1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
/*==============================================================================
Copyright(c) 2017 Intel Corporation
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files(the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and / or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
============================================================================*/
#include "Internal/Common/GmmLibInc.h"
#include "External/Common/GmmCachePolicy.h"
//=============================================================================
//
// Function: __GmmGen8InitCachePolicy
//
// Desc: This function initializes the cache policy
//
// Parameters: pCachePolicy -> Ptr to array to be populated with the
// mapping of usages -> cache settings.
//
// Return: GMM_STATUS
//-----------------------------------------------------------------------------
GMM_STATUS GmmLib::GmmGen8CachePolicy::InitCachePolicy()
{
__GMM_ASSERTPTR(pCachePolicy, GMM_ERROR);
#define DEFINE_CACHE_ELEMENT(usage, llc, ellc, l3, wt, age) DEFINE_CP_ELEMENT(usage, llc, ellc, l3, wt, age, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
#include "GmmGen8CachePolicy.h"
{
// Gen8 Memory Object Definitions
#define MO_ELLC 0x0
#define MO_LLC 0x1
#define MO_LLC_ELLC 0x2
#define MO_L3_LLC_ELLC 0x3
#define MO_USE_PTE 0x0
#define MO_UC 0x1
#define MO_WT 0x2
#define MO_WB 0x3
// Define index of cache element
uint32_t Usage = 0;
// Process Cache Policy and fill in look up table
for(; Usage < GMM_RESOURCE_USAGE_MAX; Usage++)
{
bool CachePolicyError = false;
uint64_t PTEValue = 0;
if(pCachePolicy[Usage].LLC && pCachePolicy[Usage].ELLC && pCachePolicy[Usage].L3)
pCachePolicy[Usage].MemoryObjectOverride.Gen8.TargetCache = MO_L3_LLC_ELLC;
else if(pCachePolicy[Usage].LLC && pCachePolicy[Usage].ELLC)
pCachePolicy[Usage].MemoryObjectOverride.Gen8.TargetCache = MO_LLC_ELLC;
else if(pCachePolicy[Usage].ELLC)
pCachePolicy[Usage].MemoryObjectOverride.Gen8.TargetCache = MO_ELLC;
else if(pCachePolicy[Usage].LLC)
pCachePolicy[Usage].MemoryObjectOverride.Gen8.TargetCache = MO_LLC;
pCachePolicy[Usage].MemoryObjectOverride.Gen8.Age = pCachePolicy[Usage].AGE;
if(pCachePolicy[Usage].WT)
pCachePolicy[Usage].MemoryObjectOverride.Gen8.CacheControl = MO_WT;
// L3 is not included because WT vs UC vs WB only effects uncore
else if(!(pCachePolicy[Usage].LLC || pCachePolicy[Usage].ELLC))
pCachePolicy[Usage].MemoryObjectOverride.Gen8.CacheControl = MO_UC;
else
pCachePolicy[Usage].MemoryObjectOverride.Gen8.CacheControl = MO_WB;
if(!GetUsagePTEValue(pCachePolicy[Usage], Usage, &PTEValue))
{
CachePolicyError = true;
}
// On error, the PTE value is set to a UC PAT entry
pCachePolicy[Usage].PTE.DwordValue = PTEValue & 0xFFFFFFFF;
pCachePolicy[Usage].PTE.HighDwordValue = 0;
pCachePolicy[Usage].Override = ALWAYS_OVERRIDE;
if(CachePolicyError)
{
GMM_ASSERTDPF("Cache Policy Init Error: Invalid Cache Programming - Element %d", Usage);
}
}
}
return GMM_SUCCESS;
}
/////////////////////////////////////////////////////////////////////////////////////
/// Returns true if usage PTE entries are set for caching, false otherwise.
///
/// @param[in] Usage: type of usage
///
/// @return true if the usage PTE entry is set for cached, false otherwise.
/////////////////////////////////////////////////////////////////////////////////////
uint8_t GMM_STDCALL GmmLib::GmmGen8CachePolicy::CachePolicyIsUsagePTECached(GMM_RESOURCE_USAGE_TYPE Usage)
{
GMM_UNREFERENCED_PARAMETER(Usage);
return 0;
}
/////////////////////////////////////////////////////////////////////////////////////
/// Initializes the Gfx PAT tables for AdvCtx and Gfx MMIO/Private PAT
/// PAT0 = WB_COHERENT or UC depending on WaGttPat0WB
/// PAT1 = UC or WB_COHERENT depending on WaGttPat0WB
/// PAT2 = WB_MOCSLESS, with TC = eLLC+LLC
/// PAT3 = WB
/// PAT4 = WT
/// PAT5 = WC
/// PAT6 = WC
/// PAT7 = WC
/// HLD says to set to PAT0/1 to WC, but since we don't have a WC in GPU,
/// WC option is same as UC. Hence setting PAT0 or PAT1 to UC.
/// Unused PAT's (5,6,7) are set to WC.
///
/// @return GMM_STATUS
/////////////////////////////////////////////////////////////////////////////////////
GMM_STATUS GmmLib::GmmGen8CachePolicy::SetupPAT()
{
GMM_STATUS Status = GMM_SUCCESS;
#if(defined(__GMM_KMD__))
uint32_t i = 0;
GMM_GFX_MEMORY_TYPE GfxMemType = GMM_GFX_UC_WITH_FENCE;
// No optional selection on Age or Target Cache because for an SVM-OS Age and
// Target Cache would not work [for an SVM-OS the Page Table is shared with IA
// and we don't have control of the PAT Idx]. If there is a strong ask from D3D
// or the performance analysis team, Age could be added.
// Add Class of Service when required.
GMM_GFX_TARGET_CACHE GfxTargetCache = GMM_GFX_TC_ELLC_LLC;
uint8_t Age = 1;
uint8_t ServiceClass = 0;
int32_t * pPrivatePATTableMemoryType = NULL;
pPrivatePATTableMemoryType = pGmmLibContext->GetPrivatePATTableMemoryType();
__GMM_ASSERT(pGmmLibContext->GetSkuTable().FtrIA32eGfxPTEs);
for(i = 0; i < GMM_NUM_GFX_PAT_TYPES; i++)
{
pPrivatePATTableMemoryType[i] = -1;
}
// Set values for GmmGlobalInfo PrivatePATTable
for(i = 0; i < NumPATRegisters; i++)
{
GMM_PRIVATE_PAT PAT = {0};
if(pGmmLibContext->GetWaTable().WaNoMocsEllcOnly)
{
GfxTargetCache = GMM_GFX_TC_ELLC_ONLY;
}
else
{
GfxTargetCache = GMM_GFX_TC_ELLC_LLC;
}
switch(i)
{
case PAT0:
if(pGmmLibContext->GetWaTable().WaGttPat0)
{
if(pGmmLibContext->GetWaTable().WaGttPat0WB)
{
GfxMemType = GMM_GFX_WB;
if(GFX_IS_ATOM_PLATFORM(pGmmLibContext))
{
PAT.PreGen10.Snoop = 1;
}
pPrivatePATTableMemoryType[GMM_GFX_PAT_WB_COHERENT] = PAT0;
}
else
{
GfxMemType = GMM_GFX_UC_WITH_FENCE;
pPrivatePATTableMemoryType[GMM_GFX_PAT_UC] = PAT0;
}
}
else // if GTT is not tied to PAT0 then WaGttPat0WB is NA
{
GfxMemType = GMM_GFX_WB;
if(GFX_IS_ATOM_PLATFORM(pGmmLibContext))
{
PAT.PreGen10.Snoop = 1;
}
pPrivatePATTableMemoryType[GMM_GFX_PAT_WB_COHERENT] = PAT0;
}
break;
case PAT1:
if(pGmmLibContext->GetWaTable().WaGttPat0 && !pGmmLibContext->GetWaTable().WaGttPat0WB)
{
GfxMemType = GMM_GFX_WB;
if(GFX_IS_ATOM_PLATFORM(pGmmLibContext))
{
PAT.PreGen10.Snoop = 1;
}
pPrivatePATTableMemoryType[GMM_GFX_PAT_WB_COHERENT] = PAT1;
}
else
{
GfxMemType = GMM_GFX_UC_WITH_FENCE;
pPrivatePATTableMemoryType[GMM_GFX_PAT_UC] = PAT1;
}
break;
case PAT2:
// This PAT idx shall be used for MOCS'Less resources like Page Tables
// Page Tables have TC hardcoded to eLLC+LLC in Adv Ctxt. Hence making this to have same in Leg Ctxt.
// For BDW-H, due to Perf issue, TC has to be eLLC only for Page Tables when eDRAM is present.
GfxMemType = GMM_GFX_WB;
if(pGmmLibContext->GetWaTable().WaNoMocsEllcOnly)
{
GfxTargetCache = GMM_GFX_TC_ELLC_ONLY;
}
else
{
GfxTargetCache = GMM_GFX_TC_ELLC_LLC;
}
pPrivatePATTableMemoryType[GMM_GFX_PAT_WB_MOCSLESS] = PAT2;
break;
case PAT3:
GfxMemType = GMM_GFX_WB;
pPrivatePATTableMemoryType[GMM_GFX_PAT_WB] = PAT3;
break;
case PAT4:
GfxMemType = GMM_GFX_WT;
pPrivatePATTableMemoryType[GMM_GFX_PAT_WT] = PAT4;
break;
case PAT5:
case PAT6:
case PAT7:
GfxMemType = GMM_GFX_WC;
pPrivatePATTableMemoryType[GMM_GFX_PAT_WC] = PAT5;
break;
default:
__GMM_ASSERT(0);
Status = GMM_ERROR;
}
PAT.PreGen10.MemoryType = GfxMemType;
PAT.PreGen10.TargetCache = GfxTargetCache;
PAT.PreGen10.Age = Age;
SetPrivatePATEntry(i, PAT);
}
#else
Status = GMM_ERROR;
#endif
return Status;
}
/////////////////////////////////////////////////////////////////////////////////////
/// Initializes WA's needed for setting up the Private PATs
/// WaNoMocsEllcOnly, WaGttPat0, WaGttPat0GttWbOverOsIommuEllcOnly, WaGttPat0WB
///
/// @return GMM_STATUS
///
/////////////////////////////////////////////////////////////////////////////////////
GMM_STATUS GmmLib::GmmGen8CachePolicy::SetPATInitWA()
{
GMM_STATUS Status = GMM_SUCCESS;
WA_TABLE * pWaTable = &const_cast<WA_TABLE &>(pGmmLibContext->GetWaTable());
#if(defined(__GMM_KMD__))
pWaTable->WaGttPat0 = 1;
pWaTable->WaGttPat0WB = 1;
pWaTable->WaGttPat0GttWbOverOsIommuEllcOnly = 1;
// Platforms which support OS-IOMMU.
if(pGmmLibContext->GetSkuTable().FtrWddm2Svm)
{
pWaTable->WaGttPat0GttWbOverOsIommuEllcOnly = 0;
pWaTable->WaGttPat0WB = 0;
}
#else
Status = GMM_ERROR;
#endif
return Status;
}
/////////////////////////////////////////////////////////////////////////////////////
/// Returns the PAT idx that best matches the cache policy for this usage.
///
/// @param: CachePolicy: cache policy for a usage
///
/// @return PAT Idx to use in the PTE
/////////////////////////////////////////////////////////////////////////////////////
uint32_t GmmLib::GmmGen8CachePolicy::BestMatchingPATIdx(GMM_CACHE_POLICY_ELEMENT CachePolicy)
{
uint32_t i;
uint32_t PATIdx = 0;
GMM_GFX_MEMORY_TYPE WantedMemoryType = GMM_GFX_UC_WITH_FENCE, MemoryType;
GMM_GFX_TARGET_CACHE WantedTC = GMM_GFX_TC_ELLC_LLC;
WantedMemoryType = GetWantedMemoryType(CachePolicy);
if(CachePolicy.LLC && CachePolicy.ELLC)
{
WantedTC = GMM_GFX_TC_ELLC_LLC;
}
else if(CachePolicy.LLC)
{
WantedTC = GMM_GFX_TC_LLC_ONLY;
}
else if(CachePolicy.ELLC)
{
WantedTC = GMM_GFX_TC_ELLC_ONLY; // Note: this overrides the MOCS target cache selection.
}
for(i = 1; i < NumPATRegisters; i++)
{
GMM_PRIVATE_PAT PAT1 = GetPrivatePATEntry(PATIdx);
GMM_PRIVATE_PAT PAT2 = GetPrivatePATEntry(i);
if(SelectNewPATIdx(WantedMemoryType, WantedTC,
(GMM_GFX_MEMORY_TYPE)PAT1.PreGen10.MemoryType, (GMM_GFX_TARGET_CACHE)PAT1.PreGen10.TargetCache,
(GMM_GFX_MEMORY_TYPE)PAT2.PreGen10.MemoryType, (GMM_GFX_TARGET_CACHE)PAT2.PreGen10.TargetCache))
{
PATIdx = i;
}
}
MemoryType = (GMM_GFX_MEMORY_TYPE)GetPrivatePATEntry(PATIdx).PreGen10.MemoryType;
if(MemoryType != WantedMemoryType)
{
// Failed to find a matching PAT entry
return GMM_PAT_ERROR;
}
return PATIdx;
}
/////////////////////////////////////////////////////////////////////////////////////
/// Sets the GMM Private PAT in the PrivatePATTable for the PATIdx, GMM_PRIVATE_PAT
/// Entry passed
///
/// @param[in] PATIdx
/// @param[in] GMM_PRIVATE_PAT: PAT Entry
///
/// @return Pass/ fail
/////////////////////////////////////////////////////////////////////////////////////
bool GmmLib::GmmGen8CachePolicy::SetPrivatePATEntry(uint32_t PATIdx, GMM_PRIVATE_PAT Entry)
{
if(PATIdx >= NumPATRegisters)
{
GMM_ASSERTDPF(false, "CRITICAL ERROR: INVALID PAT IDX");
return false;
}
pGmmLibContext->GetPrivatePATTable()[PATIdx] = Entry;
return true;
}
/////////////////////////////////////////////////////////////////////////////////////
/// Gets the GMM Private PAT from the PrivatePATTable for the PATIdx passed
///
/// @param[in] PATIdx
///
/// @return GMM_PRIVATE_PAT: Entry
/////////////////////////////////////////////////////////////////////////////////////
GMM_PRIVATE_PAT GmmLib::GmmGen8CachePolicy::GetPrivatePATEntry(uint32_t PATIdx)
{
GMM_PRIVATE_PAT NullPAT = {0};
if(PATIdx >= NumPATRegisters)
{
GMM_ASSERTDPF(false, "CRITICAL ERROR: INVALID PAT IDX");
return NullPAT;
}
return pGmmLibContext->GetPrivatePATTable()[PATIdx];
}
/////////////////////////////////////////////////////////////////////////////////////
/// Return true if (MT2, TC2) is a better match for (WantedMT, WantedTC)
/// than (MT1, TC1)
///
/// @param[in] WantedMT: Wanted Memory Type
/// @param[in] WantedTC: Wanted Target Cache
/// @param[in] MT1: Memory Type for PATIdx1
/// @param[in] TC1: Target Cache for PATIdx1
/// @param[in] MT2: Memory Type for PATIdx2
/// @param[in] TC2: Target Cache for PATIdx2
///
/// @return Select the new PAT Index True/False
/////////////////////////////////////////////////////////////////////////////////////
bool GmmLib::GmmGen8CachePolicy::SelectNewPATIdx(GMM_GFX_MEMORY_TYPE WantedMT, GMM_GFX_TARGET_CACHE WantedTC,
GMM_GFX_MEMORY_TYPE MT1, GMM_GFX_TARGET_CACHE TC1,
GMM_GFX_MEMORY_TYPE MT2, GMM_GFX_TARGET_CACHE TC2)
{
bool SelectPAT2 = false;
// select on Memory Type
if(MT1 != WantedMT)
{
if(MT2 == WantedMT || MT2 == GMM_GFX_UC_WITH_FENCE)
{
SelectPAT2 = true;
}
goto EXIT;
}
// select on Target Cache
if(WantedTC != TC1)
{
if(WantedMT == MT2 && WantedTC == TC2)
{
SelectPAT2 = true;
}
goto EXIT;
}
EXIT:
return SelectPAT2;
}
/////////////////////////////////////////////////////////////////////////////////////
/// Returns PTE value
///
/// @param[in] CachePolicyUsage: Cache Policy for Usage
///
/// @return true: success, false: failure
/////////////////////////////////////////////////////////////////////////////////////
bool GmmLib::GmmGen8CachePolicy::GetUsagePTEValue(GMM_CACHE_POLICY_ELEMENT CachePolicyUsage,
uint32_t Usage,
uint64_t * pPTEDwordValue)
{
GMM_PTE_CACHE_CONTROL_BITS PTE = {0};
bool Success = true;
uint32_t PATIdx = 0;
// Don't setup PTE values in UMD
#if __GMM_KMD__
if((PATIdx = BestMatchingPATIdx(CachePolicyUsage)) == GMM_PAT_ERROR)
{
// IAe32 PAT table does not necessarily have an entry for WT memory type
// => not a cache policy init error if WT is unavailable.
Success = CachePolicyUsage.WT ? true : false;
// degrade to UC
{
GMM_CACHE_POLICY_ELEMENT CachePolicyElement = {0};
const char *MemTypes[4] = {"UC", "WC", "WT", "WB"}; // matches GMM_GFX_MEMORY_TYPE enum values
CachePolicyElement.Initialized = 1;
GMM_DPF(GFXDBG_NORMAL,
"Cache Policy Init: Degrading PAT settings to UC (uncached) from %s for Element %d\n",
MemTypes[GetWantedMemoryType(CachePolicyUsage)], Usage);
PATIdx = BestMatchingPATIdx(CachePolicyElement);
if(PATIdx == GMM_PAT_ERROR)
{
Success = false;
}
}
}
if(PATIdx != GMM_PAT_ERROR)
{
PTE.Gen8.PAT = (PATIdx & __BIT(2)) ? 1 : 0;
PTE.Gen8.PCD = (PATIdx & __BIT(1)) ? 1 : 0;
PTE.Gen8.PWT = (PATIdx & __BIT(0)) ? 1 : 0;
}
else
{
PTE.DwordValue = 0x0;
}
#else
GMM_UNREFERENCED_PARAMETER(CachePolicyUsage);
GMM_UNREFERENCED_PARAMETER(Usage);
#endif
*pPTEDwordValue = PTE.DwordValue;
return Success;
}
|