File: GmmRestrictions.cpp

package info (click to toggle)
intel-gmmlib 20.4.1%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 4,524 kB
  • sloc: cpp: 52,910; ansic: 5,587; makefile: 6
file content (837 lines) | stat: -rw-r--r-- 32,038 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
/*==============================================================================
Copyright(c) 2017 Intel Corporation

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files(the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and / or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
============================================================================*/

#include "Internal/Common/GmmLibInc.h"

/////////////////////////////////////////////////////////////////////////////////////
/// Checks that clients only set Presentable flag during a resource allocation, ONLY
/// when a platform supported render target is selected in ::GMM_RESOURCE_FORMAT enum.
///
/// @return true if displayable, false otherwise.
/////////////////////////////////////////////////////////////////////////////////////
bool GmmLib::GmmResourceInfoCommon::IsPresentableformat()
{
    const GMM_PLATFORM_INFO *pPlatform;
    const GMM_FORMAT_ENTRY * FormatTable = NULL;

    GMM_DPF_ENTER;
    __GMM_ASSERTPTR(pGmmGlobalContext, false);

    pPlatform   = GMM_OVERRIDE_PLATFORM_INFO(&Surf);
    FormatTable = &(pPlatform->FormatTable[0]);

    if(Surf.Flags.Gpu.Presentable == false)
    {
        // When Presentable flag is not set, no reason to check for valid RT
        // platform supported format. Safe to return true.
        return true;
    }

    if((Surf.Format > GMM_FORMAT_INVALID) &&
       (Surf.Format < GMM_RESOURCE_FORMATS))
    {
        if((FormatTable[Surf.Format].RenderTarget) &&
           (FormatTable[Surf.Format].Supported))
        {
            return true;
        }
        else
        {
            GMM_ASSERTDPF(0, "Present flag can only be set w/ a format!");
            return false;
        }
    }

    return false;
}

/////////////////////////////////////////////////////////////////////////////////////
/// Returns the restrictions that a particular resource must follow on a particular
/// OS or hardware.
///
/// @param[out]  Restrictions: restrictions that this resource must adhere to
/////////////////////////////////////////////////////////////////////////////////////
void GmmLib::GmmResourceInfoCommon::GetRestrictions(__GMM_BUFFER_TYPE &Restrictions)
{
    GMM_DPF_ENTER;

    GMM_TEXTURE_CALC *pTextureCalc = NULL;
    pTextureCalc                   = GMM_OVERRIDE_TEXTURE_CALC(&Surf);
    pTextureCalc->GetResRestrictions(&Surf, Restrictions);

    GMM_DPF_EXIT;
}


//=============================================================================
//
// Function: GmmResGetRestrictions
//
// Desc: This routine returns resource restrictions
//
// Parameters:
//      pPlatform: ptr to HW_DEVICE_EXTENSION
//      pResourceInfo: ptr to GMM_RESOURCE_INFO
//      pRestrictions: ptr to restrictions
//
// Returns:
//      void
//
//-----------------------------------------------------------------------------
void GMM_STDCALL GmmResGetRestrictions(GMM_RESOURCE_INFO *pResourceInfo,
                                       __GMM_BUFFER_TYPE *pRestrictions)
{
    pResourceInfo->GetRestrictions(*pRestrictions);
}

/////////////////////////////////////////////////////////////////////////////////////
/// Returns the best restrictions by comparing two buffer types. Each buffer type
/// carries alignment and size restrictions.
///
/// @param[in]  pFirstBuffer: Contains surface alignment and size restrictions
/// @param[in]  pSecondBuffer: Contains surface alignment and size restrictions
///
/// @return     Best Restrictions based on the two parameters passed
/////////////////////////////////////////////////////////////////////////////////////
__GMM_BUFFER_TYPE *GmmLib::GmmTextureCalc::GetBestRestrictions(__GMM_BUFFER_TYPE *      pFirstBuffer,
                                                               const __GMM_BUFFER_TYPE *pSecondBuffer)
{
    GMM_DPF_ENTER;

    if(IsRestrictionInvalid(pFirstBuffer)) //default
    {
        *pFirstBuffer = *pSecondBuffer;
        return pFirstBuffer;
    }

    pFirstBuffer->Alignment = GFX_MAX(pFirstBuffer->Alignment,
                                      pSecondBuffer->Alignment);

    pFirstBuffer->PitchAlignment = GFX_MAX(pFirstBuffer->PitchAlignment,
                                           pSecondBuffer->PitchAlignment);

    pFirstBuffer->RenderPitchAlignment = GFX_MAX(pFirstBuffer->RenderPitchAlignment,
                                                 pSecondBuffer->RenderPitchAlignment);

    pFirstBuffer->LockPitchAlignment = GFX_MAX(pFirstBuffer->LockPitchAlignment,
                                               pSecondBuffer->LockPitchAlignment);

    pFirstBuffer->MinPitch = GFX_MAX(pFirstBuffer->MinPitch,
                                     pSecondBuffer->MinPitch);

    pFirstBuffer->MinAllocationSize = GFX_MAX(pFirstBuffer->MinAllocationSize,
                                              pSecondBuffer->MinAllocationSize);

    pFirstBuffer->MinDepth = GFX_MAX(pFirstBuffer->MinDepth,
                                     pSecondBuffer->MinDepth);

    pFirstBuffer->MinHeight = GFX_MAX(pFirstBuffer->MinHeight,
                                      pSecondBuffer->MinHeight);

    pFirstBuffer->MinWidth = GFX_MAX(pFirstBuffer->MinWidth,
                                     pSecondBuffer->MinWidth);

    pFirstBuffer->MaxDepth = GFX_MIN(pFirstBuffer->MaxDepth,
                                     pSecondBuffer->MaxDepth);

    pFirstBuffer->MaxHeight = GFX_MIN(pFirstBuffer->MaxHeight,
                                      pSecondBuffer->MaxHeight);

    pFirstBuffer->MaxWidth = GFX_MIN(pFirstBuffer->MaxWidth,
                                     pSecondBuffer->MaxWidth);

    pFirstBuffer->NeedPow2LockAlignment = pFirstBuffer->NeedPow2LockAlignment |
                                          pSecondBuffer->NeedPow2LockAlignment;

    GMM_DPF_EXIT;
    return pFirstBuffer;
}

/////////////////////////////////////////////////////////////////////////////////////
/// Returns restrictions for 1D, 2D, 3D textures depending on how the surface
/// may possibliy be used.
///
/// @param[out]  pBuff: Restrictions filled in this struct
/////////////////////////////////////////////////////////////////////////////////////
void GmmLib::GmmTextureCalc::GetGenericRestrictions(GMM_TEXTURE_INFO *pTexInfo, __GMM_BUFFER_TYPE *pBuff)
{
    GMM_DPF_ENTER;
    const GMM_PLATFORM_INFO *pPlatformResource = GMM_OVERRIDE_PLATFORM_INFO(pTexInfo);

    if(pTexInfo->Flags.Gpu.NoRestriction)
    {
        // Impose zero restrictions. Ignore any other GPU usage flags
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->NoRestriction);
        return;
    }

    if(pTexInfo->Flags.Gpu.Texture)
    {
        if(pTexInfo->Type == RESOURCE_BUFFER)
        {
            *pBuff = pPlatformResource->BufferType;
        }
        else if(pTexInfo->Type == RESOURCE_CUBE)
        {
            *pBuff = pPlatformResource->CubeSurface;
        }
        else if(pTexInfo->Type == RESOURCE_3D)
        {
            *pBuff = pPlatformResource->Texture3DSurface;
        }
        else
        {
            *pBuff = pPlatformResource->Texture2DSurface;
            if(pTexInfo->Flags.Info.Linear)
            {
                *pBuff = pPlatformResource->Texture2DLinearSurface;
            }
            if(GmmIsReconstructableSurface(pTexInfo->Format))
            {
                pBuff->MaxHeight = pPlatformResource->ReconMaxHeight;
                pBuff->MaxWidth  = pPlatformResource->ReconMaxWidth;
            }
        }
    }
    if(pTexInfo->Flags.Gpu.RenderTarget ||
       pTexInfo->Flags.Gpu.CCS ||
       pTexInfo->Flags.Gpu.MCS)
    {
        // Gen7 onwards, bound by SURFACE_STATE constraints.
        if(pTexInfo->Type == RESOURCE_BUFFER)
        {
            *pBuff = pPlatformResource->BufferType;
        }
        else if(pTexInfo->Type == RESOURCE_CUBE)
        {
            *pBuff = pPlatformResource->CubeSurface;
        }
        else if(pTexInfo->Type == RESOURCE_3D)
        {
            *pBuff = pPlatformResource->Texture3DSurface;
        }
        else
        {
            *pBuff = pPlatformResource->Texture2DSurface;
            if(pTexInfo->Flags.Info.Linear)
            {
                *pBuff = pPlatformResource->Texture2DLinearSurface;
            }
            if(GmmIsReconstructableSurface(pTexInfo->Format))
            {
                pBuff->MaxHeight = pPlatformResource->ReconMaxHeight;
                pBuff->MaxWidth  = pPlatformResource->ReconMaxWidth;
            }
        }
    }
    if(pTexInfo->Flags.Gpu.Depth)
    {
        // Z
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->Depth);
    }
    if(pTexInfo->Flags.Gpu.Vertex)
    {
        // VertexData
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->Vertex);
    }
    if(pTexInfo->Flags.Gpu.Index)
    {
        // Index buffer
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->Index);
    }
    if(pTexInfo->Flags.Gpu.FlipChain)
    {
        // Async Flip
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->ASyncFlipSurface);
    }
    if(pTexInfo->Flags.Gpu.MotionComp)
    {
        // Media buffer
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->MotionComp);
    }
    if(pTexInfo->Flags.Gpu.State ||
       pTexInfo->Flags.Gpu.InstructionFlat ||
       pTexInfo->Flags.Gpu.ScratchFlat)
    {
        // indirect state
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->Vertex);
    }
    if(pTexInfo->Flags.Gpu.Query ||
       pTexInfo->Flags.Gpu.HistoryBuffer)
    {
        // Query
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->NoRestriction);
    }
    if(pTexInfo->Flags.Gpu.Constant)
    {
        //
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->Constant);
    }
    if(pTexInfo->Flags.Gpu.Stream)
    {
        //
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->Stream);
    }
    if(pTexInfo->Flags.Gpu.InterlacedScan)
    {
        //
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->InterlacedScan);
    }
    if(pTexInfo->Flags.Gpu.TextApi)
    {
        //
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->TextApi);
    }
    if(pTexInfo->Flags.Gpu.SeparateStencil)
    {
        //
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->Stencil);
    }
    if(pTexInfo->Flags.Gpu.HiZ)
    {
        //
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->HiZ);
    }
    if(pTexInfo->Flags.Gpu.Video)
    {
        //
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->Video);
        if(GmmIsReconstructableSurface(pTexInfo->Format))
        {
            pBuff->MaxHeight = pPlatformResource->ReconMaxHeight;
            pBuff->MaxWidth  = pPlatformResource->ReconMaxWidth;
        }
    }
    if(pTexInfo->Flags.Gpu.StateDx9ConstantBuffer)
    {
        //
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->StateDx9ConstantBuffer);
    }
    if(pTexInfo->Flags.Gpu.Overlay)
    {
        // Overlay buffer use Async Flip values
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->Overlay);

        if((pTexInfo->Format == GMM_FORMAT_YUY2) && (pTexInfo->BaseWidth == 640))
        {
            // override the pitch alignment
            pBuff->PitchAlignment = 64;
        }
    }
    if(pTexInfo->Flags.Info.XAdapter)
    {
        //Add Cross Adapter resource restriction for hybrid graphics.
        pBuff = GetBestRestrictions(pBuff, &pPlatformResource->XAdapter);
        if(pTexInfo->Type == RESOURCE_BUFFER)
        {
            pBuff->MaxWidth  = pPlatformResource->SurfaceMaxSize;
            pBuff->MaxPitch  = pPlatformResource->BufferType.MaxPitch;
            pBuff->MaxHeight = 1;
        }
    }

    //Non Aligned ExistingSysMem  Special cases.
    if((pTexInfo->Flags.Info.ExistingSysMem &&
        (!pTexInfo->ExistingSysMem.IsGmmAllocated) &&
        (!pTexInfo->ExistingSysMem.IsPageAligned)))
    {

        if(pTexInfo->Flags.Info.Linear ||
           pTexInfo->Flags.Info.SVM)
        {
            if(pTexInfo->Type == RESOURCE_BUFFER)
            {
                //Use combination of BufferType, NoRestriction to support large buffer with minimal pitch alignment
                *pBuff                      = pPlatformResource->BufferType;
                pBuff->PitchAlignment       = pPlatformResource->NoRestriction.PitchAlignment;
                pBuff->LockPitchAlignment   = pPlatformResource->NoRestriction.LockPitchAlignment;
                pBuff->RenderPitchAlignment = pPlatformResource->NoRestriction.LockPitchAlignment;
                pBuff->MinPitch             = pPlatformResource->NoRestriction.MinPitch;
            }

            //[To DO] Handle other types when needed!
        }
        /*
        else if(Surf.Flags.Gpu.Texture)
        {
            //Override as and when required
        }
        else if(Surf.Flags.Gpu.RenderTarget)
        {
            //Overide as and when Required
        }*/
    }

    GMM_DPF_EXIT;
}

//=============================================================================
//
// Function: __GmmPlatformResetRestrictions
//
// Desc: This routine initializes a __GMM_BUFFER_TYPE. Once this function is
//       called, the caller has a invalid restrictions.
//
// Parameters:
//      pRestriction ==> Restrictions
// Returns:
//      void
//
//-----------------------------------------------------------------------------
void __GmmPlatformResetRestrictions(__GMM_BUFFER_TYPE *pRestriction)
{
    pRestriction->MinDepth = 0xffffffff;
}


/////////////////////////////////////////////////////////////////////////////////////
/// Internal function returns the best restrictions depending on how the surface may
/// possibly be used.
///
/// @param[in]  pTexInfo: ptr to ::GMM_TEXTURE_INFO,
/// @param[in]  pRestrictions: Reference to surface alignment and size restrictions
///
/////////////////////////////////////////////////////////////////////////////////////
void GmmLib::GmmTextureCalc::GetTexRestrictions(GMM_TEXTURE_INFO * pTexInfo,
                                                __GMM_BUFFER_TYPE *pRestrictions)
{
    GMM_DPF_ENTER;

    GetResRestrictions(pTexInfo, *pRestrictions);

    GMM_DPF_EXIT;
}

/////////////////////////////////////////////////////////////////////////////////////
/// Returns the restrictions that a particular resource must follow on a particular
/// OS or hardware.
///
/// @param[out]  Restrictions: restrictions that this resource must adhere to
/////////////////////////////////////////////////////////////////////////////////////
void GmmLib::GmmTextureCalc::GetResRestrictions(GMM_TEXTURE_INFO * pTexinfo,
                                                __GMM_BUFFER_TYPE &Restrictions)
{
    GMM_DPF_ENTER;
    const GMM_PLATFORM_INFO *pPlatform = NULL;
    GMM_RESOURCE_FLAG        ZeroGpuFlags;

    __GMM_ASSERTPTR(pGmmGlobalContext, VOIDRETURN);

    pPlatform = GMM_OVERRIDE_PLATFORM_INFO(pTexinfo);

    // Check that at least one usage flag is set for allocations other than
    // Primary/Shadow/Staging.
    memset(&ZeroGpuFlags.Gpu, 0, sizeof(ZeroGpuFlags.Gpu));
    if((pTexinfo->Type <= RESOURCE_KMD_CHECK_START ||
        pTexinfo->Type >= RESOURCE_KMD_CHECK_END) &&
       !memcmp(&pTexinfo->Flags.Gpu, &ZeroGpuFlags.Gpu, sizeof(ZeroGpuFlags.Gpu)))
    {
        GMM_ASSERTDPF(0, "No GPU Usage specified!");
        return;
    }

    __GmmPlatformResetRestrictions(&Restrictions); //Set to Default

    // Get worst case restrictions that match GPU flags set in resource
    switch(pTexinfo->Type)
    {
        case RESOURCE_1D:
        case RESOURCE_2D:
        case RESOURCE_3D:
        case RESOURCE_CUBE:
        case RESOURCE_BUFFER:
        case RESOURCE_SCRATCH:
        case RESOURCE_GDI:
            GetGenericRestrictions(pTexinfo, &Restrictions);
            break;

        case RESOURCE_HW_CONTEXT:
        case RESOURCE_TAG_PAGE:
            if(pTexinfo->Flags.Info.TiledW ||
               pTexinfo->Flags.Info.TiledX ||
               GMM_IS_4KB_TILE(pTexinfo->Flags))
            {
                GMM_ASSERTDPF(0, "Tiled Pref specified for RESOURCE_LINEAR!");
                return;
            }
            GetLinearRestrictions(pTexinfo, &Restrictions);
            break;

        case RESOURCE_PRIMARY:
        case RESOURCE_SHADOW:
        case RESOURCE_STAGING:
            GetPrimaryRestrictions(pTexinfo, &Restrictions);
            break;

        case RESOURCE_NNDI:
            Restrictions = pPlatform->Nndi;
            break;

        case RESOURCE_HARDWARE_MBM:
        case RESOURCE_IFFS_MAPTOGTT:
            //Hardware MBM resource request can come for overlay allocation or normal
            //displayable allocation. So get the restrictions accordingly
            if(pTexinfo->Flags.Gpu.Overlay)
            {
                Restrictions = pPlatform->Overlay;
            }
            else
            {
                Restrictions = pPlatform->HardwareMBM;
            }
            break;

        case RESOURCE_CURSOR:
        case RESOURCE_PWR_CONTEXT:
        case RESOURCE_KMD_BUFFER:
        case RESOURCE_NULL_CONTEXT_INDIRECT_STATE:
        case RESOURCE_PERF_DATA_QUEUE:
        case RESOURCE_GLOBAL_BUFFER:
        case RESOURCE_FBC:
        case RESOURCE_GFX_CLIENT_BUFFER:
            Restrictions = pPlatform->Cursor;
            break;

        case RESOURCE_OVERLAY_DMA:
            Restrictions = pPlatform->NoRestriction;
            break;

        case RESOURCE_GTT_TRANSFER_REGION:
            GetGenericRestrictions(pTexinfo, &Restrictions);
            break;

        case RESOURCE_OVERLAY_INTERMEDIATE_SURFACE:
            Restrictions = pPlatform->Overlay;
            break;

        default:
            GetGenericRestrictions(pTexinfo, &Restrictions);
            GMM_ASSERTDPF(0, "Unkown Resource type");
    }
    // Apply any specific WA

    if(((pTexinfo->Flags.Wa.ILKNeedAvcMprRowStore32KAlign)) ||
       ((pTexinfo->Flags.Wa.ILKNeedAvcDmvBuffer32KAlign)))
    {
        Restrictions.Alignment = GFX_ALIGN(Restrictions.Alignment, GMM_KBYTE(32));
    }

    if(pGmmGlobalContext->GetWaTable().WaAlignContextImage && (pTexinfo->Type == RESOURCE_HW_CONTEXT))
    {
        Restrictions.Alignment = GFX_ALIGN(Restrictions.Alignment, GMM_KBYTE(64));
    }

    if(pTexinfo->Flags.Gpu.S3d &&
       pTexinfo->Flags.Info.Linear &&
       !pGmmGlobalContext->GetSkuTable().FtrDisplayEngineS3d)
    {
        Restrictions.Alignment      = PAGE_SIZE;
        Restrictions.PitchAlignment = PAGE_SIZE;
    }

    if(pTexinfo->Flags.Gpu.TiledResource)
    {
        // Need at least 64KB alignment to track tile mappings (h/w or s/w tracking).
        Restrictions.Alignment = GFX_ALIGN(Restrictions.Alignment, GMM_KBYTE(64));

        // Buffer tiled resources are trivially divided into 64KB tiles => Pitch must divide into 64KB tiles
        if(pTexinfo->Type == RESOURCE_BUFFER)
        {
            Restrictions.PitchAlignment = GFX_ALIGN(Restrictions.PitchAlignment, GMM_KBYTE(64));
        }

        if(GFX_GET_CURRENT_RENDERCORE(pPlatform->Platform) >= IGFX_GEN9_CORE)
        {
            pGmmGlobalContext->GetPlatformInfo().SurfaceMaxSize = GMM_TBYTE(1);
        }
    }

    // SKL TileY Display needs 1MB alignment.
    if(((pTexinfo->Type == RESOURCE_PRIMARY) ||
        pTexinfo->Flags.Gpu.FlipChain) &&
       (GMM_IS_4KB_TILE(pTexinfo->Flags) ||
        pTexinfo->Flags.Info.TiledYf))
    {
        Restrictions.Alignment = GMM_MBYTE(1);
    }

    if(pTexinfo->Flags.Info.RenderCompressed ||
       pTexinfo->Flags.Info.MediaCompressed)
    {
        Restrictions.Alignment = GFX_ALIGN(Restrictions.Alignment, (!WA16K ? GMM_KBYTE(64) : GMM_KBYTE(16)));
    }

    GMM_DPF_EXIT;
}

/////////////////////////////////////////////////////////////////////////////////////
/// Calculates surface size based on Non Aligned ExistingSysMem restrictions.
///
/// @return     ::GMM_STATUS
/////////////////////////////////////////////////////////////////////////////////////
GMM_STATUS GmmLib::GmmResourceInfoCommon::ApplyExistingSysMemRestrictions()
{
    const GMM_PLATFORM_INFO *pPlatform;

    // Handle Minimal Restriction ExistingSysMem Requirements...
    GMM_GFX_SIZE_T    AdditionalPaddingBytes = 0;
    GMM_GFX_SIZE_T    AdditionalPaddingRows  = 0;
    GMM_GFX_SIZE_T    BaseAlignment          = 1; // 1 = Byte Alignment
    GMM_GFX_SIZE_T    EndAlignment           = 1; // 1 = Byte Alignment
    GMM_GFX_SIZE_T    SizePadding            = 1; // 1 = Byte Padding
    uint32_t          CompressHeight, CompressWidth, CompressDepth;
    GMM_GFX_SIZE_T    Width, Height;
    GMM_TEXTURE_INFO *pTexInfo = &Surf;
    GMM_TEXTURE_CALC *pTextureCalc;

    GMM_DPF_ENTER;

    pPlatform    = GMM_OVERRIDE_PLATFORM_INFO(pTexInfo);
    pTextureCalc = GMM_OVERRIDE_TEXTURE_CALC(pTexInfo);

    Height = pTexInfo->BaseHeight;
    Width  = pTexInfo->BaseWidth;

#define UPDATE_BASE_ALIGNMENT(a)                                                                                                              \
    {                                                                                                                                         \
        __GMM_ASSERT((GFX_MAX(BaseAlignment, a) % GFX_MIN(BaseAlignment, a)) == 0); /* Revisit if ever have to support complex alignments. */ \
        BaseAlignment = GFX_MAX(BaseAlignment, a);                                                                                            \
    }

#define UPDATE_PADDING(p)                      \
    {                                          \
        SizePadding = GFX_MAX(SizePadding, p); \
    }

#define UPDATE_ADDITIONAL_ROWS(r)                                  \
    {                                                              \
        AdditionalPaddingRows = GFX_MAX(AdditionalPaddingRows, r); \
    }

#define UPDATE_ADDITIONAL_BYTES(b)                                   \
    {                                                                \
        AdditionalPaddingBytes = GFX_MAX(AdditionalPaddingBytes, b); \
    }

#define UPDATE_END_ALIGNMENT(a)                                                                                                             \
    {                                                                                                                                       \
        __GMM_ASSERT((GFX_MAX(EndAlignment, a) % GFX_MIN(EndAlignment, a)) == 0); /* Revisit if ever have to support complex alignments. */ \
        EndAlignment = GFX_MAX(EndAlignment, a);                                                                                            \
    }


    if(!pTexInfo->Pitch)
    {
        __GMM_ASSERT(pTexInfo->Type == RESOURCE_1D); // Clients can leave pitch zero for 1D, and we'll fill-in...
        pTexInfo->Pitch = Width * (pTexInfo->BitsPerPixel >> 3);
    }

    __GMM_ASSERT( // Currently limiting our support...
    pTexInfo->Flags.Gpu.NoRestriction ||
    pTexInfo->Flags.Gpu.Index ||
    pTexInfo->Flags.Gpu.RenderTarget ||
    pTexInfo->Flags.Gpu.Texture ||
    pTexInfo->Flags.Gpu.Vertex);

    __GMM_ASSERT( // Trivial, Linear Surface...
    ((pTexInfo->Type == RESOURCE_BUFFER) || (pTexInfo->Type == RESOURCE_1D) || (pTexInfo->Type == RESOURCE_2D)) &&
    (pTexInfo->MaxLod == 0) &&
    !GMM_IS_TILED(pPlatform->TileInfo[pTexInfo->TileMode]) &&
    !GmmIsPlanar(pTexInfo->Format) &&
    ((pTexInfo->ArraySize <= 1) || (pTexInfo->Type == RESOURCE_BUFFER)));

    __GMM_ASSERT( // Valid Surface...
    (Width > 0) &&
    !((pTexInfo->Type == RESOURCE_BUFFER) && GmmIsYUVPacked(pTexInfo->Format)));

    // Convert to compression blocks, if applicable...
    if(GmmIsCompressed(pTexInfo->Format))
    {
        pTextureCalc->GetCompressionBlockDimensions(pTexInfo->Format, &CompressWidth, &CompressHeight, &CompressDepth);

        Width  = GFX_CEIL_DIV(Width, CompressWidth);
        Height = GFX_CEIL_DIV(Height, CompressHeight);
    }

    __GMM_ASSERT( // Valid Surface Follow-Up...
    (pTexInfo->Pitch >= (Width * (pTexInfo->BitsPerPixel >> 3))));

    if(!pTexInfo->Flags.Gpu.NoRestriction && !pTexInfo->Flags.Info.SVM && !pTexInfo->Flags.Info.Linear)
    {
        if(pTexInfo->Flags.Gpu.Index) /////////////////////////////////////////////////////////
        {
            __GMM_ASSERT(!(
            pTexInfo->Flags.Gpu.RenderTarget ||
            pTexInfo->Flags.Gpu.Texture ||
            pTexInfo->Flags.Gpu.Vertex)); // Can explore if needed what combo's make sense--and how req's should combine.

            // 3DSTATE_INDEX_BUFFER...
            UPDATE_BASE_ALIGNMENT(4); // 32-bit worst-case, since GMM doesn't receive element-size from clients.
            if(pGmmGlobalContext->GetWaTable().WaAlignIndexBuffer)
            {
                UPDATE_END_ALIGNMENT(64);
            }
            else
            {
                UPDATE_END_ALIGNMENT(1);
            }
        }

        if(pTexInfo->Flags.Gpu.Vertex) ////////////////////////////////////////////////////////
        {
            __GMM_ASSERT(!(
            pTexInfo->Flags.Gpu.Index ||
            pTexInfo->Flags.Gpu.RenderTarget ||
            pTexInfo->Flags.Gpu.Texture)); // Can explore if needed what combo's make sense--and how req's should combine.

            // VERTEX_BUFFER_STATE...
            UPDATE_BASE_ALIGNMENT(1); // VB's have member alignment requirements--but it's up to UMD to enforce.
            UPDATE_PADDING(1);
        }

        if(pTexInfo->Flags.Gpu.RenderTarget) //////////////////////////////////////////////////
        {
            uint32_t ElementSize;

            // SURFACE_STATE...
            ElementSize = (pTexInfo->BitsPerPixel >> 3) * (GmmIsYUVPacked(pTexInfo->Format) ? 2 : 1);
            __GMM_ASSERT((pTexInfo->Pitch % ElementSize) == 0);
            UPDATE_BASE_ALIGNMENT(ElementSize);
            UPDATE_PADDING(pTexInfo->Pitch * 2); // "Surface Padding Requirements --> Render Target and Media Surfaces"
        }

        if(pTexInfo->Flags.Gpu.Texture) // (i.e. Sampler Surfaces) ///////////////////////////
        {
            UPDATE_BASE_ALIGNMENT(1); // Sampler supports byte alignment (with performance hit if misaligned).

            if(pGmmGlobalContext->GetWaTable().WaNoMinimizedTrivialSurfacePadding)
            {
                if(pTexInfo->Type == RESOURCE_BUFFER)
                {
                    if(pGmmGlobalContext->GetWaTable().WaNoBufferSamplerPadding)
                    {
                        // Client agreeing to take responsibility for flushing L3 after sampling/etc.
                    }
                    else
                    {
                        // GMM currently receives GENERIC_8BIT for
                        // RESOURCE_BUFFER creations, so we have to assume the
                        // worst-case sample size of 128-bit (unless we alter
                        // our interface meaning):
                        uint32_t ElementSize = 16;

                        // "Surface Padding Requirements --> Sampling Engine Surfaces"
                        UPDATE_PADDING(ElementSize * ((GFX_GET_CURRENT_RENDERCORE(pPlatform->Platform) == IGFX_GEN8_CORE) ? 512 : 256));
                        UPDATE_ADDITIONAL_BYTES(16);
                    }
                }
                else // RESOURCE_1D/2D...
                {
                    /* Sampler needs Alignment Unit padding--
                        but sampler arch confirms that's overly conservative
                        padding--and for trivial (linear, single-subresource)
                        2D's, even-row (quad-row on BDW.A0) plus additional
                        64B padding is sufficient. (E.g. pitch overfetch will
                        be caught by subsequent rows or the additional 64B. */

                    __GMM_ASSERT((GFX_GET_CURRENT_RENDERCORE(pPlatform->Platform) <= IGFX_GEN8_CORE));

                    if(GmmIsCompressed(pTexInfo->Format))
                    {
                        // "For compressed textures...padding at the bottom of the surface is to an even compressed row."
                        UPDATE_PADDING(pTexInfo->Pitch * 2); // (Sampler arch confirmed that even-row is sufficient on BDW despite BDW's 4x4 sampling, since this req is from L2 instead of L1.)
                    }
                    else
                    {
                        UPDATE_PADDING(pTexInfo->Pitch * ((GFX_GET_CURRENT_RENDERCORE(pPlatform->Platform) == IGFX_GEN8_CORE) ? 4 : 2)); // Sampler Fetch Rows: BDW ? 4 : 2
                    }

                    // "For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats, additional padding is required."
                    if(GmmIsYUVPacked(pTexInfo->Format) || (pTexInfo->BitsPerPixel == 96) || (pTexInfo->BitsPerPixel == 48) || (pTexInfo->BitsPerPixel == 24))
                    {
                        UPDATE_ADDITIONAL_BYTES(16);
                        UPDATE_ADDITIONAL_ROWS(1);
                    }

                    /* "For linear surfaces, additional padding of 64
                        bytes is required at the bottom of the surface."
                        (Sampler arch confirmed the 64 bytes can overlap with
                        the other "additional 16 bytes" mentions in that section.) */
                    UPDATE_ADDITIONAL_BYTES(64);
                }
            }
            else
            {
                /* For SURFTYPE_BUFFER, SURFTYPE_1D, and
                    SURFTYPE_2D non-array, non-MSAA, non-mip-mapped surfaces in
                    linear memory, the only padding requirement is to the next
                    aligned 64-byte boundary beyond the end of the surface. */
                UPDATE_END_ALIGNMENT(64);
            }
        }
    }
    else // Gpu.NoRestriction...
    {
        // Clients specify NoRestriction at their own risk--e.g. it can be
        // appropriate when using IA-Coherent L3 combined with L3 being in
        // unified/"Rest" mode (where there won't be write-->read-only
        // collisions on unintentionally shared cachelines).
    }

    { //Finally calculate surf size
        GMM_GFX_SIZE_T OriginalEnd, RequiredSize;

        ExistingSysMem.pVirtAddress =
        (ExistingSysMem.pExistingSysMem & (PAGE_SIZE - 1)) ?
        ((uint64_t)GFX_ALIGN(ExistingSysMem.pExistingSysMem,
                             BaseAlignment)) :
        ExistingSysMem.pExistingSysMem;

        ExistingSysMem.pGfxAlignedVirtAddress =
        (uint64_t)GFX_ALIGN(
        (uint64_t)ExistingSysMem.pVirtAddress, PAGE_SIZE);

        __GMM_ASSERT((ExistingSysMem.pVirtAddress % BaseAlignment) == 0);

        RequiredSize = pTexInfo->Pitch * Height;

        RequiredSize =
        GFX_ALIGN(RequiredSize, SizePadding) +
        (AdditionalPaddingRows * pTexInfo->Pitch) +
        AdditionalPaddingBytes;

        OriginalEnd = ExistingSysMem.pVirtAddress + RequiredSize;
        RequiredSize += GFX_ALIGN(OriginalEnd, EndAlignment) - OriginalEnd;

        //Ensure sufficient ExistingSysMem available.
        if(ExistingSysMem.Size < RequiredSize)
        {
            return GMM_ERROR;
        }

        Surf.Size = RequiredSize;
    }

    GMM_DPF_EXIT;

    return GMM_SUCCESS;
}