1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/*
* Copyright (C) 2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/program/metadata_generation.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device_binary_format/zebin/zebin_decoder.h"
#include "shared/source/device_binary_format/zebin/zeinfo_decoder.h"
#include "shared/source/program/kernel_info.h"
#include <string>
namespace NEO {
void populateDefaultMetadata(const ArrayRef<const uint8_t> refBin, size_t kernelMiscInfoOffset, std::vector<NEO::KernelInfo *> &kernelInfos) {
if (!NEO::isDeviceBinaryFormat<NEO::DeviceBinaryFormat::zebin>(refBin)) {
return;
}
std::string errors{}, warnings{};
auto zeInfo = Zebin::getZeInfoFromZebin(refBin, errors, warnings);
auto decodeError = Zebin::ZeInfo::decodeAndPopulateKernelMiscInfo(kernelMiscInfoOffset, kernelInfos, zeInfo, errors, warnings);
if (decodeError != DecodeError::success) {
PRINT_DEBUG_STRING(debugManager.flags.PrintDebugMessages.get(), stderr, "decodeAndPopulateKernelMiscInfo failed with errors %s and warnings %s\n", errors.c_str(), warnings.c_str());
}
}
void generateMetadata(std::vector<NEO::KernelInfo *> &kernelInfos) {
auto ensureTypeNone = [](ArgTypeTraits &typeTraits) -> void {
typeTraits.typeQualifiers.constQual = false;
typeTraits.typeQualifiers.pipeQual = false;
typeTraits.typeQualifiers.restrictQual = false;
typeTraits.typeQualifiers.unknownQual = false;
typeTraits.typeQualifiers.volatileQual = false;
};
for (const auto &kernelInfo : kernelInfos) {
if (false == kernelInfo->kernelDescriptor.explicitArgsExtendedMetadata.empty()) {
continue;
}
size_t argIndex = 0u;
kernelInfo->kernelDescriptor.explicitArgsExtendedMetadata.resize(kernelInfo->kernelDescriptor.payloadMappings.explicitArgs.size());
for (auto &kernelArg : kernelInfo->kernelDescriptor.payloadMappings.explicitArgs) {
ArgTypeMetadataExtended argMetadataExtended;
auto &argTypeTraits = kernelArg.getTraits();
argMetadataExtended.argName = std::string("arg" + std::to_string(argIndex));
if (kernelArg.is<ArgDescriptor::argTValue>()) {
const auto &argAsValue = kernelArg.as<ArgDescValue>(false);
uint16_t maxSourceOffset = 0u, elemSize = 0u;
for (const auto &elem : argAsValue.elements) {
if (maxSourceOffset <= elem.sourceOffset) {
maxSourceOffset = elem.sourceOffset;
elemSize = elem.size;
}
}
if (maxSourceOffset != 0u) {
argMetadataExtended.type = std::string("__opaque_var;" + std::to_string(maxSourceOffset + elemSize));
} else {
argMetadataExtended.type = std::string("__opaque;" + std::to_string(elemSize));
}
ensureTypeNone(argTypeTraits);
argTypeTraits.addressQualifier = KernelArgMetadata::AddrPrivate;
argTypeTraits.accessQualifier = KernelArgMetadata::AccessNone;
} else if (kernelArg.is<ArgDescriptor::argTPointer>()) {
const auto &argAsPtr = kernelArg.as<ArgDescPointer>(false);
argMetadataExtended.type = std::string("__opaque_ptr;" + std::to_string(argAsPtr.pointerSize));
} else if (kernelArg.is<ArgDescriptor::argTImage>()) {
const auto &argAsImage = kernelArg.as<ArgDescImage>(false);
switch (argAsImage.imageType) {
case NEOImageType::imageTypeBuffer:
argMetadataExtended.type = std::string("image1d_buffer_t");
break;
case NEOImageType::imageType1D:
argMetadataExtended.type = std::string("image1d_t");
break;
case NEOImageType::imageType1DArray:
argMetadataExtended.type = std::string("image1d_array_t");
break;
case NEOImageType::imageType2DArray:
argMetadataExtended.type = std::string("image2d_array_t");
break;
case NEOImageType::imageType3D:
argMetadataExtended.type = std::string("image3d_t");
break;
case NEOImageType::imageType2DDepth:
argMetadataExtended.type = std::string("image2d_depth_t");
break;
case NEOImageType::imageType2DArrayDepth:
argMetadataExtended.type = std::string("image2d_array_depth_t");
break;
case NEOImageType::imageType2DMSAA:
argMetadataExtended.type = std::string("image2d_msaa_t");
break;
case NEOImageType::imageType2DMSAADepth:
argMetadataExtended.type = std::string("image2d_msaa_depth_t");
break;
case NEOImageType::imageType2DArrayMSAA:
argMetadataExtended.type = std::string("image2d_array_msaa_t");
break;
case NEOImageType::imageType2DArrayMSAADepth:
argMetadataExtended.type = std::string("image2d_array_msaa_depth_t");
break;
default:
argMetadataExtended.type = std::string("image2d_t");
break;
}
} else if (kernelArg.is<ArgDescriptor::argTSampler>()) {
argMetadataExtended.type = std::string("sampler_t");
}
kernelInfo->kernelDescriptor.explicitArgsExtendedMetadata.at(argIndex) = std::move(argMetadataExtended);
argIndex++;
}
}
}
void MetadataGeneration::callPopulateZebinExtendedArgsMetadataOnce(const ArrayRef<const uint8_t> refBin, size_t kernelMiscInfoOffset, std::vector<NEO::KernelInfo *> &kernelInfos) {
auto extractAndDecodeMetadata = [&]() {
populateDefaultMetadata(refBin, kernelMiscInfoOffset, kernelInfos);
};
std::call_once(extractAndDecodeMetadataOnceFlag, extractAndDecodeMetadata);
}
void MetadataGeneration::callGenerateDefaultExtendedArgsMetadataOnce(std::vector<NEO::KernelInfo *> &kernelInfos) {
auto generateDefaultMetadata = [&]() {
generateMetadata(kernelInfos);
};
std::call_once(generateDefaultMetadataOnceFlag, generateDefaultMetadata);
}
} // namespace NEO
|