1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "igt_core.h"
#include "igt_stats.h"
#define U64_MAX ((uint64_t)~0ULL)
#define sorted_value(stats, i) (stats->is_float ? stats->sorted_f[i] : stats->sorted_u64[i])
#define unsorted_value(stats, i) (stats->is_float ? stats->values_f[i] : stats->values_u64[i])
/**
* SECTION:igt_stats
* @short_description: Tools for statistical analysis
* @title: Stats
* @include: igt.h
*
* Various tools to make sense of data.
*
* #igt_stats_t is a container of data samples. igt_stats_push() is used to add
* new samples and various results (mean, variance, standard deviation, ...)
* can then be retrieved.
*
* |[
* igt_stats_t stats;
*
* igt_stats_init(&stats, 8);
*
* igt_stats_push(&stats, 2);
* igt_stats_push(&stats, 4);
* igt_stats_push(&stats, 4);
* igt_stats_push(&stats, 4);
* igt_stats_push(&stats, 5);
* igt_stats_push(&stats, 5);
* igt_stats_push(&stats, 7);
* igt_stats_push(&stats, 9);
*
* printf("Mean: %lf\n", igt_stats_get_mean(&stats));
*
* igt_stats_fini(&stats);
* ]|
*/
static unsigned int get_new_capacity(int need)
{
unsigned int new_capacity;
/* taken from Python's list */
new_capacity = (need >> 6) + (need < 9 ? 3 : 6);
new_capacity += need;
return new_capacity;
}
static void igt_stats_ensure_capacity(igt_stats_t *stats,
unsigned int n_additional_values)
{
unsigned int new_n_values = stats->n_values + n_additional_values;
unsigned int new_capacity;
if (new_n_values <= stats->capacity)
return;
new_capacity = get_new_capacity(new_n_values);
stats->values_u64 = realloc(stats->values_u64,
sizeof(*stats->values_u64) * new_capacity);
igt_assert(stats->values_u64);
stats->capacity = new_capacity;
free(stats->sorted_u64);
stats->sorted_u64 = NULL;
}
/**
* igt_stats_init:
* @stats: An #igt_stats_t instance
*
* Initializes an #igt_stats_t instance. igt_stats_fini() must be called once
* finished with @stats.
*/
void igt_stats_init(igt_stats_t *stats)
{
memset(stats, 0, sizeof(*stats));
igt_stats_ensure_capacity(stats, 128);
stats->min = U64_MAX;
stats->max = 0;
}
/**
* igt_stats_init_with_size:
* @stats: An #igt_stats_t instance
* @capacity: Number of data samples @stats can contain
*
* Like igt_stats_init() but with a size to avoid reallocating the underlying
* array(s) when pushing new values. Useful if we have a good idea of the
* number of data points we want @stats to hold.
*
* igt_stats_fini() must be called once finished with @stats.
*/
void igt_stats_init_with_size(igt_stats_t *stats, unsigned int capacity)
{
memset(stats, 0, sizeof(*stats));
igt_stats_ensure_capacity(stats, capacity);
stats->min = U64_MAX;
stats->max = 0;
stats->range[0] = HUGE_VAL;
stats->range[1] = -HUGE_VAL;
}
/**
* igt_stats_fini:
* @stats: An #igt_stats_t instance
*
* Frees resources allocated in igt_stats_init().
*/
void igt_stats_fini(igt_stats_t *stats)
{
free(stats->values_u64);
free(stats->sorted_u64);
}
/**
* igt_stats_is_population:
* @stats: An #igt_stats_t instance
*
* Returns: #true if @stats represents a population, #false if only a sample.
*
* See igt_stats_set_population() for more details.
*/
bool igt_stats_is_population(igt_stats_t *stats)
{
return stats->is_population;
}
/**
* igt_stats_set_population:
* @stats: An #igt_stats_t instance
* @full_population: Whether we're dealing with sample data or a full
* population
*
* In statistics, we usually deal with a subset of the full data (which may be
* a continuous or infinite set). Data analysis is then done on a sample of
* this population.
*
* This has some importance as only having a sample of the data leads to
* [biased estimators](https://en.wikipedia.org/wiki/Bias_of_an_estimator). We
* currently used the information given by this method to apply
* [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction)
* to the variance.
*
* Note that even if we manage to have an unbiased variance by multiplying
* a sample variance by the Bessel's correction, n/(n - 1), the standard
* deviation derived from the unbiased variance isn't itself unbiased.
* Statisticians talk about a "corrected" standard deviation.
*
* When giving #true to this function, the data set in @stats is considered a
* full population. It's considered a sample of a bigger population otherwise.
*
* When newly created, @stats defaults to holding sample data.
*/
void igt_stats_set_population(igt_stats_t *stats, bool full_population)
{
if (full_population == stats->is_population)
return;
stats->is_population = full_population;
stats->mean_variance_valid = false;
}
/**
* igt_stats_push:
* @stats: An #igt_stats_t instance
* @value: An integer value
*
* Adds a new value to the @stats dataset.
*/
void igt_stats_push(igt_stats_t *stats, uint64_t value)
{
if (stats->is_float) {
igt_stats_push_float(stats, value);
return;
}
igt_stats_ensure_capacity(stats, 1);
stats->values_u64[stats->n_values++] = value;
stats->mean_variance_valid = false;
stats->sorted_array_valid = false;
if (value < stats->min)
stats->min = value;
if (value > stats->max)
stats->max = value;
}
/**
* igt_stats_push:
* @stats: An #igt_stats_t instance
* @value: An floating point
*
* Adds a new value to the @stats dataset and converts the igt_stats from
* an integer collection to a floating point one.
*/
void igt_stats_push_float(igt_stats_t *stats, double value)
{
igt_stats_ensure_capacity(stats, 1);
if (!stats->is_float) {
int n;
for (n = 0; n < stats->n_values; n++)
stats->values_f[n] = stats->values_u64[n];
stats->is_float = true;
}
stats->values_f[stats->n_values++] = value;
stats->mean_variance_valid = false;
stats->sorted_array_valid = false;
if (value < stats->range[0])
stats->range[0] = value;
if (value > stats->range[1])
stats->range[1] = value;
}
/**
* igt_stats_push_array:
* @stats: An #igt_stats_t instance
* @values: (array length=n_values): A pointer to an array of data points
* @n_values: The number of data points to add
*
* Adds an array of values to the @stats dataset.
*/
void igt_stats_push_array(igt_stats_t *stats,
const uint64_t *values, unsigned int n_values)
{
unsigned int i;
igt_stats_ensure_capacity(stats, n_values);
for (i = 0; i < n_values; i++)
igt_stats_push(stats, values[i]);
}
/**
* igt_stats_get_min:
* @stats: An #igt_stats_t instance
*
* Retrieves the minimal value in @stats
*/
uint64_t igt_stats_get_min(igt_stats_t *stats)
{
igt_assert(!stats->is_float);
return stats->min;
}
/**
* igt_stats_get_max:
* @stats: An #igt_stats_t instance
*
* Retrieves the maximum value in @stats
*/
uint64_t igt_stats_get_max(igt_stats_t *stats)
{
igt_assert(!stats->is_float);
return stats->max;
}
/**
* igt_stats_get_range:
* @stats: An #igt_stats_t instance
*
* Retrieves the range of the values in @stats. The range is the difference
* between the highest and the lowest value.
*
* The range can be a deceiving characterization of the values, because there
* can be extreme minimal and maximum values that are just anomalies. Prefer
* the interquatile range (see igt_stats_get_iqr()) or an histogram.
*/
uint64_t igt_stats_get_range(igt_stats_t *stats)
{
return igt_stats_get_max(stats) - igt_stats_get_min(stats);
}
static int cmp_u64(const void *pa, const void *pb)
{
const uint64_t *a = pa, *b = pb;
if (*a < *b)
return -1;
if (*a > *b)
return 1;
return 0;
}
static int cmp_f(const void *pa, const void *pb)
{
const double *a = pa, *b = pb;
if (*a < *b)
return -1;
if (*a > *b)
return 1;
return 0;
}
static void igt_stats_ensure_sorted_values(igt_stats_t *stats)
{
if (stats->sorted_array_valid)
return;
if (!stats->sorted_u64) {
/*
* igt_stats_ensure_capacity() will free ->sorted when the
* capacity increases, which also correspond to an invalidation
* of the sorted array. We'll then reallocate it here on
* demand.
*/
stats->sorted_u64 = calloc(stats->capacity,
sizeof(*stats->values_u64));
igt_assert(stats->sorted_u64);
}
memcpy(stats->sorted_u64, stats->values_u64,
sizeof(*stats->values_u64) * stats->n_values);
qsort(stats->sorted_u64, stats->n_values, sizeof(*stats->values_u64),
stats->is_float ? cmp_f : cmp_u64);
stats->sorted_array_valid = true;
}
/*
* We use Tukey's hinge for our quartiles determination.
* ends (end, lower_end) are exclusive.
*/
static double
igt_stats_get_median_internal(igt_stats_t *stats,
unsigned int start, unsigned int end,
unsigned int *lower_end /* out */,
unsigned int *upper_start /* out */)
{
unsigned int mid, n_values = end - start;
double median;
igt_stats_ensure_sorted_values(stats);
/* odd number of data points */
if (n_values % 2 == 1) {
/* median is the value in the middle (actual datum) */
mid = start + n_values / 2;
median = sorted_value(stats, mid);
/* the two halves contain the median value */
if (lower_end)
*lower_end = mid + 1;
if (upper_start)
*upper_start = mid;
/* even number of data points */
} else {
/*
* The middle is in between two indexes, 'mid' points at the
* lower one. The median is then the average between those two
* values.
*/
mid = start + n_values / 2 - 1;
median = (sorted_value(stats, mid) + sorted_value(stats, mid+1))/2.;
if (lower_end)
*lower_end = mid + 1;
if (upper_start)
*upper_start = mid + 1;
}
return median;
}
/**
* igt_stats_get_quartiles:
* @stats: An #igt_stats_t instance
* @q1: (out): lower or 25th quartile
* @q2: (out): median or 50th quartile
* @q3: (out): upper or 75th quartile
*
* Retrieves the [quartiles](https://en.wikipedia.org/wiki/Quartile) of the
* @stats dataset.
*/
void igt_stats_get_quartiles(igt_stats_t *stats,
double *q1, double *q2, double *q3)
{
unsigned int lower_end, upper_start;
double ret;
if (stats->n_values < 3) {
if (q1)
*q1 = 0.;
if (q2)
*q2 = 0.;
if (q3)
*q3 = 0.;
return;
}
ret = igt_stats_get_median_internal(stats, 0, stats->n_values,
&lower_end, &upper_start);
if (q2)
*q2 = ret;
ret = igt_stats_get_median_internal(stats, 0, lower_end, NULL, NULL);
if (q1)
*q1 = ret;
ret = igt_stats_get_median_internal(stats, upper_start, stats->n_values,
NULL, NULL);
if (q3)
*q3 = ret;
}
/**
* igt_stats_get_iqr:
* @stats: An #igt_stats_t instance
*
* Retrieves the
* [interquartile range](https://en.wikipedia.org/wiki/Interquartile_range)
* (IQR) of the @stats dataset.
*/
double igt_stats_get_iqr(igt_stats_t *stats)
{
double q1, q3;
igt_stats_get_quartiles(stats, &q1, NULL, &q3);
return (q3 - q1);
}
/**
* igt_stats_get_median:
* @stats: An #igt_stats_t instance
*
* Retrieves the median of the @stats dataset.
*/
double igt_stats_get_median(igt_stats_t *stats)
{
return igt_stats_get_median_internal(stats, 0, stats->n_values,
NULL, NULL);
}
/*
* Algorithm popularised by Knuth in:
*
* The Art of Computer Programming, volume 2: Seminumerical Algorithms,
* 3rd edn., p. 232. Boston: Addison-Wesley
*
* Source: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
*/
static void igt_stats_knuth_mean_variance(igt_stats_t *stats)
{
double mean = 0., m2 = 0.;
unsigned int i;
if (stats->mean_variance_valid)
return;
for (i = 0; i < stats->n_values; i++) {
double delta = unsorted_value(stats, i) - mean;
mean += delta / (i + 1);
m2 += delta * (unsorted_value(stats, i) - mean);
}
stats->mean = mean;
if (stats->n_values > 1 && !stats->is_population)
stats->variance = m2 / (stats->n_values - 1);
else
stats->variance = m2 / stats->n_values;
stats->mean_variance_valid = true;
}
/**
* igt_stats_get_mean:
* @stats: An #igt_stats_t instance
*
* Retrieves the mean of the @stats dataset.
*/
double igt_stats_get_mean(igt_stats_t *stats)
{
igt_stats_knuth_mean_variance(stats);
return stats->mean;
}
/**
* igt_stats_get_variance:
* @stats: An #igt_stats_t instance
*
* Retrieves the variance of the @stats dataset.
*/
double igt_stats_get_variance(igt_stats_t *stats)
{
igt_stats_knuth_mean_variance(stats);
return stats->variance;
}
/**
* igt_stats_get_std_deviation:
* @stats: An #igt_stats_t instance
*
* Retrieves the standard deviation of the @stats dataset.
*/
double igt_stats_get_std_deviation(igt_stats_t *stats)
{
igt_stats_knuth_mean_variance(stats);
return sqrt(stats->variance);
}
/**
* igt_stats_get_std_error:
* @stats: An #igt_stats_t instance
*
* Retrieves the standard error of the mean from the @stats dataset.
*/
double igt_stats_get_std_error(igt_stats_t *stats)
{
return igt_stats_get_std_deviation(stats) / sqrt(stats->n_values);
}
/**
* igt_stats_get_iqm:
* @stats: An #igt_stats_t instance
*
* Retrieves the
* [interquartile mean](https://en.wikipedia.org/wiki/Interquartile_mean) (IQM)
* of the @stats dataset.
*
* The interquartile mean is a "statistical measure of central tendency".
* It is a truncated mean that discards the lowest and highest 25% of values,
* and calculates the mean value of the remaining central values.
*
* It's useful to hide outliers in measurements (due to cold cache etc).
*/
double igt_stats_get_iqm(igt_stats_t *stats)
{
unsigned int q1, q3, i;
double mean;
igt_stats_ensure_sorted_values(stats);
q1 = (stats->n_values + 3) / 4;
q3 = 3 * stats->n_values / 4;
mean = 0;
for (i = 0; i <= q3 - q1; i++)
mean += (sorted_value(stats, q1 + i) - mean) / (i + 1);
if (stats->n_values % 4) {
double rem = .5 * (stats->n_values % 4) / 4;
q1 = (stats->n_values) / 4;
q3 = (3 * stats->n_values + 3) / 4;
mean += rem * (sorted_value(stats, q1) - mean) / i++;
mean += rem * (sorted_value(stats, q3) - mean) / i++;
}
return mean;
}
/**
* igt_stats_get_trimean:
* @stats: An #igt_stats_t instance
*
* Retrieves the [trimean](https://en.wikipedia.org/wiki/Trimean) of the @stats
* dataset.
*
* The trimean is a the most efficient 3-point L-estimator, even more
* robust than the median at estimating the average of a sample population.
*/
double igt_stats_get_trimean(igt_stats_t *stats)
{
double q1, q2, q3;
igt_stats_get_quartiles(stats, &q1, &q2, &q3);
return (q1 + 2*q2 + q3) / 4;
}
/**
* igt_mean_init:
* @m: tracking structure
*
* Initializes or resets @m.
*/
void igt_mean_init(struct igt_mean *m)
{
memset(m, 0, sizeof(*m));
m->max = -HUGE_VAL;
m->min = HUGE_VAL;
}
/**
* igt_mean_add:
* @m: tracking structure
* @v: value
*
* Adds a new value @v to @m.
*/
void igt_mean_add(struct igt_mean *m, double v)
{
double delta = v - m->mean;
m->mean += delta / ++m->count;
m->sq += delta * (v - m->mean);
if (v < m->min)
m->min = v;
if (v > m->max)
m->max = v;
}
/**
* igt_mean_get:
* @m: tracking structure
*
* Computes the current mean of the samples tracked in @m.
*/
double igt_mean_get(struct igt_mean *m)
{
return m->mean;
}
/**
* igt_mean_get_variance:
* @m: tracking structure
*
* Computes the current variance of the samples tracked in @m.
*/
double igt_mean_get_variance(struct igt_mean *m)
{
return m->sq / m->count;
}
|