File: metadata_generation.cpp

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (134 lines) | stat: -rw-r--r-- 6,571 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
 * Copyright (C) 2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/program/metadata_generation.h"

#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device_binary_format/zebin/zebin_decoder.h"
#include "shared/source/device_binary_format/zebin/zeinfo_decoder.h"
#include "shared/source/program/kernel_info.h"

#include <string>

namespace NEO {

void populateDefaultMetadata(const ArrayRef<const uint8_t> refBin, size_t kernelMiscInfoOffset, std::vector<NEO::KernelInfo *> &kernelInfos) {
    if (!NEO::isDeviceBinaryFormat<NEO::DeviceBinaryFormat::zebin>(refBin)) {
        return;
    }
    std::string errors{}, warnings{};
    auto zeInfo = Zebin::getZeInfoFromZebin(refBin, errors, warnings);
    auto decodeError = Zebin::ZeInfo::decodeAndPopulateKernelMiscInfo(kernelMiscInfoOffset, kernelInfos, zeInfo, errors, warnings);
    if (decodeError != DecodeError::success) {
        PRINT_DEBUG_STRING(debugManager.flags.PrintDebugMessages.get(), stderr, "decodeAndPopulateKernelMiscInfo failed with errors %s and warnings %s\n", errors.c_str(), warnings.c_str());
    }
}

void generateMetadata(std::vector<NEO::KernelInfo *> &kernelInfos) {
    auto ensureTypeNone = [](ArgTypeTraits &typeTraits) -> void {
        typeTraits.typeQualifiers.constQual = false;
        typeTraits.typeQualifiers.pipeQual = false;
        typeTraits.typeQualifiers.restrictQual = false;
        typeTraits.typeQualifiers.unknownQual = false;
        typeTraits.typeQualifiers.volatileQual = false;
    };

    for (const auto &kernelInfo : kernelInfos) {
        if (false == kernelInfo->kernelDescriptor.explicitArgsExtendedMetadata.empty()) {
            continue;
        }
        size_t argIndex = 0u;
        kernelInfo->kernelDescriptor.explicitArgsExtendedMetadata.resize(kernelInfo->kernelDescriptor.payloadMappings.explicitArgs.size());
        for (auto &kernelArg : kernelInfo->kernelDescriptor.payloadMappings.explicitArgs) {
            ArgTypeMetadataExtended argMetadataExtended;
            auto &argTypeTraits = kernelArg.getTraits();
            argMetadataExtended.argName = std::string("arg" + std::to_string(argIndex));

            if (kernelArg.is<ArgDescriptor::argTValue>()) {
                const auto &argAsValue = kernelArg.as<ArgDescValue>(false);
                uint16_t maxSourceOffset = 0u, elemSize = 0u;
                for (const auto &elem : argAsValue.elements) {
                    if (maxSourceOffset <= elem.sourceOffset) {
                        maxSourceOffset = elem.sourceOffset;
                        elemSize = elem.size;
                    }
                }
                if (maxSourceOffset != 0u) {
                    argMetadataExtended.type = std::string("__opaque_var;" + std::to_string(maxSourceOffset + elemSize));
                } else {
                    argMetadataExtended.type = std::string("__opaque;" + std::to_string(elemSize));
                }
                ensureTypeNone(argTypeTraits);
                argTypeTraits.addressQualifier = KernelArgMetadata::AddrPrivate;
                argTypeTraits.accessQualifier = KernelArgMetadata::AccessNone;
            } else if (kernelArg.is<ArgDescriptor::argTPointer>()) {
                const auto &argAsPtr = kernelArg.as<ArgDescPointer>(false);
                argMetadataExtended.type = std::string("__opaque_ptr;" + std::to_string(argAsPtr.pointerSize));
            } else if (kernelArg.is<ArgDescriptor::argTImage>()) {
                const auto &argAsImage = kernelArg.as<ArgDescImage>(false);
                switch (argAsImage.imageType) {
                case NEOImageType::imageTypeBuffer:
                    argMetadataExtended.type = std::string("image1d_buffer_t");
                    break;
                case NEOImageType::imageType1D:
                    argMetadataExtended.type = std::string("image1d_t");
                    break;
                case NEOImageType::imageType1DArray:
                    argMetadataExtended.type = std::string("image1d_array_t");
                    break;
                case NEOImageType::imageType2DArray:
                    argMetadataExtended.type = std::string("image2d_array_t");
                    break;
                case NEOImageType::imageType3D:
                    argMetadataExtended.type = std::string("image3d_t");
                    break;
                case NEOImageType::imageType2DDepth:
                    argMetadataExtended.type = std::string("image2d_depth_t");
                    break;
                case NEOImageType::imageType2DArrayDepth:
                    argMetadataExtended.type = std::string("image2d_array_depth_t");
                    break;
                case NEOImageType::imageType2DMSAA:
                    argMetadataExtended.type = std::string("image2d_msaa_t");
                    break;
                case NEOImageType::imageType2DMSAADepth:
                    argMetadataExtended.type = std::string("image2d_msaa_depth_t");
                    break;
                case NEOImageType::imageType2DArrayMSAA:
                    argMetadataExtended.type = std::string("image2d_array_msaa_t");
                    break;
                case NEOImageType::imageType2DArrayMSAADepth:
                    argMetadataExtended.type = std::string("image2d_array_msaa_depth_t");
                    break;
                default:
                    argMetadataExtended.type = std::string("image2d_t");
                    break;
                }
            } else if (kernelArg.is<ArgDescriptor::argTSampler>()) {
                argMetadataExtended.type = std::string("sampler_t");
            }
            kernelInfo->kernelDescriptor.explicitArgsExtendedMetadata.at(argIndex) = std::move(argMetadataExtended);
            argIndex++;
        }
    }
}

void MetadataGeneration::callPopulateZebinExtendedArgsMetadataOnce(const ArrayRef<const uint8_t> refBin, size_t kernelMiscInfoOffset, std::vector<NEO::KernelInfo *> &kernelInfos) {
    auto extractAndDecodeMetadata = [&]() {
        populateDefaultMetadata(refBin, kernelMiscInfoOffset, kernelInfos);
    };
    std::call_once(extractAndDecodeMetadataOnceFlag, extractAndDecodeMetadata);
}

void MetadataGeneration::callGenerateDefaultExtendedArgsMetadataOnce(std::vector<NEO::KernelInfo *> &kernelInfos) {
    auto generateDefaultMetadata = [&]() {
        generateMetadata(kernelInfos);
    };
    std::call_once(generateDefaultMetadataOnceFlag, generateDefaultMetadata);
}

} // namespace NEO