoInfo1.subSliceCount, topoInfo2.subSliceCount),
            .euCount = std::min(topoInfo1.euCount, topoInfo2.euCount),
            .l3BankCount = std::min(topoInfo1.l3BankCount, topoInfo2.l3BankCount),
        };
    });

    return topologyInfo;
}

} // namespace NEO