1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2024 Intel Corporation
*/
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <xe_drm.h>
#include "intel_chipset.h"
#include "xe_oa.h"
#include "xe_oa_data_reader.h"
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
static inline bool
oa_report_ctx_is_valid(const struct intel_xe_perf_devinfo *devinfo,
const uint8_t *_report)
{
const uint32_t *report = (const uint32_t *) _report;
if (devinfo->graphics_ver < 8)
return false; /* TODO */
if (devinfo->graphics_ver >= 12)
return true; /* Always valid */
if (devinfo->graphics_ver == 8)
return report[0] & (1ul << 25);
if (devinfo->graphics_ver > 8)
return report[0] & (1ul << 16);
return false;
}
static uint32_t
oa_report_ctx_id(struct intel_xe_perf_data_reader *reader, const uint8_t *report)
{
if (!oa_report_ctx_is_valid(&reader->devinfo, report))
return 0xffffffff;
if (reader->metric_set->perf_oa_format == XE_OA_FORMAT_PEC64u64)
return ((const uint32_t *) report)[4];
else
return ((const uint32_t *) report)[2];
}
static void
append_record(struct intel_xe_perf_data_reader *reader,
const struct intel_xe_perf_record_header *header)
{
if (reader->n_records >= reader->n_allocated_records) {
reader->n_allocated_records = MAX(100, 2 * reader->n_allocated_records);
reader->records =
(const struct intel_xe_perf_record_header **)
realloc((void *) reader->records,
reader->n_allocated_records *
sizeof(struct intel_xe_perf_record_header *));
assert(reader->records);
}
reader->records[reader->n_records++] = header;
}
static void
append_timestamp_correlation(struct intel_xe_perf_data_reader *reader,
const struct intel_xe_perf_record_timestamp_correlation *corr)
{
if (reader->n_correlations >= reader->n_allocated_correlations) {
reader->n_allocated_correlations = MAX(100, 2 * reader->n_allocated_correlations);
reader->correlations =
(const struct intel_xe_perf_record_timestamp_correlation **)
realloc((void *) reader->correlations,
reader->n_allocated_correlations *
sizeof(*reader->correlations));
assert(reader->correlations);
}
reader->correlations[reader->n_correlations++] = corr;
}
static struct intel_xe_perf_metric_set *
find_metric_set(struct intel_xe_perf *perf, const char *symbol_name)
{
struct intel_xe_perf_metric_set *metric_set;
igt_list_for_each_entry(metric_set, &perf->metric_sets, link) {
if (!strcmp(symbol_name, metric_set->symbol_name))
return metric_set;
}
return NULL;
}
static bool
parse_data(struct intel_xe_perf_data_reader *reader)
{
const struct intel_xe_perf_record_device_info *record_info;
const struct intel_xe_perf_record_device_topology *record_topology;
const uint8_t *end = reader->mmap_data + reader->mmap_size;
const uint8_t *iter = reader->mmap_data;
while (iter < end) {
const struct intel_xe_perf_record_header *header =
(const struct intel_xe_perf_record_header *) iter;
switch (header->type) {
case INTEL_XE_PERF_RECORD_TYPE_SAMPLE:
append_record(reader, header);
break;
case INTEL_XE_PERF_RECORD_OA_TYPE_REPORT_LOST:
case INTEL_XE_PERF_RECORD_OA_TYPE_BUFFER_LOST:
assert(header->size == sizeof(*header));
break;
case INTEL_XE_PERF_RECORD_TYPE_VERSION: {
struct intel_xe_perf_record_version *version =
(struct intel_xe_perf_record_version*) (header + 1);
if (version->version != INTEL_XE_PERF_RECORD_VERSION) {
snprintf(reader->error_msg, sizeof(reader->error_msg),
"Unsupported recording version (%u, expected %u)",
version->version, INTEL_XE_PERF_RECORD_VERSION);
return false;
}
break;
}
case INTEL_XE_PERF_RECORD_TYPE_DEVICE_INFO: {
reader->record_info = header + 1;
assert(header->size == (sizeof(struct intel_xe_perf_record_device_info) +
sizeof(*header)));
break;
}
case INTEL_XE_PERF_RECORD_TYPE_DEVICE_TOPOLOGY: {
reader->record_topology = header + 1;
break;
}
case INTEL_XE_PERF_RECORD_TYPE_TIMESTAMP_CORRELATION: {
append_timestamp_correlation(reader,
(const struct intel_xe_perf_record_timestamp_correlation *) (header + 1));
break;
}
}
iter += header->size;
}
if (!reader->record_info ||
!reader->record_topology) {
snprintf(reader->error_msg, sizeof(reader->error_msg),
"Invalid file, missing device or topology info");
return false;
}
record_info = reader->record_info;
record_topology = reader->record_topology;
reader->perf = intel_xe_perf_for_devinfo(record_info->device_id,
record_info->device_revision,
record_info->timestamp_frequency,
record_info->gt_min_frequency,
record_info->gt_max_frequency,
&record_topology->topology);
if (!reader->perf) {
snprintf(reader->error_msg, sizeof(reader->error_msg),
"Recording occured on unsupported device (0x%x)",
record_info->device_id);
return false;
}
reader->devinfo = reader->perf->devinfo;
reader->metric_set_name = record_info->metric_set_name;
reader->metric_set_uuid = record_info->metric_set_uuid;
reader->metric_set = find_metric_set(reader->perf, record_info->metric_set_name);
return true;
}
static uint64_t
correlate_gpu_timestamp(struct intel_xe_perf_data_reader *reader,
uint64_t gpu_ts)
{
/* OA reports only have the lower 32bits of the timestamp
* register, while our correlation data has the whole 36bits.
* Try to figure what portion of the correlation data the
* 32bit timestamp belongs to.
*/
uint64_t mask = reader->perf->devinfo.oa_timestamp_mask;
int corr_idx = -1;
/* On some OA formats, gpu_ts is a 64 bit value and the shift can
* result in bit[31] being set. This throws off the correlation and the
* timelines. Apply the mask on gpu_ts as well.
*/
gpu_ts = gpu_ts & mask;
for (uint32_t i = 0; i < reader->n_correlation_chunks; i++) {
if (gpu_ts >= (reader->correlation_chunks[i].gpu_ts_begin & mask) &&
gpu_ts <= (reader->correlation_chunks[i].gpu_ts_end & mask)) {
corr_idx = reader->correlation_chunks[i].idx;
break;
}
}
/* Not found? Assume prior to the first timestamp correlation.
*/
if (corr_idx < 0) {
return reader->correlations[0]->cpu_timestamp -
((reader->correlations[0]->gpu_timestamp & mask) - gpu_ts) *
(reader->correlations[1]->cpu_timestamp - reader->correlations[0]->cpu_timestamp) /
(reader->correlations[1]->gpu_timestamp - reader->correlations[0]->gpu_timestamp);
}
for (uint32_t i = corr_idx; i < (reader->n_correlations - 1); i++) {
if (gpu_ts >= (reader->correlations[i]->gpu_timestamp & mask) &&
gpu_ts < (reader->correlations[i + 1]->gpu_timestamp & mask)) {
return reader->correlations[i]->cpu_timestamp +
(gpu_ts - (reader->correlations[i]->gpu_timestamp & mask)) *
(reader->correlations[i + 1]->cpu_timestamp - reader->correlations[i]->cpu_timestamp) /
(reader->correlations[i + 1]->gpu_timestamp - reader->correlations[i]->gpu_timestamp);
}
}
/* This is a bit harsh, but the recording tool should ensure we have
* sampling points on either side of the bag of OA reports.
*/
assert(0);
}
static void
append_timeline_event(struct intel_xe_perf_data_reader *reader,
uint64_t ts_start, uint64_t ts_end,
uint32_t record_start, uint32_t record_end,
uint32_t hw_id)
{
if (reader->n_timelines >= reader->n_allocated_timelines) {
reader->n_allocated_timelines = MAX(100, 2 * reader->n_allocated_timelines);
reader->timelines =
(struct intel_xe_perf_timeline_item *)
realloc((void *) reader->timelines,
reader->n_allocated_timelines *
sizeof(*reader->timelines));
assert(reader->timelines);
}
reader->timelines[reader->n_timelines].ts_start = ts_start;
reader->timelines[reader->n_timelines].ts_end = ts_end;
reader->timelines[reader->n_timelines].cpu_ts_start =
correlate_gpu_timestamp(reader, ts_start);
reader->timelines[reader->n_timelines].cpu_ts_end =
correlate_gpu_timestamp(reader, ts_end);
reader->timelines[reader->n_timelines].record_start = record_start;
reader->timelines[reader->n_timelines].record_end = record_end;
reader->timelines[reader->n_timelines].hw_id = hw_id;
reader->n_timelines++;
}
static void
generate_cpu_events(struct intel_xe_perf_data_reader *reader)
{
uint32_t last_header_idx = 0;
const struct intel_xe_perf_record_header *last_header = reader->records[0],
*current_header = reader->records[0];
const uint8_t *start_report, *end_report;
uint32_t last_ctx_id, current_ctx_id;
uint64_t gpu_ts_start, gpu_ts_end;
for (uint32_t i = 1; i < reader->n_records; i++) {
current_header = reader->records[i];
start_report = (const uint8_t *) (last_header + 1);
end_report = (const uint8_t *) (current_header + 1);
last_ctx_id = oa_report_ctx_id(reader, start_report);
current_ctx_id = oa_report_ctx_id(reader, end_report);
gpu_ts_start = intel_xe_perf_read_record_timestamp(reader->perf,
reader->metric_set,
last_header);
gpu_ts_end = intel_xe_perf_read_record_timestamp(reader->perf,
reader->metric_set,
current_header);
if (last_ctx_id == current_ctx_id)
continue;
append_timeline_event(reader, gpu_ts_start, gpu_ts_end, last_header_idx, i, last_ctx_id);
last_header = current_header;
last_header_idx = i;
}
if (last_header != current_header)
append_timeline_event(reader, gpu_ts_start, gpu_ts_end, last_header_idx, reader->n_records - 1, last_ctx_id);
}
static void
compute_correlation_chunks(struct intel_xe_perf_data_reader *reader)
{
uint64_t mask = ~(0xffffffff);
uint32_t last_idx = 0;
uint64_t last_ts = reader->correlations[last_idx]->gpu_timestamp;
for (uint32_t i = 0; i < reader->n_correlations; i++) {
if (!reader->n_correlation_chunks ||
(last_ts & mask) != (reader->correlations[i]->gpu_timestamp & mask)) {
assert(reader->n_correlation_chunks < ARRAY_SIZE(reader->correlation_chunks));
reader->correlation_chunks[reader->n_correlation_chunks].gpu_ts_begin = last_ts;
reader->correlation_chunks[reader->n_correlation_chunks].gpu_ts_end = last_ts | ~mask;
reader->correlation_chunks[reader->n_correlation_chunks].idx = last_idx;
last_ts = reader->correlation_chunks[reader->n_correlation_chunks].gpu_ts_end + 1;
last_idx = i;
reader->n_correlation_chunks++;
}
}
}
bool
intel_xe_perf_data_reader_init(struct intel_xe_perf_data_reader *reader,
int perf_file_fd)
{
struct stat st;
if (fstat(perf_file_fd, &st) != 0) {
snprintf(reader->error_msg, sizeof(reader->error_msg),
"Unable to access file (%s)", strerror(errno));
return false;
}
memset(reader, 0, sizeof(*reader));
reader->mmap_size = st.st_size;
reader->mmap_data = (const uint8_t *) mmap(NULL, st.st_size,
PROT_READ, MAP_PRIVATE,
perf_file_fd, 0);
if (reader->mmap_data == MAP_FAILED) {
snprintf(reader->error_msg, sizeof(reader->error_msg),
"Unable to access file (%s)", strerror(errno));
return false;
}
if (!parse_data(reader))
return false;
compute_correlation_chunks(reader);
generate_cpu_events(reader);
return true;
}
void
intel_xe_perf_data_reader_fini(struct intel_xe_perf_data_reader *reader)
{
intel_xe_perf_free(reader->perf);
free(reader->records);
free(reader->timelines);
free(reader->correlations);
munmap((void *)reader->mmap_data, reader->mmap_size);
}
|