1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*
* Authors:
* Matthew Brost <matthew.brost@intel.com>
*/
#include <string.h>
#include "drmtest.h"
#include "igt.h"
#include "igt_core.h"
#include "igt_syncobj.h"
#include "intel_reg.h"
#include "xe_ioctl.h"
#include "xe_spin.h"
#include "xe_util.h"
#define XE_SPIN_MAX_CTX_TICKS (UINT32_MAX - 1000)
#define MI_SRM_CS_MMIO (1 << 19)
#define MI_LRI_CS_MMIO (1 << 19)
#define MI_LRR_DST_CS_MMIO (1 << 19)
#define MI_LRR_SRC_CS_MMIO (1 << 18)
#define CTX_TIMESTAMP 0x3a8
#define CS_GPR(x) (0x600 + 8 * (x))
enum { START_TS, NOW_TS };
uint32_t xe_spin_nsec_to_ticks(int fd, int gt_id, uint64_t nsec)
{
uint32_t ticks = xe_nsec_to_ticks(fd, gt_id, nsec);
igt_assert_lt_u64(ticks, XE_SPIN_MAX_CTX_TICKS);
return ticks;
}
/**
* xe_spin_init:
* @spin: pointer to mapped bo in which spinner code will be written
* @opts: pointer to spinner initialization options
*/
void xe_spin_init(struct xe_spin *spin, struct xe_spin_opts *opts)
{
uint64_t loop_addr;
uint64_t start_addr = opts->addr + offsetof(struct xe_spin, start);
uint64_t end_addr = opts->addr + offsetof(struct xe_spin, end);
uint64_t ticks_delta_addr = opts->addr + offsetof(struct xe_spin, ticks_delta);
uint64_t pad_addr = opts->addr + offsetof(struct xe_spin, pad);
uint64_t timestamp_addr = opts->addr + offsetof(struct xe_spin, timestamp);
int b = 0;
spin->start = 0;
spin->end = 0xffffffff;
spin->ticks_delta = 0;
if (opts->ctx_ticks) {
/* store start timestamp */
spin->batch[b++] = MI_LOAD_REGISTER_IMM(1) | MI_LRI_CS_MMIO;
spin->batch[b++] = CS_GPR(START_TS) + 4;
spin->batch[b++] = 0;
spin->batch[b++] = MI_LOAD_REGISTER_REG | MI_LRR_DST_CS_MMIO | MI_LRR_SRC_CS_MMIO;
spin->batch[b++] = CTX_TIMESTAMP;
spin->batch[b++] = CS_GPR(START_TS);
}
loop_addr = opts->addr + b * sizeof(uint32_t);
spin->batch[b++] = MI_STORE_DWORD_IMM_GEN4;
spin->batch[b++] = start_addr;
spin->batch[b++] = start_addr >> 32;
spin->batch[b++] = 0xc0ffee;
if (opts->preempt)
spin->batch[b++] = MI_ARB_CHECK;
if (opts->write_timestamp) {
spin->batch[b++] = MI_LOAD_REGISTER_REG | MI_LRR_DST_CS_MMIO | MI_LRR_SRC_CS_MMIO;
spin->batch[b++] = CTX_TIMESTAMP;
spin->batch[b++] = CS_GPR(NOW_TS);
spin->batch[b++] = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_CS_MMIO;
spin->batch[b++] = CS_GPR(NOW_TS);
spin->batch[b++] = timestamp_addr;
spin->batch[b++] = timestamp_addr >> 32;
}
if (opts->ctx_ticks) {
spin->batch[b++] = MI_LOAD_REGISTER_IMM(1) | MI_LRI_CS_MMIO;
spin->batch[b++] = CS_GPR(NOW_TS) + 4;
spin->batch[b++] = 0;
spin->batch[b++] = MI_LOAD_REGISTER_REG | MI_LRR_DST_CS_MMIO | MI_LRR_SRC_CS_MMIO;
spin->batch[b++] = CTX_TIMESTAMP;
spin->batch[b++] = CS_GPR(NOW_TS);
/* delta = now - start; inverted to match COND_BBE */
spin->batch[b++] = MI_MATH(4);
spin->batch[b++] = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
spin->batch[b++] = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
spin->batch[b++] = MI_MATH_SUB;
spin->batch[b++] = MI_MATH_STOREINV(MI_MATH_REG(NOW_TS), MI_MATH_REG_ACCU);
/* Save delta for reading by COND_BBE */
spin->batch[b++] = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_CS_MMIO;
spin->batch[b++] = CS_GPR(NOW_TS);
spin->batch[b++] = ticks_delta_addr;
spin->batch[b++] = ticks_delta_addr >> 32;
/* Delay between SRM and COND_BBE to post the writes */
for (int n = 0; n < 8; n++) {
spin->batch[b++] = MI_STORE_DWORD_IMM_GEN4;
spin->batch[b++] = pad_addr;
spin->batch[b++] = pad_addr >> 32;
spin->batch[b++] = 0xc0ffee;
}
/* Break if delta [time elapsed] > ns */
spin->batch[b++] = MI_COND_BATCH_BUFFER_END | MI_DO_COMPARE | 2;
spin->batch[b++] = ~(opts->ctx_ticks);
spin->batch[b++] = ticks_delta_addr;
spin->batch[b++] = ticks_delta_addr >> 32;
}
spin->batch[b++] = MI_COND_BATCH_BUFFER_END | MI_DO_COMPARE | 2;
spin->batch[b++] = 0;
spin->batch[b++] = end_addr;
spin->batch[b++] = end_addr >> 32;
spin->batch[b++] = MI_BATCH_BUFFER_START | 1 << 8 | 1;
spin->batch[b++] = loop_addr;
spin->batch[b++] = loop_addr >> 32;
igt_assert(b <= ARRAY_SIZE(spin->batch));
}
/**
* xe_spin_started:
* @spin: pointer to spinner mapped bo
*
* Returns: true if spinner is running, otherwise false.
*/
bool xe_spin_started(struct xe_spin *spin)
{
return spin->start != 0;
}
/**
* xe_spin_wait_started:
* @spin: pointer to spinner mapped bo
*
* Wait in userspace code until spinner won't start.
*/
void xe_spin_wait_started(struct xe_spin *spin)
{
while (!xe_spin_started(spin))
;
}
void xe_spin_end(struct xe_spin *spin)
{
spin->end = 0;
}
/**
* xe_spin_create:
* @opt: controlling options such as allocator handle, exec_queue, vm etc
*
* igt_spin_new for xe, xe_spin_create submits a batch using xe_spin_init
* which wraps around vm bind and unbinding the object associated to it.
*
* This returns a spinner after submitting a dummy load.
*/
igt_spin_t *
xe_spin_create(int fd, const struct igt_spin_factory *opt)
{
size_t bo_size = xe_bb_size(fd, SZ_4K);
uint64_t ahnd = opt->ahnd, addr;
struct igt_spin *spin;
struct xe_spin *xe_spin;
struct drm_xe_sync sync = {
.type = DRM_XE_SYNC_TYPE_SYNCOBJ, .flags = DRM_XE_SYNC_FLAG_SIGNAL,
};
struct drm_xe_exec exec = {
.num_batch_buffer = 1,
.num_syncs = 1,
.syncs = to_user_pointer(&sync),
};
igt_assert(ahnd);
spin = calloc(1, sizeof(struct igt_spin));
igt_assert(spin);
spin->driver = INTEL_DRIVER_XE;
spin->syncobj = syncobj_create(fd, 0);
spin->vm = opt->vm;
spin->engine = opt->engine;
spin->timerfd = -1;
if (!spin->vm)
spin->vm = xe_vm_create(fd, 0, 0);
if (!spin->engine) {
if (opt->hwe)
spin->engine = xe_exec_queue_create(fd, spin->vm, opt->hwe, 0);
else
spin->engine = xe_exec_queue_create_class(fd, spin->vm, DRM_XE_ENGINE_CLASS_COPY);
}
spin->handle = xe_bo_create(fd, spin->vm, bo_size,
vram_if_possible(fd, 0),
DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM);
xe_spin = xe_bo_map(fd, spin->handle, bo_size);
addr = intel_allocator_alloc_with_strategy(ahnd, spin->handle, bo_size, 0, ALLOC_STRATEGY_LOW_TO_HIGH);
xe_vm_bind_sync(fd, spin->vm, spin->handle, 0, addr, bo_size);
xe_spin_init_opts(xe_spin, .addr = addr, .preempt = !(opt->flags & IGT_SPIN_NO_PREEMPTION));
exec.exec_queue_id = spin->engine;
exec.address = addr;
sync.handle = spin->syncobj;
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_EXEC, &exec), 0);
xe_spin_wait_started(xe_spin);
spin->bo_size = bo_size;
spin->address = addr;
spin->xe_spin = xe_spin;
spin->opts = *opt;
return spin;
}
static void xe_spin_sync_wait(int fd, struct igt_spin *spin)
{
igt_assert(syncobj_wait(fd, &spin->syncobj, 1, INT64_MAX, 0, NULL));
}
/*
* xe_spin_free:
* @spin: spin state from igt_spin_new()
*
* Wrapper to free spinner created by xe_spin_create. It will
* destroy vm, exec_queue and unbind the vm which was binded to
* the exec_queue and bo.
*/
void xe_spin_free(int fd, struct igt_spin *spin)
{
igt_assert(spin->driver == INTEL_DRIVER_XE);
if (spin->timerfd >= 0) {
pthread_cancel(spin->timer_thread);
igt_assert(pthread_join(spin->timer_thread, NULL) == 0);
close(spin->timerfd);
}
xe_spin_end(spin->xe_spin);
xe_spin_sync_wait(fd, spin);
xe_vm_unbind_sync(fd, spin->vm, 0, spin->address, spin->bo_size);
syncobj_destroy(fd, spin->syncobj);
gem_munmap(spin->xe_spin, spin->bo_size);
gem_close(fd, spin->handle);
if (!spin->opts.engine)
xe_exec_queue_destroy(fd, spin->engine);
if (!spin->opts.vm)
xe_vm_destroy(fd, spin->vm);
free(spin);
}
/**
* xe_cork_create:
* @fd: xe device fd
* @hwe: Xe engine class instance if device is Xe
* @vm: vm handle
* @width: number of batch buffers
* @num_placements: number of valid placements for this exec queue
* @opts: controlling options such as allocator handle, debug.
*
* xe_cork_create create vm, bo, exec_queue and bind the buffer
* using vmbind
*
* This returns xe_cork after binding buffer object.
*/
struct xe_cork *
xe_cork_create(int fd, struct drm_xe_engine_class_instance *hwe,
uint32_t vm, uint16_t width, uint16_t num_placements,
struct xe_cork_opts *opts)
{
struct xe_cork *cork = calloc(1, sizeof(*cork));
igt_assert(cork);
igt_assert(width && num_placements &&
(width == 1 || num_placements == 1));
igt_assert_lt(width, XE_MAX_ENGINE_INSTANCE);
cork->class = hwe->engine_class;
cork->width = width;
cork->num_placements = num_placements;
cork->vm = vm;
cork->cork_opts = *opts;
cork->exec.num_batch_buffer = width;
cork->exec.num_syncs = 2;
cork->exec.syncs = to_user_pointer(cork->sync);
cork->sync[0].type = DRM_XE_SYNC_TYPE_SYNCOBJ;
cork->sync[0].flags = DRM_XE_SYNC_FLAG_SIGNAL;
cork->sync[0].handle = syncobj_create(fd, 0);
cork->sync[1].type = DRM_XE_SYNC_TYPE_SYNCOBJ;
cork->sync[1].flags = DRM_XE_SYNC_FLAG_SIGNAL;
cork->sync[1].handle = syncobj_create(fd, 0);
cork->bo_size = sizeof(struct xe_spin);
cork->bo_size = xe_bb_size(fd, cork->bo_size);
cork->bo = xe_bo_create(fd, cork->vm, cork->bo_size,
vram_if_possible(fd, hwe->gt_id),
DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM);
if (cork->cork_opts.ahnd) {
for (unsigned int i = 0; i < width; i++)
cork->addr[i] = intel_allocator_alloc_with_strategy(cork->cork_opts.ahnd,
cork->bo, cork->bo_size, 0,
ALLOC_STRATEGY_LOW_TO_HIGH);
} else {
for (unsigned int i = 0; i < width; i++)
cork->addr[i] = 0x100000 + 0x100000 * hwe->engine_class;
}
cork->spin = xe_bo_map(fd, cork->bo, cork->bo_size);
igt_assert_eq(__xe_exec_queue_create(fd, cork->vm, width, num_placements,
hwe, 0, &cork->exec_queue), 0);
xe_vm_bind_async(fd, cork->vm, 0, cork->bo, 0, cork->addr[0], cork->bo_size,
cork->sync, 1);
return cork;
}
/**
* xe_cork_sync_start:
*
* @fd: xe device fd
* @cork: pointer to xe_cork structure
*
* run the spinner using xe_spin_init submit batch using xe_exec
* and wait for fence using syncobj_wait
*/
void xe_cork_sync_start(int fd, struct xe_cork *cork)
{
igt_assert(cork);
cork->spin_opts.addr = cork->addr[0];
cork->spin_opts.write_timestamp = true;
cork->spin_opts.preempt = true;
xe_spin_init(cork->spin, &cork->spin_opts);
/* reuse sync[0] as in-fence for exec */
cork->sync[0].flags &= ~DRM_XE_SYNC_FLAG_SIGNAL;
cork->exec.exec_queue_id = cork->exec_queue;
if (cork->width > 1)
cork->exec.address = to_user_pointer(cork->addr);
else
cork->exec.address = cork->addr[0];
xe_exec(fd, &cork->exec);
xe_spin_wait_started(cork->spin);
igt_assert(!syncobj_wait(fd, &cork->sync[1].handle, 1, 1, 0, NULL));
if (cork->cork_opts.debug)
igt_info("%d: spinner started\n", cork->class);
}
/*
* xe_cork_sync_end
*
* @fd: xe device fd
* @cork: pointer to xe_cork structure
*
* Wrapper to end spinner created by xe_cork_create. It will
* unbind the vm which was binded to the exec_queue and bo.
*/
void xe_cork_sync_end(int fd, struct xe_cork *cork)
{
igt_assert(cork);
if (cork->ended)
igt_warn("Don't attempt call end twice %d\n", cork->ended);
xe_spin_end(cork->spin);
igt_assert(syncobj_wait(fd, &cork->sync[1].handle, 1, INT64_MAX, 0, NULL));
cork->sync[0].flags |= DRM_XE_SYNC_FLAG_SIGNAL;
syncobj_reset(fd, &cork->sync[0].handle, 1);
xe_vm_unbind_async(fd, cork->vm, 0, 0, cork->addr[0], cork->bo_size, cork->sync, 1);
igt_assert(syncobj_wait(fd, &cork->sync[0].handle, 1, INT64_MAX, 0, NULL));
cork->ended = true;
if (cork->cork_opts.debug)
igt_info("%d: spinner ended (timestamp=%u)\n", cork->class,
cork->spin->timestamp);
}
/*
* xe_cork_destroy
*
* @fd: xe device fd
* @cork: pointer to xe_cork structure
*
* It will destroy vm, exec_queue and free the cork.
*/
void xe_cork_destroy(int fd, struct xe_cork *cork)
{
igt_assert(cork);
syncobj_destroy(fd, cork->sync[0].handle);
syncobj_destroy(fd, cork->sync[1].handle);
xe_exec_queue_destroy(fd, cork->exec_queue);
if (cork->cork_opts.ahnd)
intel_allocator_free(cork->cork_opts.ahnd, cork->bo);
munmap(cork->spin, cork->bo_size);
gem_close(fd, cork->bo);
free(cork);
}
|