File: CpuSwizzleBlt.c

package info (click to toggle)
intel-gmmlib 20.4.1%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 4,524 kB
  • sloc: cpp: 52,910; ansic: 5,587; makefile: 6
file content (1094 lines) | stat: -rw-r--r-- 57,343 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
/*==============================================================================
Copyright(c) 2017 Intel Corporation

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files(the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and / or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
============================================================================*/
// clang-format off
// CpuSwizzleBlt.c - Surface swizzling definitions and BLT functionality.

// [!] File serves as its own header:
//      #define INCLUDE_CpuSwizzleBlt_c_AS_HEADER
//      #include "CpuSwizzleBlt.c"

#define SUB_ELEMENT_SUPPORT         // Support for Partial Element Transfer (e.g. separating/merging depth-stencil).
#define INTEL_TILE_W_SUPPORT        // Stencil Only;

#ifndef CpuSwizzleBlt_INCLUDED

#ifdef __cplusplus
extern "C" {
#endif

// Background ##################################################################

/* Pixel-based surfaces commonly stored in memory row-by-row. This convention
has simple "y * Pitch + x" addressing but has spatial locality only in
horizontal direction--i.e. horizontal pixel neighbors stored next to each other
but vertical neighbors stored entire pitch away.

Since many graphics operations involve multi-dimensional data access, to
improve cache/memory access performance it is often more beneficial to use
alternative storage conventions which have multi-dimensional spatial locality--
i.e. where pixels tend to be stored near both their horizontal and vertical
neighbors.

"Tiling/Swizzling" is storage convention that increases multi-dimensional
spatial locality by treating surface as series of smaller regions/"tiles",
laid out in row-major order across surface, with entire content of each tile
stored contiguously. Data within each tile is stored in pattern that further
maximizes the locality. */


// Swizzle Descriptors #########################################################

/* Tile sizes always powers of 2 and chosen to be architecturally convenient--
e.g. 4KB to match physical page size. Tile dimensions also powers of 2, usually
chosen to produce square tiles for targeted pixel size--e.g. 4KB = 128 bytes x
32 rows = 32 x 32 pixels @ 4 bytes-per-pixel.

Since tile size and dimensions all powers of two, the spatial-to-linear mapping
required to store a tile can be trivial: spatial indexing bits can simply be
mapped to linear offset bits--e.g. for a 4KB, 128x32 tile...each byte within
tile can be referenced with a 7-bit X index and 5-bit Y index--and each of
those 12 index bits can be individually mapped to a bit in the 12-bit offset of
the tile's linear storage.

The order in which spatial index bits are mapped to linear offset bits
determines the spatial locality properties of the surface data. E.g. the
following mapping...

    Linear[11:0] = Y4 Y3 Y2 Y1 Y0 X6 X5 X4 X3 X2 X1 X0
                   \-- Y[4:0] --/ \----- X[6:0] -----/

...stores bytes of tile in row-major order, with horizontal neighbors stored
contiguously and vertical neighbors stored 128 bytes away. If instead, Y index
bits were mapped to the low-order...

    Linear[11:0] = X6 X5 X4 X3 X2 X1 X0 Y4 Y3 Y2 Y1 Y0
                   \----- X[6:0] -----/ \-- Y[4:0] --/

...bytes of tile would be stored in column-major order, with vertical neighbors
stored contiguously and horizontal neighbors stored 32 bytes away.

Individual X and Y bits can be separated and interspersed in mapping to
increase locality via sub-tiling--e.g...

    Linear[11:0] = Y4 Y3 Y2 X6 X5 X4 Y1 Y0 X3 X2 X1 X0
                                     \-- Sub-Tile ---/

...subdivies tile into 16x4 sub-tiles laid out in row-major order across tile,
with sub-tile content further stored in row-major order, with horizontal byte
neighbors within sub-tile stored contiguously and vertical neighbors only 16
bytes away. This means single 64-byte cache line contains 4x4 group of 32bpp
pixels--which is powerful spatial locality for graphics processing.

If mappings restricted to being "parallel" for index bits (i.e. bits of given
index can change position but not relative order during mapping), then bit
indexes need not be explicitly denoted--e.g. the previous sub-tiling mapping
can be represented as...

    Linear[11:0] = Y Y Y X X X Y Y X X X X

...where X and Y index bits are implied to be zero-based-counted in order they
are encountered.

In software, spatial-to-linear mapping conveniently described with bit mask for
each dimension, where a set bit indicates the next bit of that dimension's
index is mapped to that position in the linear offset--e.g....

    Linear[11:0] = Y Y Y X X X Y Y X X X X
    MaskX =        0 0 0 1 1 1 0 0 1 1 1 1
    MaskY =        1 1 1 0 0 0 1 1 0 0 0 0

Such dimensional masks all that's needed to describe given tiling/swizzling
convention, since tile size and dimensions can be derived from the masks:

    TileWidth =  2 ^ NumberOfSetBits(MaskX)
    TileHeight = 2 ^ NumberOfSetBits(MaskY)
    TileSize =   2 ^ NumberOfSetBits(MaskX OR MaskY)

Tiling/swizzling is not limited to 2D. With addition of another tile dimension,
spatial locality for 3D or MSAA sample neighbors can be controlled, also. */

    typedef struct  _SWIZZLE_DESCRIPTOR {
        struct          _SWIZZLE_DESCRIPTOR_MASKS {
            int             x, y, z;
        }               Mask;
    }               SWIZZLE_DESCRIPTOR;

    // Definition Helper Macros...
    #define X ,'x'
    #define Y ,'y'
    #define Z ,'z'
    #define S ,'z' // S = MSAA Sample Index
    #define o ,0   // o = N/A Swizzle Bit
    #ifdef INCLUDE_CpuSwizzleBlt_c_AS_HEADER
        #define __SWIZZLE(Name, b15, b14, b13, b12, b11, b10, b9, b8, b7, b6, b5, b4, b3, b2, b1, b0) \
            extern const SWIZZLE_DESCRIPTOR Name;
    #else // C Compile...
        #define __SWIZZLE(Name, b15, b14, b13, b12, b11, b10, b9, b8, b7, b6, b5, b4, b3, b2, b1, b0) \
            const SWIZZLE_DESCRIPTOR Name = \
                { (b15 == 'x' ? 0x8000 : 0) + (b14 == 'x' ? 0x4000 : 0) + (b13 == 'x' ? 0x2000 : 0) + (b12 == 'x' ? 0x1000 : 0) + (b11 == 'x' ? 0x0800 : 0) + (b10 == 'x' ? 0x0400 : 0) + (b9 == 'x' ? 0x0200 : 0) + (b8 == 'x' ? 0x0100 : 0) + (b7 == 'x' ? 0x0080 : 0) + (b6 == 'x' ? 0x0040 : 0) + (b5 == 'x' ? 0x0020 : 0) + (b4 == 'x' ? 0x0010 : 0) + (b3 == 'x' ? 0x0008 : 0) + (b2 == 'x' ? 0x0004 : 0) + (b1 == 'x' ? 0x0002 : 0) + (b0 == 'x' ? 0x0001 : 0), \
                  (b15 == 'y' ? 0x8000 : 0) + (b14 == 'y' ? 0x4000 : 0) + (b13 == 'y' ? 0x2000 : 0) + (b12 == 'y' ? 0x1000 : 0) + (b11 == 'y' ? 0x0800 : 0) + (b10 == 'y' ? 0x0400 : 0) + (b9 == 'y' ? 0x0200 : 0) + (b8 == 'y' ? 0x0100 : 0) + (b7 == 'y' ? 0x0080 : 0) + (b6 == 'y' ? 0x0040 : 0) + (b5 == 'y' ? 0x0020 : 0) + (b4 == 'y' ? 0x0010 : 0) + (b3 == 'y' ? 0x0008 : 0) + (b2 == 'y' ? 0x0004 : 0) + (b1 == 'y' ? 0x0002 : 0) + (b0 == 'y' ? 0x0001 : 0), \
                  (b15 == 'z' ? 0x8000 : 0) + (b14 == 'z' ? 0x4000 : 0) + (b13 == 'z' ? 0x2000 : 0) + (b12 == 'z' ? 0x1000 : 0) + (b11 == 'z' ? 0x0800 : 0) + (b10 == 'z' ? 0x0400 : 0) + (b9 == 'z' ? 0x0200 : 0) + (b8 == 'z' ? 0x0100 : 0) + (b7 == 'z' ? 0x0080 : 0) + (b6 == 'z' ? 0x0040 : 0) + (b5 == 'z' ? 0x0020 : 0) + (b4 == 'z' ? 0x0010 : 0) + (b3 == 'z' ? 0x0008 : 0) + (b2 == 'z' ? 0x0004 : 0) + (b1 == 'z' ? 0x0002 : 0) + (b0 == 'z' ? 0x0001 : 0) }
    #endif
    #define SWIZZLE(__SWIZZLE_Args) __SWIZZLE __SWIZZLE_Args

    // Legacy Intel Tiling Swizzles...
    SWIZZLE(( INTEL_TILE_X              o o o o Y Y Y X X X X X X X X X ));
    SWIZZLE(( INTEL_TILE_Y              o o o o X X X Y Y Y Y Y X X X X ));

    // Standard Tiling Swizzles...
    #define LOW_128bpp                                  X X Y Y X X X X
    #define LOW_64bpp                                   LOW_128bpp
    #define LOW_32bpp                                   X Y Y Y X X X X
    #define LOW_16bpp                                   LOW_32bpp
    #define LOW_8bpp                                    Y Y Y Y X X X X

    SWIZZLE(( INTEL_TILEYF_128          o o o o X Y X Y LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYF_64           o o o o X Y X Y LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYF_32           o o o o X Y X Y LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYF_16           o o o o X Y X Y LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYF_8            o o o o X Y X Y LOW_8bpp   ));

    SWIZZLE(( INTEL_TILEYS_128          X Y X Y X Y X Y LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYS_64           X Y X Y X Y X Y LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYS_32           X Y X Y X Y X Y LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYS_16           X Y X Y X Y X Y LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYS_8            X Y X Y X Y X Y LOW_8bpp   ));

    SWIZZLE(( INTEL_TILEYF_MSAA2_128    o o o o S Y X Y LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYF_MSAA2_64     o o o o S Y X Y LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA2_32     o o o o S Y X Y LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA2_16     o o o o S Y X Y LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA2_8      o o o o S Y X Y LOW_8bpp   ));

    SWIZZLE(( INTEL_TILEYS_MSAA2_128    S Y X Y X Y X Y LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYS_MSAA2_64     S Y X Y X Y X Y LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA2_32     S Y X Y X Y X Y LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA2_16     S Y X Y X Y X Y LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA2_8      S Y X Y X Y X Y LOW_8bpp   ));

    SWIZZLE(( INTEL_TILEYF_MSAA4_128    o o o o S S X Y LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYF_MSAA4_64     o o o o S S X Y LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA4_32     o o o o S S X Y LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA4_16     o o o o S S X Y LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA4_8      o o o o S S X Y LOW_8bpp   ));

    SWIZZLE(( INTEL_TILEYS_MSAA4_128    S S X Y X Y X Y LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYS_MSAA4_64     S S X Y X Y X Y LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA4_32     S S X Y X Y X Y LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA4_16     S S X Y X Y X Y LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA4_8      S S X Y X Y X Y LOW_8bpp   ));

    SWIZZLE(( INTEL_TILEYF_MSAA8_128    o o o o S S S Y LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYF_MSAA8_64     o o o o S S S Y LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA8_32     o o o o S S S Y LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA8_16     o o o o S S S Y LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA8_8      o o o o S S S Y LOW_8bpp   ));

    SWIZZLE(( INTEL_TILEYS_MSAA8_128    S S S Y X Y X Y LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYS_MSAA8_64     S S S Y X Y X Y LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA8_32     S S S Y X Y X Y LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA8_16     S S S Y X Y X Y LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA8_8      S S S Y X Y X Y LOW_8bpp   ));

    SWIZZLE(( INTEL_TILEYF_MSAA16_128   o o o o S S S S LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYF_MSAA16_64    o o o o S S S S LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA16_32    o o o o S S S S LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA16_16    o o o o S S S S LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYF_MSAA16_8     o o o o S S S S LOW_8bpp   ));

    SWIZZLE(( INTEL_TILEYS_MSAA16_128   S S S S X Y X Y LOW_128bpp ));
    SWIZZLE(( INTEL_TILEYS_MSAA16_64    S S S S X Y X Y LOW_64bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA16_32    S S S S X Y X Y LOW_32bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA16_16    S S S S X Y X Y LOW_16bpp  ));
    SWIZZLE(( INTEL_TILEYS_MSAA16_8     S S S S X Y X Y LOW_8bpp   ));

    #define LOW_3D                                      Z Z Y Y X X X X

    SWIZZLE(( INTEL_TILEYF_3D_128       o o o o Y Z X X LOW_3D ));
    SWIZZLE(( INTEL_TILEYF_3D_64        o o o o Y Z X X LOW_3D ));
    SWIZZLE(( INTEL_TILEYF_3D_32        o o o o Y Z X Y LOW_3D ));
    SWIZZLE(( INTEL_TILEYF_3D_16        o o o o Y Z Y Z LOW_3D ));
    SWIZZLE(( INTEL_TILEYF_3D_8         o o o o Y Z Y Z LOW_3D ));

    SWIZZLE(( INTEL_TILEYS_3D_128       X Y Z X Y Z X X LOW_3D ));
    SWIZZLE(( INTEL_TILEYS_3D_64        X Y Z X Y Z X X LOW_3D ));
    SWIZZLE(( INTEL_TILEYS_3D_32        X Y Z X Y Z X Y LOW_3D ));
    SWIZZLE(( INTEL_TILEYS_3D_16        X Y Z X Y Z Y Z LOW_3D ));
    SWIZZLE(( INTEL_TILEYS_3D_8         X Y Z X Y Z Y Z LOW_3D ));

    #ifdef INTEL_TILE_W_SUPPORT
        SWIZZLE(( INTEL_TILE_W          o o o o X X X Y Y Y Y X Y X Y X ));
    #endif

    #undef LOW_3D
    #undef LOW_128bpp
    #undef LOW_64bpp
    #undef LOW_32bpp
    #undef LOW_16bpp
    #undef LOW_8bpp
    #undef X
    #undef Y
    #undef Z
    #undef S
    #undef o
    #undef __SWIZZLE
    #undef SWIZZLE


// Accessing Swizzled Surface ##################################################

/* While graphics hardware prefers to access surfaces stored in tiled/swizzled
formats, logically accessing such surfaces with CPU-based software is non-
trivial when high throughput is goal.

This file implements (1) SwizzleOffset function to compute swizzled offset of
dimensionally-specified surface byte, and (2) CpuSwizzleBlt function to BLT
between linear ("y * pitch + x") and swizzled surfaces--with goal of providing
high-performance, swizzling BLT implementation to be used both in production
and as a guide for those seeking to understand swizzled access or implement
functionality beyond the simple BLT. */

// Surface Descriptor for CpuSwizzleBlt function...
typedef struct _CPU_SWIZZLE_BLT_SURFACE
{
    void                        *pBase;         // Pointer to surface base.
    int                         Pitch, Height;  // Row-pitch in bytes, and height, of surface.
    const SWIZZLE_DESCRIPTOR    *pSwizzle;      // Pointer to surface's swizzle descriptor, or NULL if unswizzled.
    int                         OffsetX;        // Horizontal offset into surface for BLT rectangle, in bytes.
    int                         OffsetY;        // Vertical offset into surface for BLT rectangle, in physical/pitch rows.
    int                         OffsetZ;        // Zero if N/A, or 3D offset into surface for BLT rectangle, in 3D slices or MSAA samples as appropriate.

    #ifdef SUB_ELEMENT_SUPPORT
        struct _CPU_SWIZZLE_BLT_SURFACE_ELEMENT
        {
            int                     Pitch, Size; // Zero if full-pixel BLT, or pitch and size, in bytes, of pixel element being BLT'ed.
        }                       Element;

        /* e.g. to BLT only stencil data from S8D24 surface to S8 surface...
            Dest.Element.Size = Src.Element.Size = sizeof(S8) = 1;
            Dest.Element.Pitch = sizeof(S8) = 1;
            Src.Element.Pitch = sizeof(S8D24) = 4;
            Src.OffsetX += BYTE_OFFSET_OF_S8_WITHIN_S8D24; */
    #endif
} CPU_SWIZZLE_BLT_SURFACE;

extern int SwizzleOffset(const SWIZZLE_DESCRIPTOR *pSwizzle, int Pitch, int OffsetX, int OffsetY, int OffsetZ);
extern void CpuSwizzleBlt(CPU_SWIZZLE_BLT_SURFACE *pDest, CPU_SWIZZLE_BLT_SURFACE *pSrc, int CopyWidthBytes, int CopyHeight);

#ifdef __cplusplus
}
#endif

#define CpuSwizzleBlt_INCLUDED

#endif


#ifndef INCLUDE_CpuSwizzleBlt_c_AS_HEADER

//#define MINIMALIST                // Use minimalist, unoptimized implementation.

#include "assert.h" // Quoted to allow local-directory override.

#if(_MSC_VER >= 1400)
    #include <intrin.h>
#elif((defined __clang__) ||(__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 5)))
    #include <cpuid.h>
    #include <x86intrin.h>
#else
    #error "Unexpected compiler!"
#endif


// POPCNT: Count Lit Bits...                 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
static unsigned char PopCnt4[16] =          {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
#define POPCNT4(x)  (PopCnt4[(x) & 0xf])
#define POPCNT16(x) (POPCNT4((x) >> 12) + POPCNT4((x) >> 8) + POPCNT4((x) >> 4) + POPCNT4(x))


int SwizzleOffset( // ##########################################################

    /* Return swizzled offset of dimensionally-specified surface byte. */

    const SWIZZLE_DESCRIPTOR    *pSwizzle,  // Pointer to applicable swizzle descriptor.
    int                         Pitch,      // Pointer to applicable surface row-pitch.
    int                         OffsetX,    // Horizontal offset into surface of the target byte, in bytes.
    int                         OffsetY,    // Vertical offset into surface of the target byte, in physical/pitch rows.
    int                         OffsetZ)    // Zero if N/A, or 3D offset into surface of the target byte, in 3D slices or MSAA samples as appropriate.

    /* Given logically-specified (x, y, z) byte within swizzled surface,
    function returns byte's linear/memory offset from surface's base--i.e. it
    performs the swizzled, spatial-to-linear mapping.

    Function makes no real effort to perform optimally, since should only used
    outside loops in CpuSwizzleBlt and similar functions. If any of this
    functionality was needed in performance path, a custom implementation
    should be used that limits itself to functionality specifically needed
    (probably single-dimension, intra-tile offsets) and uses a fast computation
    (e.g. LUT's, hard-codings, PDEP). */

{ // ###########################################################################

    static char PDepSupported = -1; // AVX2/BMI2 PDEP (Parallel Deposit) Instruction

    int SwizzledOffset; // Return value being computed.

    int TileWidthBits =  POPCNT16(pSwizzle->Mask.x); // Log2(Tile Width in Bytes)
    int TileHeightBits = POPCNT16(pSwizzle->Mask.y); // Log2(Tile Height)
    int TileDepthBits =  POPCNT16(pSwizzle->Mask.z); // Log2(Tile Depth or MSAA Samples)
    int TileSizeBits =   TileWidthBits + TileHeightBits + TileDepthBits; // Log2(Tile Size in Bytes)
    int TilesPerRow =    Pitch >> TileWidthBits;     // Surface Width in Tiles

    int Row, Col;   // Tile grid position on surface, of tile containing specified byte.
    int x, y, z;    // Position of specified byte within tile that contains it.

    if(PDepSupported == -1)
    {
        #if(_MSC_VER >= 1700)
            #define PDEP(Src, Mask) _pdep_u32((Src), (Mask))
            int CpuInfo[4];
            __cpuidex(CpuInfo, 7, 0);
            PDepSupported = ((CpuInfo[1] & (1 << 8)) != 0); // EBX[8] = BMI2
        #elif ( defined (__BMI2__ ))
            #define PDEP(Src, Mask) _pdep_u32((Src), (Mask))
            unsigned int eax, ebx, ecx, edx;
            __cpuid_count(7, 0, eax, ebx, ecx, edx);
            PDepSupported = ((ebx & (1 << 8)) != 0); // EBX[8] = BMI2
        #else
            #define PDEP(Src, Mask) 0
            PDepSupported = 0;
        #endif
    }

    assert( // Mutually Exclusive Swizzle Positions...
        (pSwizzle->Mask.x | pSwizzle->Mask.y | pSwizzle->Mask.z) ==
        (pSwizzle->Mask.x + pSwizzle->Mask.y + pSwizzle->Mask.z));

    assert( // Swizzle Limited to 16-bit (else expand POPCNT'ing)...
        (pSwizzle->Mask.x | pSwizzle->Mask.y | pSwizzle->Mask.z) < (1 << 16));

    assert( // Pitch is Multiple of Tile Width...
        Pitch == ((Pitch >> TileWidthBits) << TileWidthBits));

    { // Break Positioning into Tile-Granular and Intra-Tile Components...
        assert((OffsetZ >>       TileDepthBits) == 0); // When dealing with 3D tiling, treat as separate single-tile-deep planes.
        z =     OffsetZ & ((1 << TileDepthBits) - 1);

        Row =   OffsetY >>       TileHeightBits;
        y =     OffsetY & ((1 << TileHeightBits) - 1);

        Col =   OffsetX >>       TileWidthBits;
        x =     OffsetX & ((1 << TileWidthBits) - 1);
    }

    SwizzledOffset = // Start with surface offset of given tile...
        (Row * TilesPerRow + Col) << TileSizeBits; // <-- Tiles laid across surface in row-major order.

    // ...then OR swizzled offset of byte within tile...
    if(PDepSupported)
    {
        SwizzledOffset +=
            PDEP(x, pSwizzle->Mask.x) +
            PDEP(y, pSwizzle->Mask.y) +
            PDEP(z, pSwizzle->Mask.z);
    }
    else // PDEP workalike...
    {
        int bitIndex = 0, bitMask = 1;
        int terminationMask = pSwizzle->Mask.x | pSwizzle->Mask.y | pSwizzle->Mask.z;
        while(bitMask < terminationMask)
        {
            int MaskQ;
            #define PROCESS(Q) {                    \
                MaskQ = bitMask & pSwizzle->Mask.Q; \
                SwizzledOffset += Q & MaskQ;        \
                Q <<= 1 ^ (MaskQ >> bitIndex);      \
            }
            PROCESS(x);
            PROCESS(y);
            PROCESS(z);

            bitIndex++;
            bitMask <<= 1;

            #undef PROCESS
        }
    }

    return(SwizzledOffset);
}


void CpuSwizzleBlt( // #########################################################

    /* Performs specified swizzling BLT between two given surfaces. */

    CPU_SWIZZLE_BLT_SURFACE *pDest,         // Pointer to destination surface descriptor.
    CPU_SWIZZLE_BLT_SURFACE *pSrc,          // Pointer to source surface descriptor.
    int                     CopyWidthBytes, // Width of BLT rectangle, in bytes.
    int                     CopyHeight)     // Height of BLT rectangle, in physical/pitch rows.

    #ifdef SUB_ELEMENT_SUPPORT

        /* When copying between surfaces with different pixel pitches, specify
        CopyWidthBytes in terms of unswizzled surface's element-pitches:

            CopyWidthBytes = CopyWidthPixels * pLinearSurface.Element.Pitch; */

    #endif

{ // ###########################################################################

    CPU_SWIZZLE_BLT_SURFACE *pLinearSurface, *pSwizzledSurface;
    int LinearToSwizzled;

    { // One surface swizzled, the other unswizzled (aka "linear")...
        assert((pDest->pSwizzle != NULL) ^ (pSrc->pSwizzle != NULL));

        LinearToSwizzled = !pSrc->pSwizzle;
        if(LinearToSwizzled)
        {
            pSwizzledSurface =  pDest;
            pLinearSurface =    pSrc;
        }
        else // Swizzled-to-Linear...
        {
            pSwizzledSurface =  pSrc;
            pLinearSurface =    pDest;
        }
    }

    #ifdef SUB_ELEMENT_SUPPORT
    {
        assert( // Either both or neither specified...
            (pDest->Element.Pitch != 0) == (pSrc->Element.Pitch != 0));

        assert( // Surfaces agree on transfer element size...
            pDest->Element.Size == pSrc->Element.Size);

        assert( // Element pitch not specified without element size...
            !(pDest->Element.Pitch && !pDest->Element.Size));

        assert( // Legit element sizes...
            (pDest->Element.Size <= pDest->Element.Pitch) &&
            (pSrc->Element.Size <= pSrc->Element.Pitch));

        assert( // Sub-element CopyWidthBytes in terms of LinearSurface pitch...
            (pLinearSurface->Element.Pitch == 0) ||
            ((CopyWidthBytes % pLinearSurface->Element.Pitch) == 0));
    }
    #endif

    { // No surface overrun...
        int NoOverrun =
            #ifdef SUB_ELEMENT_SUPPORT
            (
                // Sub-element transfer...
                ((pLinearSurface->Element.Size != pLinearSurface->Element.Pitch) ||
                    (pSwizzledSurface->Element.Size != pSwizzledSurface->Element.Pitch)) &&
                // No overrun...
                ((pLinearSurface->OffsetX + CopyWidthBytes) <=
                    (pLinearSurface->Pitch +
                     // CopyWidthBytes's inclusion of uncopied bytes...
                     (pLinearSurface->Element.Pitch - pLinearSurface->Element.Size))) &&
                ((pLinearSurface->OffsetY + CopyHeight) <= pLinearSurface->Height) &&
                ((pSwizzledSurface->OffsetX +
                    // Adjust CopyWidthBytes from being in terms of LinearSurface pitch...
                    (CopyWidthBytes / pLinearSurface->Element.Pitch * pSwizzledSurface->Element.Pitch)
                    ) <=
                    (pSwizzledSurface->Pitch +
                     // CopyWidthBytes's inclusion of uncopied bytes...
                     (pSwizzledSurface->Element.Pitch - pSwizzledSurface->Element.Size))) &&
                ((pSwizzledSurface->OffsetY + CopyHeight) <= pSwizzledSurface->Height)
            ) ||
            #endif
            ((pDest->OffsetX + CopyWidthBytes) <= pDest->Pitch) &&
            ((pDest->OffsetY + CopyHeight) <= pDest->Height) &&
            ((pSrc->OffsetX + CopyWidthBytes) <= pSrc->Pitch) &&
            ((pSrc->OffsetY + CopyHeight) <= pSrc->Height);

        assert(NoOverrun);
    }

    { // No surface overlap...
        char *pDest0 = (char *) pDest->pBase;
        char *pDest1 = (char *) pDest->pBase + pDest->Pitch * CopyHeight;
        char *pSrc0 =  (char *)  pSrc->pBase;
        char *pSrc1 =  (char *)  pSrc->pBase +  pSrc->Pitch * CopyHeight;

        assert(!(
            ((pDest0 >= pSrc0) && (pDest0 < pSrc1)) ||
            ((pSrc0 >= pDest0) && (pSrc0 < pDest1))));
    }

    {
        /* BLT will have pointer in each surface between which data will be
        copied from source to destination. Each pointer will be appropriately
        incremented/positioned through its surface, as BLT rectangle is
        traversed. */

        char *pLinearAddress, *pSwizzledAddress;

        // Convenient to track traversal in swizzled surface offsets...
        int x0 = pSwizzledSurface->OffsetX;
        int x1 = x0 + CopyWidthBytes;
        int y0 = pSwizzledSurface->OffsetY;
        int y1 = y0 + CopyHeight;
        int x, y;

        // Start linear pointer at specified base...
        pLinearAddress =
            (char *) pLinearSurface->pBase +
            pLinearSurface->OffsetY * pLinearSurface->Pitch +
            pLinearSurface->OffsetX;

        #ifdef MINIMALIST // Simple implementation for functional understanding/testing/etc.
        {
            #ifdef SUB_ELEMENT_SUPPORT
                assert( // No Sub-Element Transfer...
                    (pLinearSurface->Element.Size == pLinearSurface->Element.Pitch) &&
                    (pSwizzledSurface->Element.Size == pSwizzledSurface->Element.Pitch));
            #endif

            for(y = y0; y < y1; y++)
            {
                for(x = x0; x < x1; x++)
                {
                    pSwizzledAddress =
                        (char *) pSwizzledSurface->pBase +
                        SwizzleOffset(
                            pSwizzledSurface->pSwizzle,
                            pSwizzledSurface->Pitch,
                            x, y, pSwizzledSurface->OffsetZ);

                    if(LinearToSwizzled)
                    {
                        *pSwizzledAddress = *pLinearAddress;
                    }
                    else
                    {
                        *pLinearAddress = *pSwizzledAddress;
                    }

                    pLinearAddress++;
                }

                pLinearAddress += pLinearSurface->Pitch - CopyWidthBytes;
            }
        }
        #else // Production/Performance Implementation...
        {
            /* Key Performance Gains from...
                (1) Efficient Memory Transfers (Ordering + Instruction)
                (2) Minimizing Work in Inner Loops */

            #if(_MSC_VER >= 1600)
                #include <stdint.h>

                #pragma warning(push)
                #pragma warning(disable:4127) // Constant Conditional Expressions

                unsigned long LOW_BIT_Index;
                #define LOW_BIT(x)  (_BitScanForward(&LOW_BIT_Index, (x)), LOW_BIT_Index)

                unsigned long HIGH_BIT_Index;
                #define HIGH_BIT(x) (_BitScanReverse(&HIGH_BIT_Index, (x)), HIGH_BIT_Index)
            #elif(__GNUC__ >= 4)
                #include <stdint.h>

                #define LOW_BIT(x)  __builtin_ctz(x)
                #define HIGH_BIT(x) ((sizeof(x) * CHAR_BIT - 1) - __builtin_clz(x))
            #else
                #error "Unexpected compiler!"
            #endif

            typedef struct ___m24
            {
                uint8_t byte[3];
            } __m24; // 24-bit/3-byte memory element.

            // Macros intended to compile to various types of "load register from memory" instructions...
            #define MOVB_R(  Reg, Src) (*(uint8_t  *)&(Reg) = *(uint8_t  *)(Src))
            #define MOVW_R(  Reg, Src) (*(uint16_t *)&(Reg) = *(uint16_t *)(Src))
            #define MOV3_R(  Reg, Src) (*(__m24    *)&(Reg) = *(__m24 *)(Src))
            #define MOVD_R(  Reg, Src) (*(uint32_t *)&(Reg) = *(uint32_t *)(Src))

            #define MOVQ_R(  Reg, Src) ((Reg) = _mm_loadl_epi64((__m128i *)(Src)))
            #define MOVDQ_R( Reg, Src) ((Reg) = _mm_load_si128( (__m128i *)(Src)))
            #define MOVDQU_R(Reg, Src) ((Reg) = _mm_loadu_si128((__m128i *)(Src)))

            // As above, but the other half: "store to memory from register"...
            #define MOVB_M(    Dest, Reg)(*(uint8_t  *)(Dest) = *(uint8_t  *)&(Reg))
            #define MOVW_M(    Dest, Reg)(*(uint16_t *)(Dest) = *(uint16_t *)&(Reg))
            #define MOV3_M(    Dest, Reg)(*(__m24    *)(Dest) = *(__m24    *)&(Reg))
            #define MOVD_M(    Dest, Reg)(*(uint32_t *)(Dest) = *(uint32_t *)&(Reg))

            #define MOVQ_M(    Dest, Reg)(_mm_storel_epi64((__m128i *)(Dest), (Reg)))
            #define MOVDQ_M(   Dest, Reg)(_mm_store_si128( (__m128i *)(Dest), (Reg)))
            #define MOVDQU_M(  Dest, Reg)(_mm_storeu_si128((__m128i *)(Dest), (Reg)))
            #define MOVNTDQ_M( Dest, Reg)(_mm_stream_si128((__m128i *)(Dest), (Reg)))


            #define MIN_CONTAINED_POW2_BELOW_CAP(x, Cap) (1 << LOW_BIT((1 << LOW_BIT(x)) | (1 << HIGH_BIT(Cap))))

            #define SWIZZLE_OFFSET(OffsetX, OffsetY, OffsetZ) \
                SwizzleOffset(pSwizzledSurface->pSwizzle, pSwizzledSurface->Pitch, OffsetX, OffsetY, OffsetZ)

            #define MAX_XFER_WIDTH  16  // See "Compute Transfer Dimensions".
            #define MAX_XFER_HEIGHT 4   // "

            static char StreamingLoadSupported = -1; // SSE4.1: MOVNTDQA

            int TileWidthBits = POPCNT16(pSwizzledSurface->pSwizzle->Mask.x);   // Log2(Tile Width in Bytes)
            int TileHeightBits = POPCNT16(pSwizzledSurface->pSwizzle->Mask.y);  // Log2(Tile Height)
            int TileDepthBits = POPCNT16(pSwizzledSurface->pSwizzle->Mask.z);   // Log2(Tile Depth or MSAA Samples)
            int BytesPerRowOfTiles = pSwizzledSurface->Pitch << (TileDepthBits + TileHeightBits);

            struct { int LeftCrust, MainRun, RightCrust; } CopyWidth;
            int MaskX[MAX_XFER_WIDTH + 1], MaskY[MAX_XFER_HEIGHT + 1];
            int SwizzledOffsetX0, SwizzledOffsetY;
            struct { int Width, Height; } SwizzleMaxXfer;

            char *pSwizzledAddressCopyBase =
                (char *) pSwizzledSurface->pBase +
                SWIZZLE_OFFSET(0, 0, pSwizzledSurface->OffsetZ);

            assert(sizeof(__m24) == 3);

            if(StreamingLoadSupported == -1)
            {
                #if(_MSC_VER >= 1500)
                    #define MOVNTDQA_R(Reg, Src) ((Reg) = _mm_stream_load_si128((__m128i *)(Src)))
                    int CpuInfo[4];
                    __cpuid(CpuInfo, 1);
                    StreamingLoadSupported = ((CpuInfo[2] & (1 << 19)) != 0); // ECX[19] = SSE4.1
                #elif((defined __clang__) || (__GNUC__ > 4) || (__GNUC__ == 4) && (__GNUC_MINOR__ >= 5))
                    #define MOVNTDQA_R(Reg, Src) ((Reg) = _mm_stream_load_si128((__m128i *)(Src)))
                    unsigned int eax, ebx, ecx, edx;
                    __cpuid(1, eax, ebx, ecx, edx);
                    StreamingLoadSupported = ((ecx & (1 << 19)) != 0); // ECX[19] = SSE4.1
                #else
                    #define MOVNTDQA_R(Reg, Src) ((Reg) = (Reg))
                    StreamingLoadSupported = 0;
                #endif
            }

            { // Compute Transfer Dimensions...

                /* When transferring between linear and swizzled surfaces, we
                can't traverse linearly through memory of both since they have
                drastically different memory orderings--Moving linearly through
                one means bouncing around the other.

                Moving linearly through linear surface is more programmatically
                convenient--especially when BLT rectangles not constrained to
                tile boundaries. But moving linearly through swizzled surface
                memory is often more performance-friendly--especially when that
                memory is CPU-mapped as WC (Write Combining), which is often
                the case for graphics memory.

                Fortunately, we can avoid shortcomings of both extremes by
                using hybrid traversal: Traverse mostly linearly through linear
                surface, but have innermost loop transfer small 2D chunks sized
                to use critical runs of linearity in the swizzled memory.

                The "critical runs of linearity" that we want to hit in the
                sizzled memory are aligned, cache-line-sized memory chunks. If
                we bounce around with finer granularity we'll incur penalties
                of partial WC buffer use (whether from WC memory use or non-
                temporal stores).

                The size of 2D chunks with cache-line-sized linearity in
                swizzled memory is determined by swizzle mapping's low-order
                six bits (for 64-byte cache lines). Most swizzles use
                "Y Y X X X X" in their low-order bits, which means their cache
                lines store 16x4 chunks--So our implementation will use those
                dimensions as our target/maximum 2D transfer chunk. If we had
                any 8x8 (or taller) swizzles, we should add such support and
                increase our maximum chunk height. If we had any 32x2 swizzles,
                we should add such support and increase our maximum chunk width.

                Our implementation only bothers optimizing for 2D transfer
                chunks stored in row-major order--i.e. those whose swizzle
                mapping bits have a series of X's in the low-order, followed by
                Y's in the higher-order. Where a swizzle mapping inflection
                from Y back to X occurs, contiguous row-ordering is lost, and
                we would use that smaller, row-ordered chunk size. */

                int TargetMask;

                // Narrow optimized transfer Width by looking for inflection from X's...
                SwizzleMaxXfer.Width = MAX_XFER_WIDTH;
                while(  (TargetMask = SwizzleMaxXfer.Width - 1) &&
                        ((pSwizzledSurface->pSwizzle->Mask.x & TargetMask) != TargetMask))
                {
                    SwizzleMaxXfer.Width >>= 1;
                }

                // Narrow optimized transfer height by looking for inflection from Y's...
                SwizzleMaxXfer.Height = MAX_XFER_HEIGHT;

                while(  (TargetMask = (SwizzleMaxXfer.Height - 1) * SwizzleMaxXfer.Width) &&
                        ((pSwizzledSurface->pSwizzle->Mask.y & TargetMask) != TargetMask))
                {
                    SwizzleMaxXfer.Height >>= 1;
                }
            }

            { // Separate CopyWidthBytes into unaligned left/right "crust" and aligned "MainRun"...
                int MaxXferWidth = MIN_CONTAINED_POW2_BELOW_CAP(SwizzleMaxXfer.Width, CopyWidthBytes);

                CopyWidth.LeftCrust = // i.e. "bytes to xfer-aligned boundary"
                    (MaxXferWidth - x0) & (MaxXferWidth - 1); // Simplification of ((MaxXferWidth - (x0 % MaxXferWidth)) % MaxXferWidth)

                CopyWidth.MainRun =
                    (CopyWidthBytes - CopyWidth.LeftCrust) & ~(SwizzleMaxXfer.Width - 1); // MainRun is of SwizzleMaxXfer.Width's--not MaxXferWidth's.

                CopyWidth.RightCrust = CopyWidthBytes - (CopyWidth.LeftCrust + CopyWidth.MainRun);

                #ifdef SUB_ELEMENT_SUPPORT
                {
                    // For partial-pixel transfers, there is no crust and MainRun is done pixel-by-pixel...
                    if( (pLinearSurface->Element.Size != pLinearSurface->Element.Pitch) ||
                        (pSwizzledSurface->Element.Size != pSwizzledSurface->Element.Pitch))
                    {
                        CopyWidth.LeftCrust = CopyWidth.RightCrust = 0;
                        CopyWidth.MainRun = CopyWidthBytes;
                    }
                }
                #endif
            }


            /* Unlike in MINIMALIST implementation, which fully computes
            swizzled offset for each transfer element, we want to minimize work
            done in our inner loops.

            One way we'll reduce work is to separate pSwizzledAddress into
            dimensional components--e.g. so Y-swizzling doesn't have to be
            recomputed in X-loop.

            But a more powerful way we'll reduce work is...Instead of linearly
            incrementing spatial offsets and then converting to their swizzled
            counterparts, we'll compute swizzled bases outside the loops and
            keep them swizzled using swizzled incrementing inside the loops--
            since swizzled incrementing can be much cheaper than repeatedly
            swizzling spatial offsets.

            Intra-tile swizzled incrementing can be done by using the inverse
            of a spatial component's swizzle mask to ripple-carry a +1 to and
            across the bits of a currently swizzled value--e.g. with...

                SwizzledOffsetY:   Y X Y X Y Y X X X X
                         ~MaskY:   0 1 0 1 0 0 1 1 1 1
                                 +                   1
                                -----------------------

            ...set low-order ~MaskY bits will always ripple-carry the
            incrementing +1 to wherever Y0 happens to be, and wherever there is
            an arithmetic carry out of one Y position, set ~MaskY bits will
            carry it across any gaps to the next Y position.

            The above algorithm only works for adding one, but the mask used
            can be modified to deliver the +1 to any bit location, so any power
            of two increment can be achieved.

            After swizzled increment, residue from mask addition and undesired
            carries outside targeted fields must be removed using the natural
            mask--So the final intra-tile swizzled increment is...

                SwizzledOffsetQ = (SwizzledOffsetQ + ~MaskQ + 1) & MaskQ
                    ...where Q is the applicable X/Y/Z dimensional component.

                Or since in two's compliment, (~MaskQ + 1) = -MaskQ...

                SwizzledOffsetQ = (SwizzledOffsetQ - MaskQ) & MaskQ

            Since tile sizes are powers of two and tiles laid out in row-major
            order across surface, the above swizzled incrementing can
            additionally be used for inter-tile incrementing of X component by
            extending applicable mask to include offset bits beyond the tile--
            so arithmetic carries out of intra-tile X component will ripple to
            advance swizzled inter-tile X offset to next tile. Same is not true
            of inter-tile Y incrementing since surface pitches not restricted
            to powers of two. */

            { // Compute Mask[IncSize] for Needed Increment Values...
                int ExtendedMaskX = // Bits beyond the tile (so X incrementing can operate inter-tile)...
                    ~(pSwizzledSurface->pSwizzle->Mask.x |
                      pSwizzledSurface->pSwizzle->Mask.y |
                      pSwizzledSurface->pSwizzle->Mask.z);

                /* Subtraction below delivers natural mask for +1 increment,
                and appropriately altered mask to deliver +1 to higher bit
                positions for +2/4/8/etc. increments. */

                for(x = SwizzleMaxXfer.Width; x >= 1; x >>= 1)
                {
                    MaskX[x] = SWIZZLE_OFFSET((1 << TileWidthBits) - x, 0, 0) | ExtendedMaskX;
                }

                for(y = SwizzleMaxXfer.Height; y >= 1; y >>= 1)
                {
                    MaskY[y] = SWIZZLE_OFFSET(0, (1 << TileHeightBits) - y, 0);
                }
            }

            { // Base Dimensional Swizzled Offsets...
                int IntraTileY = y0 & ((1 << TileHeightBits) - 1);
                int TileAlignedY = y0 - IntraTileY;

                SwizzledOffsetY = SWIZZLE_OFFSET(0, IntraTileY, 0);

                SwizzledOffsetX0 =
                    SWIZZLE_OFFSET(
                        x0,
                        TileAlignedY, // <-- Since SwizzledOffsetX will include "bits beyond the tile".
                        0);
            }

            // BLT Loops ///////////////////////////////////////////////////////

            /* Traverse BLT rectangle, transferring small, optimally-aligned 2D
            chunks, as appropriate for given swizzle format. Use swizzled
            incrementing of dimensional swizzled components. */

            for(y = y0; y < y1; )
            {
                char *pSwizzledAddressLine = pSwizzledAddressCopyBase + SwizzledOffsetY;
                int xferHeight =
                    // Largest pow2 xfer height that alignment, MaxXfer, and lines left will permit...
                    MIN_CONTAINED_POW2_BELOW_CAP(y | SwizzleMaxXfer.Height, y1 - y);
                int SwizzledOffsetX = SwizzledOffsetX0;

                __m128i xmm[MAX_XFER_HEIGHT];
                char *pLinearAddressEnd;
                int _MaskX;

                // XFER Macros /////////////////////////////////////////////////

                /* We'll define "XFER" macro to contain BLT X-loop work.

                In simple implementation, XFER would be WHILE loop that does
                SSE transfer and performs pointer and swizzled offset
                incrementing.

                ...but we have multiple conditions to handle...
                  - Transfer Direction (Linear <--> Swizzled)
                  - Optimal 2D Transfer Chunk Size
                  - Available/Desired CPU Transfer Instructions
                  - Unaligned Crust

                Don't want X-loop to have conditional logic to handle
                variations since would retard performance--but neither do we
                want messy multitude of slightly different, copy-pasted code
                paths. So instead, XFER macro will provide common code template
                allowing instantiation of multiple X-loop variations--i.e. XFER
                calls from conditional Y-loop code will expand into separate,
                conditional-free, "lean and mean" X-loops.

                Some conditional logic remains in XFER chain--but only outside
                X-loop. The two IF statements that remain in X-loop (i.e. those
                in XFER_LOAD/STORE) expand to compile-time constant conditional
                expressions, so with optimizing compiler, no runtime-
                conditional code will be generated--i.e. constant conditionals
                will simply decide whether given instantiation has that code or
                not. */

                #define XFER(XFER_Store, XFER_Load, XFER_Pitch_Swizzled, XFER_Pitch_Linear, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch, XFER_Crust) \
                {                                                                                                   \
                         XFER_LINES(4, XFER_Store, XFER_Load, XFER_Pitch_Swizzled, XFER_Pitch_Linear, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch, XFER_Crust) \
                    else XFER_LINES(2, XFER_Store, XFER_Load, XFER_Pitch_Swizzled, XFER_Pitch_Linear, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch, XFER_Crust) \
                    else XFER_LINES(1, XFER_Store, XFER_Load, XFER_Pitch_Swizzled, XFER_Pitch_Linear, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch, XFER_Crust);\
                }

                #define XFER_LINES(XFER_LINES_Lines, XFER_Store, XFER_Load, XFER_Pitch_Swizzled, XFER_Pitch_Linear, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch, XFER_Crust) \
                    if(xferHeight == (XFER_LINES_Lines))    \
                    {                                       \
                        if(XFER_Crust)                      \
                        {                                   \
                            XFER_SPAN(MOVB_M, MOVB_R, CopyWidth.LeftCrust  & 1, 1, 1, XFER_LINES_Lines, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch); \
                            XFER_SPAN(MOVW_M, MOVW_R, CopyWidth.LeftCrust  & 2, 2, 2, XFER_LINES_Lines, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch); \
                            XFER_SPAN(MOVD_M, MOVD_R, CopyWidth.LeftCrust  & 4, 4, 4, XFER_LINES_Lines, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch); \
                            XFER_SPAN(MOVQ_M, MOVQ_R, CopyWidth.LeftCrust  & 8, 8, 8, XFER_LINES_Lines, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch); \
                        }                                   \
                                                            \
                        XFER_SPAN(XFER_Store, XFER_Load, CopyWidth.MainRun, XFER_Pitch_Swizzled, XFER_Pitch_Linear, XFER_LINES_Lines, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch);\
                                                            \
                        if(XFER_Crust)                      \
                        {                                   \
                            XFER_SPAN(MOVQ_M, MOVQ_R, CopyWidth.RightCrust & 8, 8, 8, XFER_LINES_Lines, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch); \
                            XFER_SPAN(MOVD_M, MOVD_R, CopyWidth.RightCrust & 4, 4, 4, XFER_LINES_Lines, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch); \
                            XFER_SPAN(MOVW_M, MOVW_R, CopyWidth.RightCrust & 2, 2, 2, XFER_LINES_Lines, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch); \
                            XFER_SPAN(MOVB_M, MOVB_R, CopyWidth.RightCrust & 1, 1, 1, XFER_LINES_Lines, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch); \
                        }                                   \
                    }

                #define XFER_SPAN(XFER_Store, XFER_Load, XFER_CopyWidthBytes, XFER_Pitch_Swizzled, XFER_Pitch_Linear, XFER_Height, XFER_pDest, XFER_DestPitch, XFER_pSrc, XFER_SrcPitch) \
                {                                                                           \
                    pLinearAddressEnd = pLinearAddress + (XFER_CopyWidthBytes);             \
                    _MaskX = MaskX[XFER_Pitch_Swizzled];                                    \
                    while(pLinearAddress < pLinearAddressEnd)                               \
                    {                                                                       \
                        pSwizzledAddress = pSwizzledAddressLine + SwizzledOffsetX;          \
                                                                                            \
                        XFER_LOAD(0, XFER_Load, XFER_pSrc, XFER_SrcPitch, XFER_Height);     \
                        XFER_LOAD(1, XFER_Load, XFER_pSrc, XFER_SrcPitch, XFER_Height);     \
                        XFER_LOAD(2, XFER_Load, XFER_pSrc, XFER_SrcPitch, XFER_Height);     \
                        XFER_LOAD(3, XFER_Load, XFER_pSrc, XFER_SrcPitch, XFER_Height);     \
                        XFER_STORE(0, XFER_Store, XFER_pDest, XFER_DestPitch, XFER_Height); \
                        XFER_STORE(1, XFER_Store, XFER_pDest, XFER_DestPitch, XFER_Height); \
                        XFER_STORE(2, XFER_Store, XFER_pDest, XFER_DestPitch, XFER_Height); \
                        XFER_STORE(3, XFER_Store, XFER_pDest, XFER_DestPitch, XFER_Height); \
                                                                                            \
                        SwizzledOffsetX = (SwizzledOffsetX - _MaskX) & _MaskX;              \
                        pLinearAddress += (XFER_Pitch_Linear);                              \
                    }                                                                       \
                }

                #define XFER_LOAD(XFER_Line, XFER_Load, XFER_pSrc, XFER_SrcPitch, XFER_Height) \
                {                                                           \
                    if((XFER_Line) < (XFER_Height))                         \
                    {                                                       \
                        XFER_Load(                                          \
                            xmm[XFER_Line],                                 \
                            (XFER_pSrc) + (XFER_Line) * (XFER_SrcPitch));   \
                    }                                                       \
                }

                #define XFER_STORE(XFER_Line, XFER_Store, XFER_pDest, XFER_DestPitch, XFER_Height) \
                {                                                           \
                    if((XFER_Line) < (XFER_Height))                         \
                    {                                                       \
                        XFER_Store(                                         \
                            (XFER_pDest) + (XFER_Line) * (XFER_DestPitch),  \
                            xmm[XFER_Line]);                                \
                    }                                                       \
                }

                // Perform Applicable Transfer /////////////////////////////////
                assert( // DQ Alignment...
                    ((intptr_t) pSwizzledSurface->pBase % 16 == 0) &&
                    (pSwizzledSurface->Pitch % 16 == 0));

                #ifdef SUB_ELEMENT_SUPPORT
                    if( (pLinearSurface->Element.Size != pLinearSurface->Element.Pitch) ||
                        (pSwizzledSurface->Element.Size != pSwizzledSurface->Element.Pitch))
                    {
                        if(LinearToSwizzled)
                        {
                            switch(pLinearSurface->Element.Size)
                            {
                                case 16: XFER(MOVNTDQ_M, MOVDQU_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, pLinearAddress, pLinearSurface->Pitch, 0); break;
                                case  8: XFER(   MOVQ_M,   MOVQ_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, pLinearAddress, pLinearSurface->Pitch, 0); break;
                                case  4: XFER(   MOVD_M,   MOVD_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, pLinearAddress, pLinearSurface->Pitch, 0); break;
                                case  3: XFER(   MOV3_M,   MOV3_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, pLinearAddress, pLinearSurface->Pitch, 0); break;
                                case  2: XFER(   MOVW_M,   MOVW_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, pLinearAddress, pLinearSurface->Pitch, 0); break;
                                case  1: XFER(   MOVB_M,   MOVB_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, pLinearAddress, pLinearSurface->Pitch, 0); break;
                                default: assert(0);
                            }
                        }
                        else
                        {
                            switch(pLinearSurface->Element.Size)
                            {
                                case 16:
                                {
                                    if(StreamingLoadSupported)
                                    {
                                        XFER(MOVDQU_M, MOVNTDQA_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, 0);
                                    }
                                    else
                                    {
                                        XFER(MOVDQU_M,    MOVDQ_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, 0);
                                    }
                                    break;
                                }
                                case  8: XFER(   MOVQ_M,   MOVQ_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, 0); break;
                                case  4: XFER(   MOVD_M,   MOVD_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, 0); break;
                                case  3: XFER(   MOV3_M,   MOV3_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, 0); break;
                                case  2: XFER(   MOVW_M,   MOVW_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, 0); break;
                                case  1: XFER(   MOVB_M,   MOVB_R, pSwizzledSurface->Element.Pitch, pLinearSurface->Element.Pitch, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress, SwizzleMaxXfer.Width, 0); break;
                                default: assert(0);
                            }
                        }
                    } else
                #endif // SUB_ELEMENT_SUPPORT
                if(LinearToSwizzled)
                {
                    switch(SwizzleMaxXfer.Width)
                    {
                        case 16: XFER(MOVNTDQ_M, MOVDQU_R, 16, 16, pSwizzledAddress, 16, pLinearAddress, pLinearSurface->Pitch, 1); break;
                        #ifdef INTEL_TILE_W_SUPPORT
                            case  2: XFER(MOVW_M,  MOVW_R,  2,  2, pSwizzledAddress,  2, pLinearAddress, pLinearSurface->Pitch, 1); break;
                        #endif
                        default: assert(0); // Unexpected cases excluded to save compile time/size of multiplying instantiations.
                    }
                }
                else
                {
                    switch(SwizzleMaxXfer.Width)
                    {
                        case 16:
                        {
                            if(StreamingLoadSupported)
                            {
                                XFER(MOVDQU_M, MOVNTDQA_R, 16, 16, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress, 16, 1);
                            }
                            else
                            {
                                XFER(MOVDQU_M,    MOVDQ_R, 16, 16, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress, 16, 1);
                            }
                            break;
                        }
                        #ifdef INTEL_TILE_W_SUPPORT
                            case 2: XFER(MOVW_M,   MOVW_R,  2,  2, pLinearAddress, pLinearSurface->Pitch, pSwizzledAddress,  2, 1); break;
                        #endif
                        default: assert(0);
                    }
                }


                // Swizzled inc of SwizzledOffsetY...
                SwizzledOffsetY = (SwizzledOffsetY - MaskY[xferHeight]) & MaskY[xferHeight];
                if(!SwizzledOffsetY) SwizzledOffsetX0 += BytesPerRowOfTiles; // Wraps advance SwizzledOffsetX0, since that includes "bits beyond the tile".

                y += xferHeight;

                /* X-loop only advanced pLinearAddress by CopyWidthBytes--even
                when transferred multiple lines. Advance rest of way: */
                pLinearAddress += xferHeight * pLinearSurface->Pitch - CopyWidthBytes;

            } // foreach(y)

            _mm_sfence(); // Flush Non-Temporal Writes

            #if(_MSC_VER)
                #pragma warning(pop)
            #endif
        }
        #endif
    }
} // CpuSwizzleBlt

#endif // #ifndef INCLUDE_CpuSwizzleBlt_c_AS_HEADER
// clang-format on