File: stackvec.h

package info (click to toggle)
intel-compute-runtime 25.44.36015.8-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,632 kB
  • sloc: cpp: 931,547; lisp: 2,074; sh: 719; makefile: 162; python: 21
file content (498 lines) | stat: -rw-r--r-- 14,526 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/*
 * Copyright (C) 2018-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#pragma once

#include "shared/source/helpers/debug_helpers.h"

#include <algorithm>
#include <cstdint>
#include <limits>
#include <tuple>
#include <vector>

template <size_t onStackCapacity>
struct StackVecSize {
    static constexpr size_t max32 = std::numeric_limits<uint32_t>::max();
    static constexpr size_t max16 = std::numeric_limits<uint16_t>::max();
    static constexpr size_t max8 = std::numeric_limits<uint8_t>::max();

    using SizeT = std::conditional_t<(onStackCapacity < max8), uint8_t,
                                     std::conditional_t<(onStackCapacity < max16), uint16_t,
                                                        std::conditional_t<(onStackCapacity < max32), uint32_t, size_t>>>;
};

template <typename DataType, size_t onStackCapacity,
          typename StackSizeT = typename StackVecSize<onStackCapacity>::SizeT>
class StackVec { // NOLINT(clang-analyzer-optin.performance.Padding)
  public:
    using value_type = DataType; // NOLINT(readability-identifier-naming)
    using SizeT = StackSizeT;
    using iterator = DataType *;                                          // NOLINT(readability-identifier-naming)
    using const_iterator = const DataType *;                              // NOLINT(readability-identifier-naming)
    using reverse_iterator = std::reverse_iterator<iterator>;             // NOLINT(readability-identifier-naming)
    using const_reverse_iterator = std::reverse_iterator<const_iterator>; // NOLINT(readability-identifier-naming)

    static constexpr SizeT onStackCaps = onStackCapacity;

    StackVec() {
        switchToStackMem();
    }

    template <typename ItType>
    StackVec(ItType beginIt, ItType endIt) {
        switchToStackMem();
        size_t count = (endIt - beginIt);
        if (count > onStackCapacity) {
            dynamicMem = new std::vector<DataType>(beginIt, endIt);
            return;
        }

        while (beginIt != endIt) {
            push_back(*beginIt);
            ++beginIt;
        }
        onStackSize = static_cast<SizeT>(count);
    }

    StackVec(const StackVec &rhs) {
        switchToStackMem();
        if (onStackCaps < rhs.size()) {
            dynamicMem = new std::vector<DataType>(rhs.begin(), rhs.end());
            return;
        }

        for (const auto &v : rhs) {
            push_back(v);
        }
    }

    explicit StackVec(size_t initialSize)
        : StackVec() {
        switchToStackMem();
        resize(initialSize);
    }

    StackVec(std::initializer_list<DataType> init) {
        switchToStackMem();
        reserve(init.size());
        for (const auto &obj : init) {
            push_back(obj);
        }
    }

    StackVec &operator=(const StackVec &rhs) {
        if (this == &rhs) {
            return *this;
        }
        clear();

        if (usesDynamicMem()) {
            this->dynamicMem->assign(rhs.begin(), rhs.end());
            return *this;
        }

        if (onStackCaps < rhs.size()) {
            this->dynamicMem = new std::vector<DataType>(rhs.begin(), rhs.end());
            return *this;
        }

        for (const auto &v : rhs) {
            push_back(v);
        }

        return *this;
    }

    StackVec(StackVec &&rhs) noexcept {
        onStackMem = reinterpret_cast<DataType *const>(onStackMemRawBytes);
        if (rhs.usesDynamicMem()) {
            this->dynamicMem = rhs.dynamicMem;
            rhs.switchToStackMem();
            return;
        }

        for (const auto &v : rhs) {
            push_back(v);
        }
        rhs.clear();
    }

    StackVec &operator=(StackVec &&rhs) noexcept {
        if (this == &rhs) {
            return *this;
        }

        clear();

        if (rhs.usesDynamicMem()) {
            if (usesDynamicMem()) {
                delete this->dynamicMem;
            }
            this->dynamicMem = rhs.dynamicMem;
            rhs.switchToStackMem();
            return *this;
        }

        if (usesDynamicMem()) {
            this->dynamicMem->assign(rhs.begin(), rhs.end());
            return *this;
        }

        for (const auto &v : rhs) {
            push_back(v);
        }
        rhs.clear();

        return *this;
    }

    template <typename T>
    constexpr iterator insert(const_iterator pos, T &&value) {
        auto offset = pos - begin();
        push_back(std::forward<T>(value));
        std::rotate(begin() + offset, end() - 1, end());
        return begin() + offset;
    }

    template <typename RhsT>
    void swap(RhsT &rhs) {
        if (this->usesDynamicMem() && rhs.usesDynamicMem()) {
            this->dynamicMem->swap(*rhs.dynamicMem);
            return;
        }
        size_t smallerSize = this->size() < rhs.size() ? this->size() : rhs.size();
        size_t i = 0;
        for (; i < smallerSize; ++i) {
            std::swap((*this)[i], rhs[i]);
        }
        if (this->size() == smallerSize) {
            auto biggerSize = rhs.size();
            for (; i < biggerSize; ++i) {
                this->push_back(std::move(rhs[i]));
            }
            rhs.resize(smallerSize);
        } else {
            auto biggerSize = this->size();
            for (; i < biggerSize; ++i) {
                rhs.push_back(std::move((*this)[i]));
            }
            this->resize(smallerSize);
        }
    }

    ~StackVec() {
        if (usesDynamicMem()) {
            delete dynamicMem;
            return;
        }
        clearStackObjects();
    }

    size_t size() const {
        if (usesDynamicMem()) {
            return dynamicMem->size();
        }
        return onStackSize;
    }

    bool empty() const {
        return 0U == size();
    }

    size_t capacity() const {
        if (usesDynamicMem()) {
            return dynamicMem->capacity();
        }
        return onStackCapacity;
    }

    void reserve(size_t newCapacity) {
        if (newCapacity > onStackCaps) {
            ensureDynamicMem();
            dynamicMem->reserve(newCapacity);
        }
    }

    void clear() {
        if (usesDynamicMem()) {
            dynamicMem->clear();
            return;
        }
        clearStackObjects();
    }

    void push_back(const DataType &v) { // NOLINT(readability-identifier-naming)
        isDynamicMemNeeded();

        if (usesDynamicMem()) {
            dynamicMem->push_back(v);
            return;
        }

        new (reinterpret_cast<DataType *>(onStackMemRawBytes) + onStackSize) DataType(v);
        ++onStackSize;
    }

    void push_back(DataType &&v) { // NOLINT(readability-identifier-naming)
        isDynamicMemNeeded();

        if (usesDynamicMem()) {
            dynamicMem->push_back(std::move(v));
            return;
        }

        new (reinterpret_cast<DataType *>(onStackMemRawBytes) + onStackSize) DataType(std::move(v));
        ++onStackSize;
    }

    void pop_back() { // NOLINT(readability-identifier-naming)
        if (usesDynamicMem()) {
            dynamicMem->pop_back();
            return;
        }

        UNRECOVERABLE_IF(0 == onStackSize);

        clearStackObjects(onStackSize - 1, 1U);
        --onStackSize;
    }

    DataType &operator[](std::size_t idx) {
        if (usesDynamicMem()) {
            return (*dynamicMem)[idx];
        }
        return *(reinterpret_cast<DataType *>(onStackMemRawBytes) + idx);
    }

    DataType &at(std::size_t idx) { return this->operator[](idx); }

    const DataType &at(std::size_t idx) const { return this->operator[](idx); }

    const DataType &operator[](std::size_t idx) const {
        if (usesDynamicMem()) {
            return (*dynamicMem)[idx];
        }
        return *(reinterpret_cast<const DataType *>(onStackMemRawBytes) + idx);
    }

    iterator begin() {
        if (usesDynamicMem()) {
            return dynamicMem->data();
        }

        return reinterpret_cast<DataType *>(onStackMemRawBytes);
    }

    reverse_iterator rbegin() {
        return reverse_iterator(end());
    }

    const_reverse_iterator crbegin() const {
        return const_reverse_iterator(end());
    }

    const_iterator begin() const {
        if (usesDynamicMem()) {
            return dynamicMem->data();
        }

        return reinterpret_cast<const DataType *>(onStackMemRawBytes);
    }

    iterator end() {
        if (usesDynamicMem()) {
            return dynamicMem->data() + dynamicMem->size();
        }

        return reinterpret_cast<DataType *>(onStackMemRawBytes) + onStackSize;
    }

    reverse_iterator rend() {
        return reverse_iterator(begin());
    }

    const_reverse_iterator crend() const {
        return const_reverse_iterator(begin());
    }

    const_iterator end() const {
        if (usesDynamicMem()) {
            return dynamicMem->data() + dynamicMem->size();
        }

        return reinterpret_cast<const DataType *>(onStackMemRawBytes) + onStackSize;
    }

    void resize(size_t newSize) {
        this->resizeImpl(newSize);
    }

    void resize(size_t newSize, const DataType &value) {
        resizeImpl(newSize, value);
    }

    bool usesDynamicMem() const {
        return reinterpret_cast<uintptr_t>(this->onStackMem) != reinterpret_cast<uintptr_t>(onStackMemRawBytes) && this->dynamicMem;
    }

    DataType *data() {
        if (usesDynamicMem()) {
            return dynamicMem->data();
        }
        return reinterpret_cast<DataType *>(onStackMemRawBytes);
    }

    const DataType *data() const {
        if (usesDynamicMem()) {
            return dynamicMem->data();
        }
        return reinterpret_cast<const DataType *>(onStackMemRawBytes);
    }

  private:
    template <typename RhsDataType, size_t rhsOnStackCapacity, typename RhsStackSizeT>
    friend class StackVec;

    template <typename... OptValueT>
    void resizeImpl(size_t newSize, OptValueT &&...optValue) {
        constexpr bool nonDefaultInitializer = sizeof...(OptValueT) > 0;
        static_assert(!nonDefaultInitializer || std::is_copy_constructible<DataType>(), "Stackvec cannot resize with value if DataType is not copy-constructible!");

        // new size does not fit into internal mem
        if (newSize > onStackCaps) {
            ensureDynamicMem();
        }

        // memory already backed by stl vector
        if (usesDynamicMem()) {
            if constexpr (nonDefaultInitializer) {
                dynamicMem->resize(newSize, std::forward<OptValueT>(optValue)...);
            } else {
                dynamicMem->resize(newSize);
            }
            return;
        }

        auto currentSize = std::min(onStackSize, onStackCaps);
        if (newSize <= currentSize) {
            // trim elements
            clearStackObjects(newSize, currentSize - newSize);
            onStackSize = static_cast<SizeT>(newSize);
            return;
        }

        while (onStackSize < newSize) {
            if constexpr (nonDefaultInitializer) {
                new (reinterpret_cast<DataType *>(onStackMemRawBytes) + onStackSize) DataType(std::forward<OptValueT>(optValue)...);
            } else {
                new (reinterpret_cast<DataType *>(onStackMemRawBytes) + onStackSize) DataType();
            }
            ++onStackSize;
        }
    }

    void isDynamicMemNeeded() {
        if (onStackSize == onStackCaps) {
            ensureDynamicMem();
        }
    }

    void ensureDynamicMem() {
        if (usesDynamicMem()) {
            return;
        }
        dynamicMem = new std::vector<DataType>();
        if (onStackSize > 0) {
            dynamicMem->reserve(onStackSize);
            for (auto it = reinterpret_cast<DataType *>(onStackMemRawBytes), end = reinterpret_cast<DataType *>(onStackMemRawBytes) + onStackSize; it != end; ++it) {
                dynamicMem->push_back(std::move(*it));
            }
            clearStackObjects();
        }
    }

    void clearStackObjects() {
        clearStackObjects(0, onStackSize);
        onStackSize = 0;
    }

    void clearStackObjects(size_t offset, size_t count) {
        UNRECOVERABLE_IF(offset + count > onStackSize);
        for (auto it = reinterpret_cast<DataType *>(onStackMemRawBytes) + offset, end = reinterpret_cast<DataType *>(onStackMemRawBytes) + offset + count; it != end; ++it) {
            it->~DataType();
        }
    }
    void switchToStackMem() {
        onStackMem = reinterpret_cast<DataType *const>(onStackMemRawBytes);
    }

    union {
        std::vector<DataType> *dynamicMem;
        DataType *onStackMem;
    };

    alignas(alignof(DataType)) char onStackMemRawBytes[sizeof(DataType[onStackCaps])];
    SizeT onStackSize = 0U;
};

namespace {
static_assert(sizeof(StackVec<char, 1U>::SizeT) == 1u, "");
static_assert(sizeof(StackVec<char, 7U>) <= 16u, "");
static_assert(sizeof(StackVec<uint32_t, 3U>) <= 24u, "");
} // namespace

template <typename T, size_t lhsStackCaps, size_t rhsStackCaps>
bool operator==(const StackVec<T, lhsStackCaps> &lhs,
                const StackVec<T, rhsStackCaps> &rhs) {
    if (lhs.size() != rhs.size()) {
        return false;
    }

    auto lhsIt = lhs.begin();
    auto lhsEnd = lhs.end();
    auto rhsIt = rhs.begin();

    for (; lhsIt != lhsEnd; ++lhsIt, ++rhsIt) {
        if (*lhsIt != *rhsIt) {
            return false;
        }
    }

    return true;
}

template <typename T, size_t lhsStackCaps, size_t rhsStackCaps>
bool operator!=(const StackVec<T, lhsStackCaps> &lhs,
                const StackVec<T, rhsStackCaps> &rhs) {
    return false == (lhs == rhs);
}

constexpr size_t maxRootDeviceIndices = 16;
class RootDeviceIndicesContainer : protected StackVec<uint32_t, maxRootDeviceIndices> {
  public:
    using StackVec<uint32_t, maxRootDeviceIndices>::StackVec;
    using StackVec<uint32_t, maxRootDeviceIndices>::at;
    using StackVec<uint32_t, maxRootDeviceIndices>::begin;
    using StackVec<uint32_t, maxRootDeviceIndices>::end;
    using StackVec<uint32_t, maxRootDeviceIndices>::size;
    using StackVec<uint32_t, maxRootDeviceIndices>::operator[];

    inline void pushUnique(uint32_t rootDeviceIndex) {
        if (indexPresent.size() <= rootDeviceIndex) {
            indexPresent.resize(rootDeviceIndex + 1);
        }
        if (!indexPresent[rootDeviceIndex]) {
            push_back(rootDeviceIndex);
            indexPresent[rootDeviceIndex] = 1;
        }
    }

  protected:
    StackVec<int8_t, maxRootDeviceIndices> indexPresent;
};
using RootDeviceIndicesMap = StackVec<std::tuple<uint32_t, uint32_t>, maxRootDeviceIndices>;