1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*
* Authors:
* Matthew Brost <matthew.brost@intel.com>
*/
#include <stdlib.h>
#include <pthread.h>
#ifdef HAVE_VALGRIND
#include <valgrind/valgrind.h>
#include <valgrind/memcheck.h>
#define VG(x) x
#else
#define VG(x) do {} while (0)
#endif
#include "drmtest.h"
#include "ioctl_wrappers.h"
#include "igt_map.h"
#include "xe_query.h"
#include "xe_ioctl.h"
static struct drm_xe_query_config *xe_query_config_new(int fd)
{
struct drm_xe_query_config *config;
struct drm_xe_device_query query = {
.extensions = 0,
.query = DRM_XE_DEVICE_QUERY_CONFIG,
.size = 0,
.data = 0,
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
config = malloc(query.size);
igt_assert(config);
query.data = to_user_pointer(config);
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
VG(VALGRIND_MAKE_MEM_DEFINED(config, query.size));
igt_assert(config->num_params > 0);
return config;
}
static uint32_t *xe_query_hwconfig_new(int fd, uint32_t *hwconfig_size)
{
uint32_t *hwconfig;
struct drm_xe_device_query query = {
.extensions = 0,
.query = DRM_XE_DEVICE_QUERY_HWCONFIG,
.size = 0,
.data = 0,
};
/* Perform the initial query to get the size */
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
if (!query.size)
return NULL;
hwconfig = malloc(query.size);
igt_assert(hwconfig);
query.data = to_user_pointer(hwconfig);
/* Perform the query to get the actual data */
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
VG(VALGRIND_MAKE_MEM_DEFINED(hwconfig, query.size));
*hwconfig_size = query.size;
return hwconfig;
}
static struct drm_xe_query_gt_list *xe_query_gt_list_new(int fd)
{
struct drm_xe_query_gt_list *gt_list;
struct drm_xe_device_query query = {
.extensions = 0,
.query = DRM_XE_DEVICE_QUERY_GT_LIST,
.size = 0,
.data = 0,
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
gt_list = malloc(query.size);
igt_assert(gt_list);
query.data = to_user_pointer(gt_list);
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
VG(VALGRIND_MAKE_MEM_DEFINED(gt_list, query.size));
return gt_list;
}
static uint64_t __memory_regions(const struct drm_xe_query_gt_list *gt_list)
{
uint64_t regions = 0;
int i;
for (i = 0; i < gt_list->num_gt; i++)
regions |= gt_list->gt_list[i].near_mem_regions |
gt_list->gt_list[i].far_mem_regions;
return regions;
}
static struct drm_xe_query_engines *xe_query_engines(int fd)
{
struct drm_xe_query_engines *engines;
struct drm_xe_device_query query = {
.extensions = 0,
.query = DRM_XE_DEVICE_QUERY_ENGINES,
.size = 0,
.data = 0,
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
engines = malloc(query.size);
igt_assert(engines);
query.data = to_user_pointer(engines);
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
VG(VALGRIND_MAKE_MEM_DEFINED(engines, query.size));
return engines;
}
static struct drm_xe_query_mem_regions *xe_query_mem_regions_new(int fd)
{
struct drm_xe_query_mem_regions *mem_regions;
struct drm_xe_device_query query = {
.extensions = 0,
.query = DRM_XE_DEVICE_QUERY_MEM_REGIONS,
.size = 0,
.data = 0,
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
mem_regions = malloc(query.size);
igt_assert(mem_regions);
query.data = to_user_pointer(mem_regions);
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
VG(VALGRIND_MAKE_MEM_DEFINED(mem_regions, query.size));
return mem_regions;
}
static struct drm_xe_query_oa_units *xe_query_oa_units_new(int fd)
{
struct drm_xe_query_oa_units *oa_units;
struct drm_xe_device_query query = {
.extensions = 0,
.query = DRM_XE_DEVICE_QUERY_OA_UNITS,
.size = 0,
.data = 0,
};
/* Support older kernels where this uapi is not yet available */
if (igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query))
return NULL;
oa_units = malloc(query.size);
igt_assert(oa_units);
query.data = to_user_pointer(oa_units);
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query), 0);
VG(VALGRIND_MAKE_MEM_DEFINED(oa_units, query.size));
return oa_units;
}
static uint64_t native_region_for_gt(const struct drm_xe_query_gt_list *gt_list, int gt)
{
uint64_t region;
igt_assert(gt_list->num_gt > gt);
region = gt_list->gt_list[gt].near_mem_regions;
igt_assert(region);
return region;
}
static uint64_t gt_vram_size(const struct drm_xe_query_mem_regions *mem_regions,
const struct drm_xe_query_gt_list *gt_list, int gt)
{
int region_idx = ffs(native_region_for_gt(gt_list, gt)) - 1;
if (XE_IS_CLASS_VRAM(&mem_regions->mem_regions[region_idx]))
return mem_regions->mem_regions[region_idx].total_size;
return 0;
}
static uint64_t gt_visible_vram_size(const struct drm_xe_query_mem_regions *mem_regions,
const struct drm_xe_query_gt_list *gt_list, int gt)
{
int region_idx = ffs(native_region_for_gt(gt_list, gt)) - 1;
if (XE_IS_CLASS_VRAM(&mem_regions->mem_regions[region_idx]))
return mem_regions->mem_regions[region_idx].cpu_visible_size;
return 0;
}
static bool __mem_has_vram(struct drm_xe_query_mem_regions *mem_regions)
{
for (int i = 0; i < mem_regions->num_mem_regions; i++)
if (XE_IS_CLASS_VRAM(&mem_regions->mem_regions[i]))
return true;
return false;
}
static uint32_t __mem_default_alignment(struct drm_xe_query_mem_regions *mem_regions)
{
uint32_t alignment = XE_DEFAULT_ALIGNMENT;
for (int i = 0; i < mem_regions->num_mem_regions; i++)
if (alignment < mem_regions->mem_regions[i].min_page_size)
alignment = mem_regions->mem_regions[i].min_page_size;
return alignment;
}
/**
* xe_engine_class_string:
* @engine_class: engine class
*
* Returns engine class name or 'unknown class engine' otherwise.
*/
const char *xe_engine_class_string(uint32_t engine_class)
{
switch (engine_class) {
case DRM_XE_ENGINE_CLASS_RENDER:
return "DRM_XE_ENGINE_CLASS_RENDER";
case DRM_XE_ENGINE_CLASS_COPY:
return "DRM_XE_ENGINE_CLASS_COPY";
case DRM_XE_ENGINE_CLASS_VIDEO_DECODE:
return "DRM_XE_ENGINE_CLASS_VIDEO_DECODE";
case DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE:
return "DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE";
case DRM_XE_ENGINE_CLASS_COMPUTE:
return "DRM_XE_ENGINE_CLASS_COMPUTE";
default:
igt_warn("Engine class 0x%x unknown\n", engine_class);
return "unknown engine class";
}
}
/**
* xe_engine_class_short_string:
* @engine_class: engine class
*
* Returns short name for engine class or 'unknown' otherwise.
*/
const char *xe_engine_class_short_string(uint32_t engine_class)
{
switch (engine_class) {
case DRM_XE_ENGINE_CLASS_RENDER:
return "rcs";
case DRM_XE_ENGINE_CLASS_COPY:
return "bcs";
case DRM_XE_ENGINE_CLASS_VIDEO_DECODE:
return "vcs";
case DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE:
return "vecs";
case DRM_XE_ENGINE_CLASS_COMPUTE:
return "ccs";
default:
igt_warn("Engine class 0x%x unknown\n", engine_class);
return "unknown";
}
}
static struct xe_device_cache {
pthread_mutex_t cache_mutex;
struct igt_map *map;
} cache;
static struct xe_device *find_in_cache_unlocked(int fd)
{
return igt_map_search(cache.map, &fd);
}
static struct xe_device *find_in_cache(int fd)
{
struct xe_device *xe_dev;
pthread_mutex_lock(&cache.cache_mutex);
xe_dev = find_in_cache_unlocked(fd);
pthread_mutex_unlock(&cache.cache_mutex);
return xe_dev;
}
static void xe_device_free(struct xe_device *xe_dev)
{
free(xe_dev->config);
free(xe_dev->hwconfig);
free(xe_dev->gt_list);
free(xe_dev->engines);
free(xe_dev->mem_regions);
free(xe_dev->vram_size);
free(xe_dev);
}
/**
* xe_device_get:
* @fd: xe device fd
*
* Function creates and caches xe_device struct which contains configuration
* data returned in few queries. Subsequent calls returns previously
* created xe_device. To remove this from cache xe_device_put() must be
* called.
*/
struct xe_device *xe_device_get(int fd)
{
struct xe_device *xe_dev, *prev;
xe_dev = find_in_cache(fd);
if (xe_dev)
return xe_dev;
xe_dev = calloc(1, sizeof(*xe_dev));
igt_assert(xe_dev);
xe_dev->fd = fd;
xe_dev->config = xe_query_config_new(fd);
xe_dev->hwconfig = xe_query_hwconfig_new(fd, &xe_dev->hwconfig_size);
xe_dev->va_bits = xe_dev->config->info[DRM_XE_QUERY_CONFIG_VA_BITS];
xe_dev->dev_id = xe_dev->config->info[DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID] & 0xffff;
xe_dev->gt_list = xe_query_gt_list_new(fd);
xe_dev->memory_regions = __memory_regions(xe_dev->gt_list);
xe_dev->engines = xe_query_engines(fd);
xe_dev->mem_regions = xe_query_mem_regions_new(fd);
xe_dev->oa_units = xe_query_oa_units_new(fd);
xe_dev->vram_size = calloc(xe_dev->gt_list->num_gt, sizeof(*xe_dev->vram_size));
xe_dev->visible_vram_size = calloc(xe_dev->gt_list->num_gt, sizeof(*xe_dev->visible_vram_size));
for (int gt = 0; gt < xe_dev->gt_list->num_gt; gt++) {
xe_dev->vram_size[gt] = gt_vram_size(xe_dev->mem_regions,
xe_dev->gt_list, gt);
xe_dev->visible_vram_size[gt] =
gt_visible_vram_size(xe_dev->mem_regions,
xe_dev->gt_list, gt);
}
xe_dev->default_alignment = __mem_default_alignment(xe_dev->mem_regions);
xe_dev->has_vram = __mem_has_vram(xe_dev->mem_regions);
/* We may get here from multiple threads, use first cached xe_dev */
pthread_mutex_lock(&cache.cache_mutex);
prev = find_in_cache_unlocked(fd);
if (!prev) {
igt_map_insert(cache.map, &xe_dev->fd, xe_dev);
} else {
xe_device_free(xe_dev);
xe_dev = prev;
}
pthread_mutex_unlock(&cache.cache_mutex);
return xe_dev;
}
static void delete_in_cache(struct igt_map_entry *entry)
{
xe_device_free((struct xe_device *)entry->data);
}
/**
* xe_device_put:
* @fd: xe device fd
*
* Remove previously allocated and cached xe_device (if any).
*/
void xe_device_put(int fd)
{
pthread_mutex_lock(&cache.cache_mutex);
if (find_in_cache_unlocked(fd))
igt_map_remove(cache.map, &fd, delete_in_cache);
pthread_mutex_unlock(&cache.cache_mutex);
}
/**
* xe_supports_faults:
* @fd: xe device fd
*
* Returns the return value of the ioctl. This can either be 0 if the
* xe device @fd allows creating a vm in fault mode, or an error value
* if it does not.
*
* NOTE: This function temporarily creates a VM in fault mode. Hence, while
* this function is executing, no non-fault mode VMs can be created.
*/
int xe_supports_faults(int fd)
{
int ret;
struct drm_xe_vm_create create = {
.flags = DRM_XE_VM_CREATE_FLAG_LR_MODE |
DRM_XE_VM_CREATE_FLAG_FAULT_MODE,
};
ret = igt_ioctl(fd, DRM_IOCTL_XE_VM_CREATE, &create);
if (!ret)
xe_vm_destroy(fd, create.vm_id);
return ret;
}
static void xe_device_destroy_cache(void)
{
pthread_mutex_lock(&cache.cache_mutex);
igt_map_destroy(cache.map, delete_in_cache);
pthread_mutex_unlock(&cache.cache_mutex);
}
static void xe_device_cache_init(void)
{
pthread_mutex_init(&cache.cache_mutex, NULL);
xe_device_destroy_cache();
cache.map = igt_map_create(igt_map_hash_32, igt_map_equal_32);
}
#define xe_dev_FN(_NAME, _FIELD, _TYPE) \
_TYPE _NAME(int fd) \
{ \
struct xe_device *xe_dev; \
\
xe_dev = find_in_cache(fd); \
igt_assert(xe_dev); \
return xe_dev->_FIELD; \
}
/**
* xe_number_gt:
* @fd: xe device fd
*
* Return number of gt_list for xe device fd.
*/
xe_dev_FN(xe_number_gt, gt_list->num_gt, unsigned int);
/**
* all_memory_regions:
* @fd: xe device fd
*
* Returns memory regions bitmask for xe device @fd.
*/
xe_dev_FN(all_memory_regions, memory_regions, uint64_t);
/**
* system_memory:
* @fd: xe device fd
*
* Returns system memory bitmask for xe device @fd.
*/
uint64_t system_memory(int fd)
{
uint64_t regions = all_memory_regions(fd);
return regions & 0x1;
}
/**
* vram_memory:
* @fd: xe device fd
* @gt: gt id
*
* Returns vram memory bitmask for xe device @fd and @gt id.
*/
uint64_t vram_memory(int fd, int gt)
{
struct xe_device *xe_dev;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
igt_assert(gt >= 0 && gt < xe_dev->gt_list->num_gt);
return xe_has_vram(fd) ? native_region_for_gt(xe_dev->gt_list, gt) : 0;
}
static uint64_t __xe_visible_vram_size(int fd, int gt)
{
struct xe_device *xe_dev;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
return xe_dev->visible_vram_size[gt];
}
/**
* vram_if_possible:
* @fd: xe device fd
* @gt: gt id
*
* Returns vram memory bitmask for xe device @fd and @gt id or system memory
* if there's no vram memory available for @gt.
*/
uint64_t vram_if_possible(int fd, int gt)
{
return vram_memory(fd, gt) ?: system_memory(fd);
}
/**
* xe_engines:
* @fd: xe device fd
*
* Returns engines array of xe device @fd.
*/
xe_dev_FN(xe_engines, engines->engines, struct drm_xe_engine *);
/**
* xe_engine:
* @fd: xe device fd
* @idx: engine index
*
* Returns engine info of xe device @fd and @idx.
*/
struct drm_xe_engine *xe_engine(int fd, int idx)
{
struct xe_device *xe_dev;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
igt_assert(idx >= 0 && idx < xe_dev->engines->num_engines);
return &xe_dev->engines->engines[idx];
}
/**
* xe_mem_region:
* @fd: xe device fd
* @region: region mask
*
* Returns memory region structure for @region mask.
*/
struct drm_xe_mem_region *xe_mem_region(int fd, uint64_t region)
{
struct xe_device *xe_dev;
int region_idx = ffs(region) - 1;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
igt_assert(xe_dev->mem_regions->num_mem_regions > region_idx);
return &xe_dev->mem_regions->mem_regions[region_idx];
}
/**
* xe_region_name:
* @region: region mask
*
* Returns region string like "system" or "vramN" where N=0...62.
*/
const char *xe_region_name(uint64_t region)
{
static char **vrams;
int region_idx = ffs(region) - 1;
/* Populate the array */
if (!vrams) {
vrams = calloc(64, sizeof(char *));
for (int i = 0; i < 64; i++) {
if (i != 0)
asprintf(&vrams[i], "vram%d", i - 1);
else
asprintf(&vrams[i], "system");
igt_assert(vrams[i]);
}
}
return vrams[region_idx];
}
/**
* xe_region_class:
* @fd: xe device fd
* @region: region mask
*
* Returns class of memory region structure for @region mask.
*/
uint16_t xe_region_class(int fd, uint64_t region)
{
struct drm_xe_mem_region *memreg;
memreg = xe_mem_region(fd, region);
return memreg->mem_class;
}
/**
* xe_min_page_size:
* @fd: xe device fd
* @region: region mask
*
* Returns minimum page size for @region.
*/
uint32_t xe_min_page_size(int fd, uint64_t region)
{
return xe_mem_region(fd, region)->min_page_size;
}
/**
* xe_config:
* @fd: xe device fd
*
* Returns xe configuration of xe device @fd.
*/
xe_dev_FN(xe_config, config, struct drm_xe_query_config *);
/**
* xe_gt_list:
* @fd: xe device fd
*
* Returns query gts of xe device @fd.
*/
xe_dev_FN(xe_gt_list, gt_list, struct drm_xe_query_gt_list *);
/**
* xe_oa_units:
* @fd: xe device fd
*
* Returns query gts of xe device @fd.
*/
xe_dev_FN(xe_oa_units, oa_units, struct drm_xe_query_oa_units *);
/**
* xe_number_engine:
* @fd: xe device fd
*
* Returns number of hw engines of xe device @fd.
*/
xe_dev_FN(xe_number_engines, engines->num_engines, unsigned int);
/**
* xe_has_vram:
* @fd: xe device fd
*
* Returns true if xe device @fd has vram otherwise false.
*/
xe_dev_FN(xe_has_vram, has_vram, bool);
/**
* xe_vram_size:
* @fd: xe device fd
* @gt: gt
*
* Returns size of vram of xe device @fd.
*/
uint64_t xe_vram_size(int fd, int gt)
{
struct xe_device *xe_dev;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
return xe_dev->vram_size[gt];
}
/**
* xe_visible_vram_size:
* @fd: xe device fd
* @gt: gt
*
* Returns size of visible vram of xe device @fd.
*/
uint64_t xe_visible_vram_size(int fd, int gt)
{
uint64_t visible_size;
/*
* TODO: Keep it backwards compat for now. Fixup once the kernel side
* has landed.
*/
visible_size = __xe_visible_vram_size(fd, gt);
if (!visible_size) /* older kernel */
visible_size = xe_vram_size(fd, gt);
return visible_size;
}
struct __available_vram {
uint64_t total_available;
uint64_t cpu_visible_available;
};
static void __available_vram_size_snapshot(int fd, int gt, struct __available_vram *vram)
{
struct xe_device *xe_dev;
int region_idx;
struct drm_xe_mem_region *mem_region;
struct drm_xe_query_mem_regions *mem_regions;
igt_assert(vram);
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
region_idx = ffs(native_region_for_gt(xe_dev->gt_list, gt)) - 1;
mem_region = &xe_dev->mem_regions->mem_regions[region_idx];
if (XE_IS_CLASS_VRAM(mem_region)) {
mem_regions = xe_query_mem_regions_new(fd);
pthread_mutex_lock(&cache.cache_mutex);
mem_region->used = mem_regions->mem_regions[region_idx].used;
mem_region->cpu_visible_used =
mem_regions->mem_regions[region_idx].cpu_visible_used;
vram->total_available = mem_region->total_size - mem_region->used;
vram->cpu_visible_available =
mem_region->cpu_visible_size - mem_region->cpu_visible_used;
pthread_mutex_unlock(&cache.cache_mutex);
free(mem_regions);
}
}
/**
* xe_available_vram_size:
* @fd: xe device fd
* @gt: gt
*
* Returns size of available vram of xe device @fd and @gt.
*/
uint64_t xe_available_vram_size(int fd, int gt)
{
struct __available_vram vram = {};
__available_vram_size_snapshot(fd, gt, &vram);
return vram.total_available;
}
/**
* xe_visible_available_vram_size:
* @fd: xe device fd
* @gt: gt
*
* Returns size of visible available vram of xe device @fd and @gt.
*/
uint64_t xe_visible_available_vram_size(int fd, int gt)
{
struct __available_vram vram = {};
__available_vram_size_snapshot(fd, gt, &vram);
return vram.cpu_visible_available;
}
/**
* xe_get_default_alignment:
* @fd: xe device fd
*
* Returns default alignment of objects for xe device @fd.
*/
xe_dev_FN(xe_get_default_alignment, default_alignment, uint32_t);
/**
* xe_va_bits:
* @fd: xe device fd
*
* Returns number of virtual address bits used in xe device @fd.
*/
xe_dev_FN(xe_va_bits, va_bits, uint32_t);
/**
* xe_dev_id:
* @fd: xe device fd
*
* Returns Device id of xe device @fd.
*/
xe_dev_FN(xe_dev_id, dev_id, uint16_t);
/**
* xe_has_engine_class:
* @fd: xe device fd
* @engine_class: engine class
*
* Returns true if device @fd has hardware engine @class otherwise false.
*/
bool xe_has_engine_class(int fd, uint16_t engine_class)
{
struct xe_device *xe_dev;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
for (int i = 0; i < xe_dev->engines->num_engines; i++)
if (xe_dev->engines->engines[i].instance.engine_class == engine_class)
return true;
return false;
}
/**
* xe_find_engine_by_class
* @fd: xe device fd
* @engine_class: engine class
*
* Returns engine info of xe device @fd and @engine_class otherwise NULL.
*/
struct drm_xe_engine *xe_find_engine_by_class(int fd, uint16_t engine_class)
{
struct xe_device *xe_dev;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
for (int i = 0; i < xe_dev->engines->num_engines; i++)
if (xe_dev->engines->engines[i].instance.engine_class == engine_class)
return &xe_dev->engines->engines[i];
return NULL;
}
/**
* xe_has_media_gt:
* @fd: xe device fd
*
* Returns true if device @fd has media GT otherwise false.
*/
bool xe_has_media_gt(int fd)
{
struct xe_device *xe_dev;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
for (int i = 0; i < xe_dev->gt_list->num_gt; i++)
if (xe_dev->gt_list->gt_list[i].type == DRM_XE_QUERY_GT_TYPE_MEDIA)
return true;
return false;
}
/**
* xe_is_media_gt:
* @fd: xe device fd
* @gt: gt id
*
* Returns true if @gt for device @fd is media GT, otherwise false.
*/
bool xe_is_media_gt(int fd, int gt)
{
struct xe_device *xe_dev;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
igt_assert(gt < xe_number_gt(fd));
if (xe_dev->gt_list->gt_list[gt].type == DRM_XE_QUERY_GT_TYPE_MEDIA)
return true;
return false;
}
/**
* xe_gt_to_tile_id:
* @fd: xe device fd
* @gt: gt id
*
* Returns tile id for given @gt.
*/
uint16_t xe_gt_get_tile_id(int fd, int gt)
{
struct xe_device *xe_dev;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
igt_assert(gt < xe_number_gt(fd));
return xe_dev->gt_list->gt_list[gt].tile_id;
}
/**
* xe_hwconfig_lookup_value:
* @fd: xe device fd
* @attribute: hwconfig attribute id
* @len: pointer to store length of the value (in uint32_t sized elements)
*
* Returns a pointer to the value of the hwconfig attribute @attribute and
* writes the number of uint32_t elements indicating the length of the value to @len.
*/
uint32_t *xe_hwconfig_lookup_value(int fd, enum intel_hwconfig attribute, uint32_t *len)
{
struct xe_device *xe_dev;
uint32_t *hwconfig;
uint32_t pos, hwconfig_len;
xe_dev = find_in_cache(fd);
igt_assert(xe_dev);
hwconfig = xe_dev->hwconfig;
if (!hwconfig)
return NULL;
/* Extract the value from the hwconfig */
pos = 0;
hwconfig_len = xe_dev->hwconfig_size / sizeof(uint32_t);
while (pos + 2 < hwconfig_len) {
uint32_t attribute_id = hwconfig[pos];
uint32_t attribute_len = hwconfig[pos + 1];
uint32_t *attribute_data = &hwconfig[pos + 2];
if (attribute_id == attribute) {
*len = attribute_len;
return attribute_data;
}
pos += 2 + attribute_len;
}
return NULL;
}
igt_constructor
{
xe_device_cache_init();
}
|