1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2025 Intel Corporation
*/
#include <stdio.h>
#include "intel_reg.h"
#include "ioctl_wrappers.h"
#include "lib/igt_syncobj.h"
#include "xe/xe_ioctl.h"
#include "xe/xe_query.h"
#include "xe/xe_util.h"
#include "xe/xe_spin.h"
#define MAX_N_EXEC_QUEUES 16
enum mode { NOP, CREATE, SWITCH };
static double elapsed(const struct timespec *start,
const struct timespec *end)
{
return (end->tv_sec - start->tv_sec) + 1e-9 * (end->tv_nsec - start->tv_nsec);
}
static void
test_exec(int fd, struct drm_xe_engine_class_instance *eci,
int n_exec_queues, int n_execs, int n_vm, unsigned int flags)
{
struct drm_xe_sync sync[2] = {
{ .type = DRM_XE_SYNC_TYPE_SYNCOBJ, .flags = DRM_XE_SYNC_FLAG_SIGNAL, },
{ .type = DRM_XE_SYNC_TYPE_SYNCOBJ, .flags = DRM_XE_SYNC_FLAG_SIGNAL, },
};
struct drm_xe_exec exec = {
.num_batch_buffer = 1,
.num_syncs = 2,
.syncs = to_user_pointer(sync),
};
uint64_t addr[MAX_N_EXEC_QUEUES];
uint64_t sparse_addr[MAX_N_EXEC_QUEUES];
uint32_t vm[MAX_N_EXEC_QUEUES];
uint32_t exec_queues[MAX_N_EXEC_QUEUES];
uint32_t bind_exec_queues[MAX_N_EXEC_QUEUES];
uint32_t syncobjs[MAX_N_EXEC_QUEUES];
uint32_t bind_syncobjs[MAX_N_EXEC_QUEUES];
struct drm_gem_flink flink;
struct drm_gem_open open_struct;
uint32_t bo_flags;
size_t bo_size;
uint32_t bo = 0;
struct {
uint32_t batch[16];
uint64_t pad;
uint32_t data;
} *data;
int i, b;
int ret;
igt_assert_lte(n_exec_queues, MAX_N_EXEC_QUEUES);
igt_assert_lte(n_vm, MAX_N_EXEC_QUEUES);
for (i = 0; i < n_vm; ++i)
vm[i] = xe_vm_create(fd, 0, 0);
bo_size = sizeof(*data) * n_execs;
bo_size = xe_bb_size(fd, bo_size);
addr[0] = 0x1a0000;
sparse_addr[0] = 0x301a0000;
for (i = 1; i < MAX_N_EXEC_QUEUES; ++i) {
addr[i] = addr[i - 1] + (0x1ull << 32);
sparse_addr[i] = sparse_addr[i - 1] + (0x1ull << 32);
}
bo_flags = DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM;
bo = xe_bo_create(fd, n_vm == 1 ? vm[0] : 0, bo_size,
vram_if_possible(fd, 0), bo_flags);
flink.handle = bo;
ret = igt_ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink);
igt_assert_eq(ret, 0);
open_struct.name = flink.name;
ret = igt_ioctl(fd, DRM_IOCTL_GEM_OPEN, &open_struct);
igt_assert_eq(ret, 0);
igt_assert(open_struct.handle != 0);
data = xe_bo_map(fd, bo, bo_size);
for (i = 0; i < n_exec_queues; i++) {
uint32_t __vm = vm[i % n_vm];
exec_queues[i] = xe_exec_queue_create(fd, __vm, eci, 0);
bind_exec_queues[i] = 0;
syncobjs[i] = syncobj_create(fd, 0);
bind_syncobjs[i] = syncobj_create(fd, 0);
};
for (i = 0; i < n_vm; ++i) {
sync[0].handle = bind_syncobjs[i];
xe_vm_bind_async(fd, vm[i], bind_exec_queues[i], bo, 0,
addr[i], bo_size, sync, 1);
}
for (i = 0; i < n_execs; i++) {
int cur_vm = i % n_vm;
uint64_t __addr = addr[cur_vm];
uint64_t batch_offset = (char *)&data[i].batch - (char *)data;
uint64_t batch_addr = __addr + batch_offset;
uint64_t sdi_offset = (char *)&data[i].data - (char *)data;
uint64_t sdi_addr = __addr + sdi_offset;
int e = i % n_exec_queues;
b = 0;
data[i].batch[b++] = MI_STORE_DWORD_IMM_GEN4;
data[i].batch[b++] = sdi_addr;
data[i].batch[b++] = sdi_addr >> 32;
data[i].batch[b++] = 0xc0ffee;
data[i].batch[b++] = MI_BATCH_BUFFER_END;
igt_assert(b <= ARRAY_SIZE(data[i].batch));
sync[0].flags &= ~DRM_XE_SYNC_FLAG_SIGNAL;
sync[0].handle = bind_syncobjs[cur_vm];
sync[1].flags |= DRM_XE_SYNC_FLAG_SIGNAL;
sync[1].handle = syncobjs[e];
exec.exec_queue_id = exec_queues[e];
exec.address = batch_addr;
if (e != i)
syncobj_reset(fd, &syncobjs[e], 1);
xe_exec(fd, &exec);
if (i + 1 != n_execs) {
uint32_t __vm = vm[cur_vm];
sync[1].flags &= ~DRM_XE_SYNC_FLAG_SIGNAL;
xe_vm_unbind_async(fd, __vm, bind_exec_queues[e], 0,
__addr, bo_size, sync + 1, 1);
sync[0].flags |= DRM_XE_SYNC_FLAG_SIGNAL;
addr[i % n_vm] += bo_size;
__addr = addr[i % n_vm];
xe_vm_bind_async(fd, __vm, bind_exec_queues[e], bo,
0, __addr, bo_size, sync, 1);
}
}
for (i = 0; i < n_exec_queues && n_execs; i++)
igt_assert(syncobj_wait(fd, &syncobjs[i], 1, INT64_MAX, 0,
NULL));
for (i = 0; i < n_vm; i++)
igt_assert(syncobj_wait(fd, &bind_syncobjs[i], 1, INT64_MAX, 0,
NULL));
sync[0].flags |= DRM_XE_SYNC_FLAG_SIGNAL;
for (i = 0; i < n_vm; ++i) {
syncobj_reset(fd, &sync[0].handle, 1);
xe_vm_unbind_async(fd, vm[i], bind_exec_queues[i], 0, addr[i],
bo_size, sync, 1);
igt_assert(syncobj_wait(fd, &sync[0].handle, 1,
INT64_MAX, 0, NULL));
}
for (i = 0; i < n_exec_queues; i++) {
syncobj_destroy(fd, syncobjs[i]);
xe_exec_queue_destroy(fd, exec_queues[i]);
if (bind_exec_queues[i])
xe_exec_queue_destroy(fd, bind_exec_queues[i]);
}
munmap(data, bo_size);
gem_close(fd, bo);
for (i = 0; i < n_vm; ++i) {
syncobj_destroy(fd, bind_syncobjs[i]);
xe_vm_destroy(fd, vm[i]);
}
}
static int loop(unsigned int ring,
int reps,
enum mode mode,
int ncpus,
unsigned int flags)
{
int fd;
struct drm_xe_engine_class_instance *hwe;
double *shared;
fd = drm_open_driver(DRIVER_XE);
shared = mmap(0, 4096, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
xe_for_each_engine(fd, hwe)
if (hwe->engine_class == ring)
test_exec(fd, hwe, 1, 1, 1, 0);
while (reps--) {
sleep(1); /* wait for the hw to go back to sleep */
memset(shared, 0, 4096);
igt_fork(child, ncpus) {
struct timespec start, end;
unsigned int count = 0;
clock_gettime(CLOCK_MONOTONIC, &start);
do {
switch (mode) {
case CREATE:
xe_for_each_engine(fd, hwe)
if (hwe->engine_class == ring)
test_exec(fd, hwe, 1, 1, 1, 0);
break;
case SWITCH:
xe_for_each_engine(fd, hwe)
if (hwe->engine_class == ring)
test_exec(fd, hwe, 16, 64, 1, 1);
break;
case NOP:
break;
}
count++;
clock_gettime(CLOCK_MONOTONIC, &end);
} while (elapsed(&start, &end) < 2.);
clock_gettime(CLOCK_MONOTONIC, &end);
shared[child] = 1e6 * elapsed(&start, &end) / count;
}
}
igt_waitchildren();
for (int child = 0; child < ncpus; child++)
shared[ncpus] += shared[child];
printf("%7.3f\n", shared[ncpus] / ncpus);
return 0;
}
int main(int argc, char **argv)
{
unsigned int ring = DRM_XE_ENGINE_CLASS_RENDER;
unsigned int flags = 0;
enum mode mode = NOP;
int reps = 1;
int ncpus = 1;
int c;
while ((c = getopt(argc, argv, "e:r:b:f")) != -1) {
switch (c) {
case 'e':
if (strcmp(optarg, "rcs") == 0)
ring = DRM_XE_ENGINE_CLASS_RENDER;
else if (strcmp(optarg, "vcs") == 0)
ring = DRM_XE_ENGINE_CLASS_VIDEO_DECODE;
else if (strcmp(optarg, "bcs") == 0)
ring = DRM_XE_ENGINE_CLASS_COPY;
else if (strcmp(optarg, "vecs") == 0)
ring = DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE;
else if (strcmp(optarg, "ccs") == 0)
ring = DRM_XE_ENGINE_CLASS_COMPUTE;
else
ring = atoi(optarg);
break;
case 'b':
if (strcmp(optarg, "create") == 0)
mode = CREATE;
else if (strcmp(optarg, "switch") == 0)
mode = SWITCH;
else if (strcmp(optarg, "nop") == 0)
mode = NOP;
else
abort();
break;
case 'f':
ncpus = sysconf(_SC_NPROCESSORS_ONLN);
break;
case 'r':
reps = atoi(optarg);
if (reps < 1)
reps = 1;
break;
default:
break;
}
}
return loop(ring, reps, mode, ncpus, flags);
}
|