1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
* Copyright 2015 Philip Taylor <philip@zaynar.co.uk>
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <assert.h>
#include <math.h>
#include "igt_halffloat.h"
#include "igt_x86.h"
typedef union { float f; int32_t i; uint32_t u; } fi_type;
/**
* Convert a 4-byte float to a 2-byte half float.
*
* Not all float32 values can be represented exactly as a float16 value. We
* round such intermediate float32 values to the nearest float16. When the
* float32 lies exactly between to float16 values, we round to the one with
* an even mantissa.
*
* This rounding behavior has several benefits:
* - It has no sign bias.
*
* - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's
* GPU ISA.
*
* - By reproducing the behavior of the GPU (at least on Intel hardware),
* compile-time evaluation of constant packHalf2x16 GLSL expressions will
* result in the same value as if the expression were executed on the GPU.
*/
static inline uint16_t _float_to_half(float val)
{
const fi_type fi = {val};
const int flt_m = fi.i & 0x7fffff;
const int flt_e = (fi.i >> 23) & 0xff;
const int flt_s = (fi.i >> 31) & 0x1;
int s, e, m = 0;
uint16_t result;
/* sign bit */
s = flt_s;
/* handle special cases */
if ((flt_e == 0) && (flt_m == 0)) {
/* zero */
/* m = 0; - already set */
e = 0;
} else if ((flt_e == 0) && (flt_m != 0)) {
/* denorm -- denorm float maps to 0 half */
/* m = 0; - already set */
e = 0;
} else if ((flt_e == 0xff) && (flt_m == 0)) {
/* infinity */
/* m = 0; - already set */
e = 31;
} else if ((flt_e == 0xff) && (flt_m != 0)) {
/* NaN */
m = 1;
e = 31;
} else {
/* regular number */
const int new_exp = flt_e - 127;
if (new_exp < -14) {
/* The float32 lies in the range (0.0, min_normal16) and
* is rounded to a nearby float16 value. The result will
* be either zero, subnormal, or normal.
*/
e = 0;
m = lrintf((1 << 24) * fabsf(fi.f));
} else if (new_exp > 15) {
/* map this value to infinity */
/* m = 0; - already set */
e = 31;
} else {
/* The float32 lies in the range
* [min_normal16, max_normal16 + max_step16)
* and is rounded to a nearby float16 value. The result
* will be either normal or infinite.
*/
e = new_exp + 15;
m = lrintf(flt_m / (float)(1 << 13));
}
}
assert(0 <= m && m <= 1024);
if (m == 1024) {
/* The float32 was rounded upwards into the range of the next
* exponent, so bump the exponent. This correctly handles the
* case where f32 should be rounded up to float16 infinity.
*/
++e;
m = 0;
}
result = (s << 15) | (e << 10) | m;
return result;
}
/**
* Convert a 2-byte half float to a 4-byte float.
* Based on code from:
* http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html
*/
static inline float _half_to_float(uint16_t val)
{
/* XXX could also use a 64K-entry lookup table */
const int m = val & 0x3ff;
const int e = (val >> 10) & 0x1f;
const int s = (val >> 15) & 0x1;
int flt_m, flt_e, flt_s;
fi_type fi;
/* sign bit */
flt_s = s;
/* handle special cases */
if ((e == 0) && (m == 0)) {
/* zero */
flt_m = 0;
flt_e = 0;
} else if ((e == 0) && (m != 0)) {
/* denorm -- denorm half will fit in non-denorm single */
const float half_denorm = 1.0f / 16384.0f; /* 2^-14 */
float mantissa = ((float) (m)) / 1024.0f;
float sign = s ? -1.0f : 1.0f;
return sign * mantissa * half_denorm;
} else if ((e == 31) && (m == 0)) {
/* infinity */
flt_e = 0xff;
flt_m = 0;
} else if ((e == 31) && (m != 0)) {
/* NaN */
flt_e = 0xff;
flt_m = 1;
} else {
/* regular */
flt_e = e + 112;
flt_m = m << 13;
}
fi.i = (flt_s << 31) | (flt_e << 23) | flt_m;
return fi.f;
}
#if defined(__x86_64__) && !defined(__clang__) && defined(__GLIBC__) && !defined(__UCLIBC__)
#pragma GCC push_options
#pragma GCC target("f16c")
#include <immintrin.h>
static void float_to_half_f16c(const float *f, uint16_t *h, unsigned int num)
{
for (int i = 0; i < num; i++)
h[i] = _cvtss_sh(f[i], 0);
}
static void half_to_float_f16c(const uint16_t *h, float *f, unsigned int num)
{
for (int i = 0; i < num; i++)
f[i] = _cvtsh_ss(h[i]);
}
#pragma GCC pop_options
static void float_to_half(const float *f, uint16_t *h, unsigned int num)
{
for (int i = 0; i < num; i++)
h[i] = _float_to_half(f[i]);
}
static void half_to_float(const uint16_t *h, float *f, unsigned int num)
{
for (int i = 0; i < num; i++)
f[i] = _half_to_float(h[i]);
}
/* The PLT is not initialized when ifunc resolvers run, so all external
* functions must be inlined with __attribute__((flatten)).
*/
__attribute__((flatten))
static void (*resolve_float_to_half(void))(const float *f, uint16_t *h, unsigned int num)
{
if (igt_x86_features() & F16C)
return float_to_half_f16c;
return float_to_half;
}
void igt_float_to_half(const float *f, uint16_t *h, unsigned int num)
__attribute__((ifunc("resolve_float_to_half")));
/* The PLT is not initialized when ifunc resolvers run, so all external
* functions must be inlined with __attribute__((flatten)).
*/
__attribute__((flatten))
static void (*resolve_half_to_float(void))(const uint16_t *h, float *f, unsigned int num)
{
if (igt_x86_features() & F16C)
return half_to_float_f16c;
return half_to_float;
}
void igt_half_to_float(const uint16_t *h, float *f, unsigned int num)
__attribute__((ifunc("resolve_half_to_float")));
#else
void igt_float_to_half(const float *f, uint16_t *h, unsigned int num)
{
for (int i = 0; i < num; i++)
h[i] = _float_to_half(f[i]);
}
void igt_half_to_float(const uint16_t *h, float *f, unsigned int num)
{
for (int i = 0; i < num; i++)
f[i] = _half_to_float(h[i]);
}
#endif
|