1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
#include <stdbool.h>
#include <stdint.h>
#include "drmtest.h"
#include "intel_aux_pgtable.h"
#include "intel_batchbuffer.h"
#include "intel_bufops.h"
#include "intel_chipset.h"
#include "ioctl_wrappers.h"
#include "i915/gem_mman.h"
#include "xe/xe_ioctl.h"
#define BITMASK(e, s) ((~0ULL << (s)) & \
(~0ULL >> (BITS_PER_LONG_LONG - 1 - (e))))
#define GFX_ADDRESS_BITS 48
#define AUX_FORMAT_YCRCB 0x03
#define AUX_FORMAT_P010 0x07
#define AUX_FORMAT_P016 0x08
#define AUX_FORMAT_AYUV 0x09
#define AUX_FORMAT_ARGB_8B 0x0A
#define AUX_FORMAT_NV12_21 0x0F
#define AUX_FORMAT_RGBA16_FLOAT 0x10
#define AUX_FORMAT_ARGB_10B 0x18
struct pgtable_level_desc {
int idx_shift;
int idx_bits;
int entry_ptr_shift;
int table_size;
};
struct pgtable_level_info {
const struct pgtable_level_desc *desc;
int table_count;
int alloc_base;
int alloc_ptr;
};
struct pgtable {
int levels;
struct pgtable_level_info *level_info;
int size;
int max_align;
struct intel_bb *ibb;
struct intel_buf *buf;
void *ptr;
};
static uint64_t last_buf_surface_end(struct intel_buf *buf)
{
uint64_t end_offset = 0;
int num_surfaces = buf->format_is_yuv_semiplanar ? 2 : 1;
int i;
for (i = 0; i < num_surfaces; i++) {
uint64_t surface_end = buf->surface[i].offset +
buf->surface[i].size;
if (surface_end > end_offset)
end_offset = surface_end;
}
return end_offset;
}
static int
pgt_table_count(int address_bits, struct intel_buf **bufs, int buf_count)
{
uint64_t end;
int count;
int i;
count = 0;
end = 0;
for (i = 0; i < buf_count; i++) {
struct intel_buf *buf = bufs[i];
uint64_t start;
/* We require bufs to be sorted. */
igt_assert(i == 0 ||
buf->addr.offset >= bufs[i - 1]->addr.offset +
intel_buf_size(bufs[i - 1]));
start = ALIGN_DOWN(buf->addr.offset, 1UL << address_bits);
/* Avoid double counting for overlapping aligned bufs. */
start = max(start, end);
end = ALIGN(buf->addr.offset + last_buf_surface_end(buf),
1UL << address_bits);
igt_assert(end >= start);
count += (end - start) >> address_bits;
}
return count;
}
static void
pgt_calc_size(struct pgtable *pgt, struct intel_buf **bufs, int buf_count)
{
int level;
pgt->size = 0;
for (level = pgt->levels - 1; level >= 0; level--) {
struct pgtable_level_info *li = &pgt->level_info[level];
li->alloc_base = ALIGN(pgt->size, li->desc->table_size);
li->alloc_ptr = li->alloc_base;
li->table_count = pgt_table_count(li->desc->idx_shift +
li->desc->idx_bits,
bufs, buf_count);
pgt->size = li->alloc_base +
li->table_count * li->desc->table_size;
}
}
static uint64_t pgt_alloc_table(struct pgtable *pgt, int level)
{
struct pgtable_level_info *li = &pgt->level_info[level];
uint64_t table;
table = li->alloc_ptr;
li->alloc_ptr += li->desc->table_size;
igt_assert(li->alloc_ptr <=
li->alloc_base + li->table_count * li->desc->table_size);
return table;
}
static int pgt_entry_index(struct pgtable *pgt, int level, uint64_t address)
{
const struct pgtable_level_desc *ld = pgt->level_info[level].desc;
uint64_t mask = BITMASK(ld->idx_shift + ld->idx_bits - 1,
ld->idx_shift);
return (address & mask) >> ld->idx_shift;
}
static uint64_t ptr_mask(struct pgtable *pgt, int level)
{
const struct pgtable_level_desc *ld = pgt->level_info[level].desc;
return BITMASK(GFX_ADDRESS_BITS - 1, ld->entry_ptr_shift);
}
static uint64_t
pgt_get_child_table(struct pgtable *pgt, uint64_t parent_table,
int level, uint64_t address, uint64_t flags)
{
uint64_t *parent_table_ptr;
int child_entry_idx;
uint64_t *child_entry_ptr;
uint64_t child_table;
parent_table_ptr = pgt->ptr + parent_table;
child_entry_idx = pgt_entry_index(pgt, level, address);
child_entry_ptr = &parent_table_ptr[child_entry_idx];
if (!*child_entry_ptr) {
uint64_t pte;
uint32_t offset;
child_table = pgt_alloc_table(pgt, level - 1);
igt_assert(!((child_table + pgt->buf->addr.offset) &
~ptr_mask(pgt, level)));
pte = child_table | flags;
*child_entry_ptr = pgt->buf->addr.offset + pte;
igt_assert(pte <= INT32_MAX);
offset = parent_table + child_entry_idx * sizeof(uint64_t);
intel_bb_offset_reloc_to_object(pgt->ibb,
pgt->buf->handle,
pgt->buf->handle,
0, 0,
pte, offset,
pgt->buf->addr.offset);
} else {
child_table = (*child_entry_ptr & ptr_mask(pgt, level)) -
pgt->buf->addr.offset;
}
return child_table;
}
static void
pgt_set_l1_entry(struct pgtable *pgt, uint64_t l1_table,
uint64_t address, uint64_t ptr, uint64_t flags)
{
uint64_t *l1_table_ptr;
uint64_t *l1_entry_ptr;
l1_table_ptr = pgt->ptr + l1_table;
l1_entry_ptr = &l1_table_ptr[pgt_entry_index(pgt, 0, address)];
igt_assert(!(ptr & ~ptr_mask(pgt, 0)));
*l1_entry_ptr = ptr | flags;
}
#define DEPTH_VAL_RESERVED 3
static int bpp_to_depth_val(int bpp)
{
switch (bpp) {
case 8:
return 4;
case 10:
return 1;
case 12:
return 2;
case 16:
return 0;
case 32:
return 5;
case 64:
return 6;
default:
igt_assert_f(0, "invalid bpp %d\n", bpp);
}
}
static uint64_t pgt_get_l1_flags(const struct intel_buf *buf, int surface_idx)
{
/*
* The offset of .tile_mode isn't specifed by bspec, it's what Mesa
* uses.
*/
union {
struct {
uint64_t valid:1;
uint64_t compression_mod:2;
uint64_t lossy_compression:1;
uint64_t pad:4;
uint64_t addr:40;
uint64_t pad2:4;
uint64_t tile_mode:2;
uint64_t depth:3;
uint64_t ycr:1;
uint64_t format:6;
} e;
uint64_t l;
} entry = {
.e = {
.valid = 1,
.tile_mode = buf->tiling == I915_TILING_Y ? 1 :
(buf->tiling == I915_TILING_4 ? 2 : 0),
}
};
/*
* TODO: Clarify if Yf is supported and if we need to differentiate
* Ys and Yf.
* Add support for more formats.
*/
igt_assert(buf->tiling == I915_TILING_Y ||
buf->tiling == I915_TILING_Yf ||
buf->tiling == I915_TILING_Ys ||
buf->tiling == I915_TILING_4);
entry.e.ycr = surface_idx > 0;
if (buf->format_is_yuv_semiplanar) {
entry.e.depth = bpp_to_depth_val(buf->bpp);
switch (buf->yuv_semiplanar_bpp) {
case 8:
entry.e.format = AUX_FORMAT_NV12_21;
entry.e.depth = DEPTH_VAL_RESERVED;
break;
case 10:
entry.e.format = AUX_FORMAT_P010;
entry.e.depth = bpp_to_depth_val(10);
break;
case 12:
entry.e.format = AUX_FORMAT_P016;
entry.e.depth = bpp_to_depth_val(12);
break;
case 16:
entry.e.format = AUX_FORMAT_P016;
entry.e.depth = bpp_to_depth_val(16);
break;
default:
igt_assert(0);
}
} else if (buf->format_is_yuv) {
switch (buf->bpp) {
case 16:
entry.e.format = AUX_FORMAT_YCRCB;
entry.e.depth = DEPTH_VAL_RESERVED;
break;
case 32:
entry.e.format = AUX_FORMAT_AYUV;
entry.e.depth = DEPTH_VAL_RESERVED;
break;
default:
igt_assert(0);
}
} else {
switch (buf->bpp) {
case 32:
if (buf->depth == 30)
entry.e.format = AUX_FORMAT_ARGB_10B;
else
entry.e.format = AUX_FORMAT_ARGB_8B;
entry.e.depth = bpp_to_depth_val(32);
break;
case 64:
entry.e.format = AUX_FORMAT_RGBA16_FLOAT;
entry.e.depth = bpp_to_depth_val(64);
break;
default:
igt_assert(0);
}
}
return entry.l;
}
static uint64_t pgt_get_lx_flags(void)
{
union {
struct {
uint64_t valid:1;
uint64_t addr:47;
uint64_t pad:16;
} e;
uint64_t l;
} entry = {
.e = {
.valid = 1,
}
};
return entry.l;
}
static void
pgt_populate_entries_for_buf(struct pgtable *pgt,
struct intel_buf *buf,
uint64_t top_table,
int surface_idx)
{
uint64_t surface_addr = buf->addr.offset + buf->surface[surface_idx].offset;
uint64_t surface_end = surface_addr + buf->surface[surface_idx].size;
uint64_t aux_addr = buf->addr.offset + buf->ccs[surface_idx].offset;
uint64_t l1_flags = pgt_get_l1_flags(buf, surface_idx);
uint64_t lx_flags = pgt_get_lx_flags();
uint64_t aux_ccs_block_size = 1 << pgt->level_info->desc[0].entry_ptr_shift;
/*
* The block size on the main surface mapped by one AUX CCS block:
* CCS block size *
* 8 bits per byte /
* 2 bits per main surface CL *
* 64 bytes per main surface CL
*/
uint64_t main_surface_block_size = aux_ccs_block_size * 8 / 2 * 64;
igt_assert(!(buf->surface[surface_idx].stride % 512));
igt_assert_eq(buf->ccs[surface_idx].stride,
buf->surface[surface_idx].stride / 512 * 64);
for (; surface_addr < surface_end;
surface_addr += main_surface_block_size,
aux_addr += aux_ccs_block_size) {
uint64_t table = top_table;
int level;
for (level = pgt->levels - 1; level >= 1; level--)
table = pgt_get_child_table(pgt, table, level,
surface_addr, lx_flags);
pgt_set_l1_entry(pgt, table, surface_addr, aux_addr, l1_flags);
}
}
static void pgt_map(int drm_fd, struct pgtable *pgt)
{
pgt->ptr = is_i915_device(drm_fd) ?
gem_mmap__device_coherent(drm_fd, pgt->buf->handle, 0,
pgt->size, PROT_READ | PROT_WRITE):
xe_bo_mmap_ext(drm_fd, pgt->buf->handle,
pgt->size, PROT_READ | PROT_WRITE);
}
static void pgt_unmap(struct pgtable *pgt)
{
munmap(pgt->ptr, pgt->size);
}
static void pgt_populate_entries(struct pgtable *pgt,
struct intel_buf **bufs,
int buf_count)
{
uint64_t top_table;
int i;
top_table = pgt_alloc_table(pgt, pgt->levels - 1);
/* Top level table must be at offset 0. */
igt_assert(top_table == 0);
for (i = 0; i < buf_count; i++) {
igt_assert_eq(bufs[i]->surface[0].offset, 0);
pgt_populate_entries_for_buf(pgt, bufs[i], top_table, 0);
if (bufs[i]->format_is_yuv_semiplanar)
pgt_populate_entries_for_buf(pgt, bufs[i], top_table, 1);
}
}
static struct pgtable *
pgt_create(const struct pgtable_level_desc *level_descs, int levels,
struct intel_buf **bufs, int buf_count)
{
struct pgtable *pgt;
int level;
pgt = calloc(1, sizeof(*pgt));
igt_assert(pgt);
pgt->levels = levels;
pgt->level_info = calloc(levels, sizeof(*pgt->level_info));
igt_assert(pgt->level_info);
for (level = 0; level < pgt->levels; level++) {
struct pgtable_level_info *li = &pgt->level_info[level];
li->desc = &level_descs[level];
if (li->desc->table_size > pgt->max_align)
pgt->max_align = li->desc->table_size;
}
pgt_calc_size(pgt, bufs, buf_count);
return pgt;
}
static void pgt_destroy(struct pgtable *pgt)
{
free(pgt->level_info);
free(pgt);
}
struct intel_buf *
intel_aux_pgtable_create(struct intel_bb *ibb,
struct intel_buf **bufs, int buf_count)
{
static const struct pgtable_level_desc level_desc_table_tgl[] = {
{
.idx_shift = 16,
.idx_bits = 8,
.entry_ptr_shift = 8,
.table_size = 8 * 1024,
},
{
.idx_shift = 24,
.idx_bits = 12,
.entry_ptr_shift = 13,
.table_size = 32 * 1024,
},
{
.idx_shift = 36,
.idx_bits = 12,
.entry_ptr_shift = 15,
.table_size = 32 * 1024,
}
};
static const struct pgtable_level_desc level_desc_table_mtl[] = {
{
.idx_shift = 20,
.idx_bits = 4,
.entry_ptr_shift = 12,
.table_size = 8 * 1024,
},
{
.idx_shift = 24,
.idx_bits = 12,
.entry_ptr_shift = 11,
.table_size = 32 * 1024,
},
{
.idx_shift = 36,
.idx_bits = 12,
.entry_ptr_shift = 15,
.table_size = 32 * 1024,
},
};
const struct pgtable_level_desc *level_desc;
uint32_t levels;
struct pgtable *pgt;
struct buf_ops *bops;
struct intel_buf *buf;
igt_assert(buf_count);
bops = bufs[0]->bops;
if (IS_METEORLAKE(ibb->devid)) {
level_desc = level_desc_table_mtl;
levels = ARRAY_SIZE(level_desc_table_mtl);
} else {
level_desc = level_desc_table_tgl;
levels = ARRAY_SIZE(level_desc_table_tgl);
}
pgt = pgt_create(&level_desc[0], levels, bufs, buf_count);
pgt->ibb = ibb;
pgt->buf = intel_buf_create(bops, pgt->size, 1, 8, 0, I915_TILING_NONE,
I915_COMPRESSION_NONE);
/* We need to use pgt->max_align for aux table */
intel_bb_add_intel_buf_with_alignment(ibb, pgt->buf,
pgt->max_align, false);
pgt_map(ibb->fd, pgt);
pgt_populate_entries(pgt, bufs, buf_count);
pgt_unmap(pgt);
buf = pgt->buf;
pgt_destroy(pgt);
return buf;
}
static void
aux_pgtable_reserve_buf_slot(struct intel_buf **bufs, int buf_count,
struct intel_buf *new_buf)
{
int i;
for (i = 0; i < buf_count; i++) {
if (bufs[i]->addr.offset > new_buf->addr.offset)
break;
}
memmove(&bufs[i + 1], &bufs[i], sizeof(bufs[0]) * (buf_count - i));
bufs[i] = new_buf;
}
void
gen12_aux_pgtable_init(struct aux_pgtable_info *info,
struct intel_bb *ibb,
struct intel_buf *src_buf,
struct intel_buf *dst_buf)
{
struct intel_buf *bufs[2];
int buf_count = 0;
struct intel_buf *reserved_bufs[2];
int reserved_buf_count;
bool has_compressed_buf = false;
bool write_buf[2];
int i;
igt_assert_f(ibb->enforce_relocs == false,
"We support aux pgtables for non-forced relocs yet!");
if (src_buf) {
bufs[buf_count] = src_buf;
write_buf[buf_count] = false;
buf_count++;
if (intel_buf_compressed(src_buf))
has_compressed_buf = true;
}
if (dst_buf) {
bufs[buf_count] = dst_buf;
write_buf[buf_count] = true;
buf_count++;
if (intel_buf_compressed(dst_buf))
has_compressed_buf = true;
}
if (!has_compressed_buf)
return;
/*
* Surface index in pgt table depend on its address so:
* 1. if handle was previously executed in batch use that address
* 2. add object to batch, this will generate random address
*
* Randomizing addresses can lead to overlapping, but we don't have
* global address space generator in IGT. Currently assumption is
* randomizing address is spread over 48-bit address space equally
* so risk with overlapping is minimal. Of course it is growing
* with number of objects (+its sizes) involved in blit.
* To avoid relocation EXEC_OBJECT_PINNED flag is set for compressed
* surfaces.
*/
for (i = 0; i < buf_count; i++) {
intel_bb_add_intel_buf(ibb, bufs[i], write_buf[i]);
if (intel_buf_compressed(bufs[i]))
intel_bb_object_set_flag(ibb, bufs[i]->handle, EXEC_OBJECT_PINNED);
}
reserved_buf_count = 0;
/* First reserve space for any bufs that are bound already. */
for (i = 0; i < buf_count; i++) {
igt_assert(bufs[i]->addr.offset != INTEL_BUF_INVALID_ADDRESS);
aux_pgtable_reserve_buf_slot(reserved_bufs,
reserved_buf_count++,
bufs[i]);
}
/* Create AUX pgtable entries only for bufs with an AUX surface */
info->buf_count = 0;
for (i = 0; i < reserved_buf_count; i++) {
if (!intel_buf_compressed(reserved_bufs[i]))
continue;
info->bufs[info->buf_count] = reserved_bufs[i];
info->buf_pin_offsets[info->buf_count] =
reserved_bufs[i]->addr.offset;
info->buf_count++;
}
info->pgtable_buf = intel_aux_pgtable_create(ibb,
info->bufs,
info->buf_count);
igt_assert(info->pgtable_buf);
}
void
gen12_aux_pgtable_cleanup(struct intel_bb *ibb, struct aux_pgtable_info *info)
{
int i;
/* Check that the pinned bufs kept their offset after the exec. */
for (i = 0; i < info->buf_count; i++) {
uint64_t addr;
addr = intel_bb_get_object_offset(ibb, info->bufs[i]->handle);
igt_assert_eq_u64(addr, info->buf_pin_offsets[i]);
}
if (info->pgtable_buf) {
intel_bb_remove_intel_buf(ibb, info->pgtable_buf);
intel_buf_destroy(info->pgtable_buf);
}
}
uint32_t
gen12_create_aux_pgtable_state(struct intel_bb *ibb,
struct intel_buf *aux_pgtable_buf)
{
uint64_t *pgtable_ptr;
uint32_t pgtable_ptr_offset;
if (!aux_pgtable_buf)
return 0;
pgtable_ptr = intel_bb_ptr(ibb);
pgtable_ptr_offset = intel_bb_offset(ibb);
*pgtable_ptr = intel_bb_offset_reloc(ibb, aux_pgtable_buf->handle,
0, 0,
pgtable_ptr_offset,
aux_pgtable_buf->addr.offset);
intel_bb_ptr_add(ibb, sizeof(*pgtable_ptr));
return pgtable_ptr_offset;
}
void
gen12_emit_aux_pgtable_state(struct intel_bb *ibb, uint32_t state, bool render)
{
uint32_t table_base_reg;
if (render) {
table_base_reg = GEN12_GFX_AUX_TABLE_BASE_ADDR;
} else {
/* Vebox */
if (IS_METEORLAKE(ibb->devid))
table_base_reg = 0x380000 + GEN12_VEBOX_AUX_TABLE_BASE_ADDR;
else
table_base_reg = GEN12_VEBOX_AUX_TABLE_BASE_ADDR;
}
if (!state)
return;
intel_bb_out(ibb, MI_LOAD_REGISTER_MEM_CMD | MI_MMIO_REMAP_ENABLE_GEN12 | 2);
intel_bb_out(ibb, table_base_reg);
intel_bb_emit_reloc(ibb, ibb->handle, 0, 0, state, ibb->batch_offset);
intel_bb_out(ibb, MI_LOAD_REGISTER_MEM_CMD | MI_MMIO_REMAP_ENABLE_GEN12 | 2);
intel_bb_out(ibb, table_base_reg + 4);
intel_bb_emit_reloc(ibb, ibb->handle, 0, 0, state + 4, ibb->batch_offset);
}
|