1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
/*==============================================================================
Copyright(c) 2024 Intel Corporation
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files(the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and / or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
============================================================================*/
#include "Internal/Common/GmmLibInc.h"
#include "External/Common/GmmCachePolicy.h"
#include "External/Common/CachePolicy/GmmCachePolicyXe2_LPG.h"
//=============================================================================
//
// Function: GmmXe2_LPGCachePolicy::InitCachePolicy()
//
// Desc: This function initializes the Xe2 cache policy
//
// Return: GMM_STATUS
//
//-----------------------------------------------------------------------------
GMM_STATUS GmmLib::GmmXe2_LPGCachePolicy::InitCachePolicy()
{
__GMM_ASSERTPTR(pCachePolicy, GMM_ERROR);
#define DEFINE_CACHE_ELEMENT(usage, l3_cc, l3_clos, l1cc, l2cc, l4cc, coherency, igPAT, segov) DEFINE_CP_ELEMENT(usage, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, segov, 0, 0, l1cc, l2cc, l4cc, coherency, l3_cc, l3_clos, igPAT)
#include "GmmXe2_LPGCachePolicy.h"
SetUpMOCSTable();
SetupPAT();
// Define index of cache element
uint32_t Usage = 0;
uint32_t ReservedPATIdx = 16; /* Rsvd PAT section 16-19 */
uint32_t ReservedPATIdxEnd = 20;
#if (_WIN32 && (_DEBUG || _RELEASE_INTERNAL))
void *pKmdGmmContext = NULL;
#if (defined(__GMM_KMD__))
pKmdGmmContext = pGmmLibContext->GetGmmKmdContext();
#endif
OverrideCachePolicy(pKmdGmmContext);
#endif
// Process the cache policy and fill in the look up table
for (; Usage < GMM_RESOURCE_USAGE_MAX; Usage++)
{
bool CachePolicyError = false;
int32_t PATIdx = -1, CPTblIdx = -1, PATIdxCompressed = -1, CoherentPATIdx = -1;
uint32_t i, j;
GMM_XE2_PRIVATE_PAT UsagePATElement = {0};
GMM_CACHE_POLICY_TBL_ELEMENT UsageEle = {0};
GMM_PTE_CACHE_CONTROL_BITS PTE = {0};
// MOCS data
{
// Get L3 ,L4 and Convert GMM indicative values to actual regiser values.
GetL3L4(&UsageEle, &UsagePATElement, Usage);
// Convert L1 GMM indicative values to actual regiser values and store into pCachePolicy to return to UMD's.
SetL1CachePolicy(Usage);
if ((!pGmmLibContext->GetSkuTable().FtrL3TransientDataFlush) && (UsageEle.L3.PhysicalL3.L3CC == GMM_GFX_PHY_L3_MT_WB_XD))
{
UsageEle.L3.PhysicalL3.L3CC = GMM_GFX_PHY_L3_MT_WB; // No Transient Flush Support
}
/* If MOCS is not needed fall back to Defer to PAT i.e MOCS#0 */
if (false == UsageEle.L3.PhysicalL3.igPAT)
{
/* Set cache policy index to defered to PAT i.e. MOCS Index 0 */
CPTblIdx = 0;
}
else
{
/* MOCS Index 1-3 are valid */
for (j = 1; j <= CurrentMaxMocsIndex; j++)
{
GMM_CACHE_POLICY_TBL_ELEMENT *TblEle = &pGmmLibContext->GetCachePolicyTlbElement()[j];
if (UsageEle.L3.PhysicalL3.L4CC == TblEle->L3.PhysicalL3.L4CC &&
UsageEle.L3.PhysicalL3.L3CC == TblEle->L3.PhysicalL3.L3CC &&
UsageEle.L3.PhysicalL3.L3CLOS == TblEle->L3.PhysicalL3.L3CLOS &&
UsageEle.L3.PhysicalL3.igPAT == true)
{
CPTblIdx = j;
break;
}
}
}
if (CPTblIdx == -1)
{
{
/* Invalid MOCS setting Fail the GMM Initialzation */
GMM_ASSERTDPF(false, "CRITICAL: Cache Policy Usage value for L3/L4 specified by Client is not defined in Fixed MOCS Table");
CachePolicyError = true;
}
}
}
/*
Validate Caching restrictions as below
1. MemoryType WB-XD must be used in Non-Coherent and allowed only for displayable surfaces
2. Coherent mode(1-way/2-way) must be Memory Type WB
3. No 2-way coherency on dGPU
4. Memory Type WT is available only for L4 in Non Coherent Mode
5. Memory Type UC must be used in Non-Coherent Mode
*/
// PAT data
{
if (!pGmmLibContext->GetSkuTable().FtrL3TransientDataFlush && (UsagePATElement.Xe2.L3CC == GMM_GFX_PHY_L3_MT_WB_XD))
{
UsagePATElement.Xe2.L3CC = GMM_GFX_PHY_L3_MT_WB; // No Transient Flush Support
}
/* Find a PATIndex from the PAT table for uncompressed case*/
if ((UsagePATElement.Xe2.L4CC == GMM_GFX_PHY_L4_MT_WT) && (UsagePATElement.Xe2.L3CC == GMM_GFX_PHY_L3_MT_WB_XD))
{
// With L3:XD, L4:WT, NC combination
if (pGmmLibContext->GetSkuTable().FtrDiscrete)
{
// On BMG, L4 is a pass through, demote L4 to UC, keep L3 at XD
PATIdx = PAT6;
}
else
{
// On LNL, L3:XD is not needed
PATIdx = PAT13;
}
}
else
{
for (i = 0; i <= CurrentMaxPATIndex; i++)
{
GMM_PRIVATE_PAT PAT = GetPrivatePATEntry(i);
if (UsagePATElement.Xe2.L4CC == PAT.Xe2.L4CC &&
UsagePATElement.Xe2.Coherency == PAT.Xe2.Coherency &&
UsagePATElement.Xe2.L3CC == PAT.Xe2.L3CC &&
UsagePATElement.Xe2.L3CLOS == PAT.Xe2.L3CLOS &&
false == PAT.Xe2.LosslessCompressionEn)
{
PATIdx = i;
break;
}
}
}
/* Find a PATIndex from the PAT table for compressed case*/
for (i = 0; i <= CurrentMaxPATIndex; i++)
{
GMM_PRIVATE_PAT PAT = GetPrivatePATEntry(i);
if (UsagePATElement.Xe2.L4CC == PAT.Xe2.L4CC &&
UsagePATElement.Xe2.Coherency == PAT.Xe2.Coherency &&
UsagePATElement.Xe2.L3CC == PAT.Xe2.L3CC &&
UsagePATElement.Xe2.L3CLOS == PAT.Xe2.L3CLOS &&
true == PAT.Xe2.LosslessCompressionEn)
{
PATIdxCompressed = i;
break;
}
}
if (PATIdx == -1)
{
// Didn't find the caching settings in one of the already programmed PAT table entries.
// Need to add a new lookup table entry.
GMM_ASSERTDPF(
"Cache Policy Init Error: Invalid Cache Programming, too many unique caching combinations"
"(we only support NumPATRegisters = %d)",
CurrentMaxPATIndex);
CachePolicyError = true;
PATIdx = GMM_PAT_ERROR;
}
/* Find a PATIndex for a coherent uncompressed case, if usage is 2-way or 1-way already, take that, otherwise search for oneway*/
if ((UsagePATElement.Xe2.Coherency == GMM_GFX_PHY_COHERENT_ONE_WAY_IA_SNOOP) ||
(UsagePATElement.Xe2.Coherency == GMM_GFX_PHY_COHERENT_TWO_WAY_IA_GPU_SNOOP))
{
//Already coherent
CoherentPATIdx = PATIdx;
}
else
{
// search for equivalent one way coherent index
for (i = 0; i <= CurrentMaxPATIndex; i++)
{
GMM_PRIVATE_PAT PAT = GetPrivatePATEntry(i);
if (UsagePATElement.Xe2.L4CC == PAT.Xe2.L4CC &&
UsagePATElement.Xe2.L3CC == PAT.Xe2.L3CC &&
UsagePATElement.Xe2.L3CLOS == PAT.Xe2.L3CLOS &&
GMM_GFX_PHY_COHERENT_ONE_WAY_IA_SNOOP == PAT.Xe2.Coherency)
{
if ((false == PAT.Xe2.LosslessCompressionEn) && (CoherentPATIdx == -1))
{
CoherentPATIdx = i;
}
if (CoherentPATIdx != -1)
{
break;
}
}
}
if (CoherentPATIdx == -1)
{
//redo matching based on L3:UC, L4:UC, we should find one
for (i = 0; i <= CurrentMaxPATIndex; i++)
{
GMM_PRIVATE_PAT PAT = GetPrivatePATEntry(i);
if (GMM_GFX_PHY_L4_MT_UC == PAT.Xe2.L4CC &&
GMM_GFX_PHY_L3_MT_UC == PAT.Xe2.L3CC &&
UsagePATElement.Xe2.L3CLOS == PAT.Xe2.L3CLOS &&
GMM_GFX_PHY_COHERENT_ONE_WAY_IA_SNOOP == PAT.Xe2.Coherency)
{
if ((false == PAT.Xe2.LosslessCompressionEn) && (CoherentPATIdx == -1))
{
CoherentPATIdx = i;
}
if (CoherentPATIdx != -1)
{
break;
}
}
}
}
}
}
pCachePolicy[Usage].PATIndex = PATIdx;
pCachePolicy[Usage].CoherentPATIndex = GET_COHERENT_PATINDEX_LOWER_BITS(CoherentPATIdx); // Coherent uncompressed lower bits
pCachePolicy[Usage].CoherentPATIndexHigherBit = GET_COHERENT_PATINDEX_HIGHER_BIT(CoherentPATIdx); // Coherent uncompressed higher bits
pCachePolicy[Usage].PATIndexCompressed = PATIdxCompressed;
pCachePolicy[Usage].PTE.DwordValue = GMM_GET_PTE_BITS_FROM_PAT_IDX(PATIdx) & 0xFFFFFFFF;
pCachePolicy[Usage].PTE.HighDwordValue = GMM_GET_PTE_BITS_FROM_PAT_IDX(PATIdx) >> 32;
pCachePolicy[Usage].MemoryObjectOverride.XE_HP.Index = CPTblIdx;
pCachePolicy[Usage].MemoryObjectOverride.XE_HP.EncryptedData = 0;
pCachePolicy[Usage].Override = ALWAYS_OVERRIDE;
if (CachePolicyError)
{
GMM_ASSERTDPF(false, "Cache Policy Init Error: Invalid Cache Programming ");
return GMM_INVALIDPARAM;
}
}
return GMM_SUCCESS;
}
//=============================================================================
//
// Function: __:GetL3L4
//
// Desc: This function // converting GMM indicative values to actual register values
//
// Parameters:
//
// Return: GMM_STATUS
//
//-----------------------------------------------------------------------------
void GmmLib::GmmXe2_LPGCachePolicy::GetL3L4(GMM_CACHE_POLICY_TBL_ELEMENT *pUsageEle, GMM_XE2_PRIVATE_PAT *pUsagePATElement, uint32_t Usage)
{
//MOCS
pUsageEle->L3.PhysicalL3.Reserved0 = pUsageEle->L3.PhysicalL3.Reserved = 0;
//L3CLOS
pUsageEle->L3.PhysicalL3.L3CLOS = 0;
//IgPAT
pUsageEle->L3.PhysicalL3.igPAT = pCachePolicy[Usage].IgnorePAT;
//PAT
pUsagePATElement->Xe2.Reserved1 = 0;
pUsagePATElement->Xe2.Reserved2 = 0;
pUsagePATElement->Xe2.L3CLOS = 0;
switch (pCachePolicy[Usage].L3CC)
{
case GMM_UC:
pUsageEle->L3.PhysicalL3.L3CC = GMM_GFX_PHY_L3_MT_UC;
pUsagePATElement->Xe2.L3CC = GMM_GFX_PHY_L3_MT_UC;
break;
case GMM_WB:
pUsageEle->L3.PhysicalL3.L3CC = GMM_GFX_PHY_L3_MT_WB;
pUsagePATElement->Xe2.L3CC = GMM_GFX_PHY_L3_MT_WB;
break;
case GMM_WBTD:
pUsageEle->L3.PhysicalL3.L3CC = GMM_GFX_PHY_L3_MT_WB_XD; // Transient:Display on Xe2
pUsagePATElement->Xe2.L3CC = GMM_GFX_PHY_L3_MT_WB_XD;
break;
default:
pUsageEle->L3.PhysicalL3.L3CC = GMM_GFX_PHY_L3_MT_UC;
pUsagePATElement->Xe2.L3CC = GMM_GFX_PHY_L3_MT_UC;
}
switch (pCachePolicy[Usage].L4CC)
{
case GMM_UC:
pUsageEle->L3.PhysicalL3.L4CC = GMM_GFX_PHY_L4_MT_UC;
pUsagePATElement->Xe2.L4CC = GMM_GFX_PHY_L4_MT_UC;
break;
case GMM_WB:
pUsageEle->L3.PhysicalL3.L4CC = GMM_GFX_PHY_L4_MT_WB;
pUsagePATElement->Xe2.L4CC = GMM_GFX_PHY_L4_MT_WB;
break;
case GMM_WT:
pUsageEle->L3.PhysicalL3.L4CC = GMM_GFX_PHY_L4_MT_WT;
pUsagePATElement->Xe2.L4CC = GMM_GFX_PHY_L4_MT_WT;
break;
default:
pUsageEle->L3.PhysicalL3.L4CC = GMM_GFX_PHY_L4_MT_UC;
pUsagePATElement->Xe2.L4CC = GMM_GFX_PHY_L4_MT_UC;
}
switch (pCachePolicy[Usage].Coherency)
{
case GMM_NON_COHERENT_NO_SNOOP:
pUsagePATElement->Xe2.Coherency = GMM_GFX_NON_COHERENT_NO_SNOOP;
break;
case GMM_COHERENT_ONE_WAY_IA_SNOOP:
pUsagePATElement->Xe2.Coherency = GMM_GFX_COHERENT_ONE_WAY_IA_SNOOP;
break;
case GMM_COHERENT_TWO_WAY_IA_GPU_SNOOP:
pUsagePATElement->Xe2.Coherency = GMM_GFX_COHERENT_TWO_WAY_IA_GPU_SNOOP;
break;
default:
pUsagePATElement->Xe2.Coherency = GMM_GFX_NON_COHERENT_NO_SNOOP;
break;
}
if (pGmmLibContext->GetWaTable().Wa_14018443005 &&
(pCachePolicy[Usage].L3CC == GMM_UC) &&
(ISWA_1401844305USAGE(Usage)) &&
(pGmmLibContext->GetClientType() != GMM_KMD_VISTA) &&
(pGmmLibContext->GetClientType() != GMM_OCL_VISTA))
{
pUsageEle->L3.PhysicalL3.L3CC = GMM_GFX_PHY_L3_MT_WB;
pUsagePATElement->Xe2.L3CC = GMM_GFX_PHY_L3_MT_WB;
pCachePolicy[Usage].L3CC = GMM_WB;
}
}
/////////////////////////////////////////////////////////////////////////////////////
/// A simple getter function returning the PAT (cache policy) for a given
/// use Usage of the named resource pResInfo.
/// Typically used to populate PPGTT/GGTT.
///
/// @param[in] pResInfo: Resource info for resource, can be NULL.
/// @param[in] Usage: Current usage for resource.
/// @param[in] pCompressionEnabl: for Xe2 compression parameter
/// @param[in] IsCpuCacheable: Indicates Cacheability
/// @return PATIndex
/////////////////////////////////////////////////////////////////////////////////////
uint32_t GMM_STDCALL GmmLib::GmmXe2_LPGCachePolicy::CachePolicyGetPATIndex(GMM_RESOURCE_INFO *pResInfo, GMM_RESOURCE_USAGE_TYPE Usage, bool *pCompressionEnable, bool IsCpuCacheable)
{
__GMM_ASSERT(pGmmLibContext->GetCachePolicyElement(Usage).Initialized);
uint32_t PATIndex = pGmmLibContext->GetCachePolicyElement(Usage).PATIndex;
GMM_CACHE_POLICY_ELEMENT TempElement = pGmmLibContext->GetCachePolicyElement(Usage);
uint32_t TempCoherentPATIndex = 0;
// This is to check if PATIndexCompressed, CoherentPATIndex are valid
// Increment by 1 to have the rollover and value resets to 0 if the PAT in not valid.
TempElement.PATIndexCompressed += 1;
TempCoherentPATIndex = (uint32_t)GET_COHERENT_PATINDEX_VALUE(pGmmLibContext, Usage);
// Higher bit of CoherentPATIndex would tell us if its a valid or not.0--> valid, 1-->invalid
uint32_t CoherentPATIndex = (uint32_t)((GET_COHERENT_PATINDEX_HIGHER_BIT(TempCoherentPATIndex) == 1) ? GMM_PAT_ERROR : GET_COHERENT_PATINDEX_VALUE(pGmmLibContext, Usage));
//For PATIndexCompressed, rollover value would be 0 if its invalid
uint32_t PATIndexCompressed = (uint32_t)(TempElement.PATIndexCompressed == 0 ? GMM_PAT_ERROR : pGmmLibContext->GetCachePolicyElement(Usage).PATIndexCompressed);
uint32_t ReturnPATIndex = GMM_PAT_ERROR;
bool CompressionEnable = (pCompressionEnable) ? *pCompressionEnable : false;
// Prevent wrong Usage for XAdapter resources. UMD does not call GetMemoryObject on shader resources but,
// when they add it someone could call it without knowing the restriction.
if (pResInfo &&
pResInfo->GetResFlags().Info.XAdapter &&
(Usage != GMM_RESOURCE_USAGE_XADAPTER_SHARED_RESOURCE))
{
__GMM_ASSERT(false);
}
// requested compressed and coherent
if (CompressionEnable && IsCpuCacheable)
{
if (ONE_WAY_COHERENT_COMPRESSION_MODE(pGmmLibContext->GetPlatformInfo().Platform.eProductFamily, pGmmLibContext->GetWaTable().WaNoCpuCoherentCompression))
{
#define COHERENT_COMPRESSED_PATIDX 16
// return coherent compressed PAT which is 16
ReturnPATIndex = COHERENT_COMPRESSED_PATIDX;
CompressionEnable = true;
}
else
{
// return coherent uncompressed
ReturnPATIndex = CoherentPATIndex;
CompressionEnable = false;
GMM_ASSERTDPF(false, "For Coherent Compressed resources combination on Xe2, respecting the coherency and returning CoherentPATIndex");
}
}
// requested compressed only
else if (CompressionEnable)
{
if (GMM_PAT_ERROR != PATIndexCompressed)
{
// return compresed, may or may not coherent which depends on orinigal usage
ReturnPATIndex = PATIndexCompressed;
CompressionEnable = true;
}
else
{
// return original index
ReturnPATIndex = PATIndex;
CompressionEnable = false;
}
}
// requested coherent only
else if (IsCpuCacheable)
{
//return coherent uncompressed
ReturnPATIndex = CoherentPATIndex;
CompressionEnable = false;
}
/* Requested UnCompressed PAT */
else
{
if (GMM_PAT_ERROR != PATIndex)
{
ReturnPATIndex = PATIndex;
CompressionEnable = false;
}
}
/* No valid PAT Index found */
if (GMM_PAT_ERROR == ReturnPATIndex)
{
ReturnPATIndex = GMM_XE2_DEFAULT_PAT_INDEX; //default to uncached PAT index 2: GMM_CP_NON_COHERENT_UC
CompressionEnable = false;
__GMM_ASSERT(false);
}
if (pCompressionEnable)
{
*pCompressionEnable = CompressionEnable;
}
return ReturnPATIndex;
}
//=============================================================================
//
// Function: SetUpMOCSTable
//
// Desc:
//
// Parameters:
//
// Return: GMM_STATUS
//
//-----------------------------------------------------------------------------
void GmmLib::GmmXe2_LPGCachePolicy::SetUpMOCSTable()
{
GMM_CACHE_POLICY_TBL_ELEMENT *pCachePolicyTlbElement = &(pGmmLibContext->GetCachePolicyTlbElement()[0]);
#define L4_WB (0x0)
#define L4_WT (0x1)
#define L4_UC (0x3)
#define L3_WB (0x0)
#define L3_XD (pGmmLibContext->GetSkuTable().FtrL3TransientDataFlush ? 0x1 : 0x0)
#define L3_UC (0x3)
#define GMM_DEFINE_MOCS(indx, L4Caching, L3Caching, L3ClassOfService, ignorePAT) \
{ \
pCachePolicyTlbElement[indx].L3.PhysicalL3.L4CC = L4Caching; \
pCachePolicyTlbElement[indx].L3.PhysicalL3.Reserved0 = 0; \
pCachePolicyTlbElement[indx].L3.PhysicalL3.L3CC = L3Caching; \
pCachePolicyTlbElement[indx].L3.PhysicalL3.L3CLOS = L3ClassOfService; \
pCachePolicyTlbElement[indx].L3.PhysicalL3.igPAT = ignorePAT; \
}
// clang-format off
// Default MOCS Table
for(uint32_t j = 0; j < GMM_XE2_NUM_MOCS_ENTRIES; j++)
{ // Index CachingPolicy L3Caching L3ClassOfService ignorePAT
GMM_DEFINE_MOCS( j, L4_UC, L3_UC, 0 , 0 )
}
// Index L4 CachingPolicy L3 CachingPolicy L3 CLOS ignorePAT
GMM_DEFINE_MOCS( 0 , L4_UC , L3_WB , 0 , 0) // Defer to PAT
GMM_DEFINE_MOCS( 1 , L4_UC , L3_WB , 0 , 1) // L3
GMM_DEFINE_MOCS( 2 , L4_WB , L3_UC , 0 , 1) // L4
GMM_DEFINE_MOCS( 3 , L4_UC , L3_UC , 0 , 1) // UC
GMM_DEFINE_MOCS( 4 , L4_WB , L3_WB , 0 , 1) // L3+L4
CurrentMaxMocsIndex = 4;
CurrentMaxL1HdcMocsIndex = 0;
CurrentMaxSpecialMocsIndex = 0;
// clang-format on
#undef GMM_DEFINE_MOCS
#undef L4_WB
#undef L4_WT
#undef L4_UC
#undef L3_WB
#undef L3_XD
#undef L3_UC
}
//=============================================================================
//
// Function: SetupPAT
//
// Desc:
//
// Parameters:
//
// Return: GMM_STATUS
//
//-----------------------------------------------------------------------------
GMM_STATUS GmmLib::GmmXe2_LPGCachePolicy::SetupPAT()
{
GMM_PRIVATE_PAT *pPATTlbElement = &(pGmmLibContext->GetPrivatePATTable()[0]);
#define L4_WB (0x0)
#define L4_WT (0x1)
#define L4_UC (0x3)
#define L3_WB (0x0)
#define L3_XD (pGmmLibContext->GetSkuTable().FtrL3TransientDataFlush ? 0x1 : 0x0)
#define L3_UC (0x3)
#define L3_XA (0x2) // WB Transient App
#define GMM_DEFINE_PAT_ELEMENT(indx, Coh, L4Caching, L3Caching, L3ClassOfService, CompressionEn, NoCachePromote) \
{ \
pPATTlbElement[indx].Xe2.Coherency = Coh; \
pPATTlbElement[indx].Xe2.L4CC = L4Caching; \
pPATTlbElement[indx].Xe2.Reserved1 = 0; \
pPATTlbElement[indx].Xe2.Reserved2 = 0; \
pPATTlbElement[indx].Xe2.L3CC = L3Caching; \
pPATTlbElement[indx].Xe2.L3CLOS = L3ClassOfService; \
pPATTlbElement[indx].Xe2.LosslessCompressionEn = CompressionEn; \
pPATTlbElement[indx].Xe2.NoCachingPromote = NoCachePromote; \
}
// clang-format off
// Default PAT Table
// 32 nos
for (uint32_t i = 0; i < (NumPATRegisters); i++)
{ // Index Coherency CachingPolicy L3Caching L3ClassOfService CompressionEn NoCachingPromote
GMM_DEFINE_PAT_ELEMENT( i, 3, L4_UC, L3_UC, 0, 0, 0);
}
// Fixed PAT Table
// Index Coherency L4 CachingPolicy L3 CachingPolicy L3 CLOS CompressionEn NoCachingPromote
//Group: GGT/PPGTT[4]
GMM_DEFINE_PAT_ELEMENT( 0 , 0 , L4_UC , L3_WB , 0 , 0 , 0) // | L3_WB
GMM_DEFINE_PAT_ELEMENT( 1 , 2 , L4_UC , L3_WB , 0 , 0 , 0) // | L3_WB | 1 way coherent
GMM_DEFINE_PAT_ELEMENT( 2 , 3 , L4_UC , L3_WB , 0 , 0 , 0) // | L3_WB | 2 way coherent
GMM_DEFINE_PAT_ELEMENT( 3 , 0 , L4_UC , L3_UC , 0 , 0 , 0) // **UC
//Group: 1 way Coh
GMM_DEFINE_PAT_ELEMENT( 4 , 2 , L4_WB , L3_UC , 0 , 0 , 0) // L4_WB | 1 way coherent
GMM_DEFINE_PAT_ELEMENT( 5 , 2 , L4_UC , L3_UC , 0 , 0 , 0) // **UC | 1 way coherent
//Group: Compression Disabled
GMM_DEFINE_PAT_ELEMENT( 6 , 0 , L4_UC , L3_XD , 0 , 0 , 1) // | L3_XD
GMM_DEFINE_PAT_ELEMENT( 7 , 3 , L4_WB , L3_UC , 0 , 0 , 0) // L4_WB | 2 way coherent
GMM_DEFINE_PAT_ELEMENT( 8 , 0 , L4_WB , L3_UC , 0 , 0 , 0) // L4_WB
//Group: Compression Enabled
GMM_DEFINE_PAT_ELEMENT( 9 , 0 , L4_UC , L3_WB , 0 , 1 , 0) // | L3_WB | Comp
GMM_DEFINE_PAT_ELEMENT( 10 , 0 , L4_WB , L3_UC , 0 , 1 , 0) // L4_WB | Comp
GMM_DEFINE_PAT_ELEMENT( 11 , 0 , L4_UC , L3_XD , 0 , 1 , 1) // | L3_XD | Comp
GMM_DEFINE_PAT_ELEMENT( 12 , 0 , L4_UC , L3_UC , 0 , 1 , 0) // **UC | Comp
GMM_DEFINE_PAT_ELEMENT( 13 , 0 , L4_WB , L3_WB , 0 , 0 , 0) // L4_WB | L3_WB
GMM_DEFINE_PAT_ELEMENT( 14 , 0 , L4_WB , L3_WB , 0 , 1 , 0) // L4_WB | L3_WB | Comp
GMM_DEFINE_PAT_ELEMENT( 15 , 0 , L4_WT , L3_XD , 0 , 1 , 1) // L4_WT | L3_XD | Comp
//Reserved 16-19
//Group: CLOS1
GMM_DEFINE_PAT_ELEMENT( 20 , 0 , L4_UC , L3_WB , 1 , 0 , 0) // | L3_WB
GMM_DEFINE_PAT_ELEMENT( 21 , 0 , L4_UC , L3_WB , 1 , 1 , 0) // | L3_WB | Comp
GMM_DEFINE_PAT_ELEMENT( 22 , 2 , L4_UC , L3_WB , 1 , 0 , 0) // | L3_WB | 1 way coherent
GMM_DEFINE_PAT_ELEMENT( 23 , 3 , L4_UC , L3_WB , 1 , 0 , 0) // | L3_WB | 2 way coherent
//Group:CLOS2=>Clone of CLOS1
GMM_DEFINE_PAT_ELEMENT( 24 , 0 , L4_UC , L3_WB , 2 , 0 , 0) // | L3_WB
GMM_DEFINE_PAT_ELEMENT( 25 , 0 , L4_UC , L3_WB , 2 , 1 , 0) // | L3_WB | Comp
GMM_DEFINE_PAT_ELEMENT( 26 , 2 , L4_UC , L3_WB , 2 , 0 , 0) // | L3_WB | 1 way coherent
GMM_DEFINE_PAT_ELEMENT( 27 , 3 , L4_UC , L3_WB , 2 , 0 , 0) // | L3_WB | 2 way coherent
//Group:CLOS3=>Clone of CLOS1
GMM_DEFINE_PAT_ELEMENT( 28 , 0 , L4_UC , L3_WB , 3 , 0 , 0) // | L3_WB
GMM_DEFINE_PAT_ELEMENT( 29 , 0 , L4_UC , L3_WB , 3 , 1 , 0) // | L3_WB | Comp
GMM_DEFINE_PAT_ELEMENT( 30 , 2 , L4_UC , L3_WB , 3 , 0 , 0) // | L3_WB | 1 way coherent
GMM_DEFINE_PAT_ELEMENT( 31 , 3 , L4_UC , L3_WB , 3 , 0 , 0) // | L3_WB | 2 way coherent
CurrentMaxPATIndex = 31;
if (ONE_WAY_COHERENT_COMPRESSION_MODE(pGmmLibContext->GetPlatformInfo().Platform.eProductFamily, pGmmLibContext->GetWaTable().WaNoCpuCoherentCompression))
{
GMM_DEFINE_PAT_ELEMENT( 16 , 2 , L4_UC , L3_WB , 0 , 1 , 0) // | L3_WB | 1 way coherent | Compression
}
// clang-format on
#undef GMM_DEFINE_PAT
#undef L4_WB
#undef L4_WT
#undef L4_UC
#undef L3_WB
#undef L3_XD
#undef L3_UC
return GMM_SUCCESS;
}
|