1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*
* Authors:
* Jason Ekstrand <jason@jlekstrand.net>
* Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
* Matthew Brost <matthew.brost@intel.com>
*/
#ifdef HAVE_LIBGEN_H
#include <libgen.h>
#endif
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <pciaccess.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <termios.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#ifdef __linux__
#include <sys/sysmacros.h>
#else
#define major(__v__) (((__v__) >> 8) & 0xff)
#define minor(__v__) ((__v__) & 0xff)
#endif
#include <time.h>
#include "config.h"
#include "drmtest.h"
#include "igt_syncobj.h"
#include "intel_pat.h"
#include "ioctl_wrappers.h"
#include "xe_ioctl.h"
#include "xe_query.h"
uint32_t xe_cs_prefetch_size(int fd)
{
return 4096;
}
uint64_t xe_bb_size(int fd, uint64_t reqsize)
{
return ALIGN(reqsize + xe_cs_prefetch_size(fd),
xe_get_default_alignment(fd));
}
int xe_vm_number_vmas_in_range(int fd, struct drm_xe_vm_query_mem_range_attr *vmas_attr)
{
if (igt_ioctl(fd, DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS, vmas_attr))
return -errno;
return 0;
}
int xe_vm_vma_attrs(int fd, struct drm_xe_vm_query_mem_range_attr *vmas_attr,
struct drm_xe_mem_range_attr *mem_attr)
{
if (!mem_attr)
return -EINVAL;
vmas_attr->vector_of_mem_attr = (uintptr_t)mem_attr;
if (igt_ioctl(fd, DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS, vmas_attr))
return -errno;
return 0;
}
/**
* xe_vm_get_mem_attr_values_in_range:
* @fd: xe device fd
* @vm: vm_id of the virtual range
* @start: start of the virtual address range
* @range: size of the virtual address range
* @num_ranges: number of vma ranges
*
* Calls QUERY_MEM_RANGES_ATTRS ioctl to get memory attributes for different
* memory ranges from KMD. return memory attributes as returned by KMD for
* atomic, prefrred loc and pat index types.
*
* Returns struct drm_xe_mem_range_attr for success or error for failure
*/
struct drm_xe_mem_range_attr
*xe_vm_get_mem_attr_values_in_range(int fd, uint32_t vm, uint64_t start,
uint64_t range, uint32_t *num_ranges)
{
void *ptr_start, *ptr;
int err;
struct drm_xe_vm_query_mem_range_attr query = {
.vm_id = vm,
.start = start,
.range = range,
.num_mem_ranges = 0,
.sizeof_mem_range_attr = 0,
.vector_of_mem_attr = (uintptr_t)NULL,
};
igt_debug("mem_attr_values_in_range called start = %"PRIu64"\n range = %"PRIu64"\n",
start, range);
err = xe_vm_number_vmas_in_range(fd, &query);
if (err || !query.num_mem_ranges || !query.sizeof_mem_range_attr) {
igt_warn("ioctl failed for xe_vm_number_vmas_in_range\n");
igt_debug("vmas_in_range err = %d query.num_mem_ranges = %u query.sizeof_mem_range_attr=%lld\n",
err, query.num_mem_ranges, query.sizeof_mem_range_attr);
return NULL;
}
/* Allocate buffer for the memory region attributes */
ptr = malloc(query.num_mem_ranges * query.sizeof_mem_range_attr);
ptr_start = ptr;
if (!ptr) {
igt_debug("memory allocation failed\n");
return NULL;
}
err = xe_vm_vma_attrs(fd, &query, ptr);
if (err) {
igt_warn("ioctl failed for vma_attrs err = %d\n", err);
free(ptr_start);
return NULL;
}
ptr = ptr_start; // Reset pointer for iteration
/* Iterate over the returned memory region attributes */
for (unsigned int i = 0; i < query.num_mem_ranges; ++i) {
struct drm_xe_mem_range_attr *mem_attrs = (struct drm_xe_mem_range_attr *)ptr;
igt_debug("vma_id = %d\nvma_start = 0x%016llx\nvma_end = 0x%016llx\n"
"vma:atomic = %d\nvma:pat_index = %d\nvma:preferred_loc_region = %d\n"
"vma:preferred_loc_devmem_fd = %d\n\n\n", i, mem_attrs->start,
mem_attrs->end,
mem_attrs->atomic.val, mem_attrs->pat_index.val,
mem_attrs->preferred_mem_loc.migration_policy,
mem_attrs->preferred_mem_loc.devmem_fd);
ptr += query.sizeof_mem_range_attr;
}
if (num_ranges)
*num_ranges = query.num_mem_ranges;
return (struct drm_xe_mem_range_attr *)ptr_start;
}
uint32_t xe_vm_create(int fd, uint32_t flags, uint64_t ext)
{
struct drm_xe_vm_create create = {
.extensions = ext,
.flags = flags,
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_VM_CREATE, &create), 0);
return create.vm_id;
}
void xe_vm_unbind_all_async(int fd, uint32_t vm, uint32_t exec_queue,
uint32_t bo, struct drm_xe_sync *sync,
uint32_t num_syncs)
{
__xe_vm_bind_assert(fd, vm, exec_queue, bo, 0, 0, 0,
DRM_XE_VM_BIND_OP_UNMAP_ALL, 0,
sync, num_syncs, 0, 0);
}
void xe_vm_bind_array(int fd, uint32_t vm, uint32_t exec_queue,
struct drm_xe_vm_bind_op *bind_ops,
uint32_t num_bind, struct drm_xe_sync *sync,
uint32_t num_syncs)
{
struct drm_xe_vm_bind bind = {
.vm_id = vm,
.num_binds = num_bind,
.vector_of_binds = (uintptr_t)bind_ops,
.num_syncs = num_syncs,
.syncs = (uintptr_t)sync,
.exec_queue_id = exec_queue,
};
igt_assert(num_bind > 1);
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind), 0);
}
int ___xe_vm_bind(int fd, uint32_t vm, uint32_t exec_queue, uint32_t bo,
uint64_t offset, uint64_t addr, uint64_t size, uint32_t op,
uint32_t flags, struct drm_xe_sync *sync, uint32_t num_syncs,
uint32_t prefetch_region, uint8_t pat_index, uint64_t ext,
uint64_t op_ext)
{
struct drm_xe_vm_bind bind = {
.extensions = ext,
.vm_id = vm,
.num_binds = 1,
.bind.extensions = op_ext,
.bind.obj = bo,
.bind.obj_offset = offset,
.bind.range = size,
.bind.addr = addr,
.bind.op = op,
.bind.flags = flags,
.bind.prefetch_mem_region_instance = prefetch_region,
.num_syncs = num_syncs,
.syncs = (uintptr_t)sync,
.exec_queue_id = exec_queue,
.bind.pat_index = (pat_index == DEFAULT_PAT_INDEX) ?
intel_get_pat_idx_wb(fd) : pat_index,
};
if (igt_ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind))
return -errno;
return 0;
}
int __xe_vm_bind(int fd, uint32_t vm, uint32_t exec_queue, uint32_t bo,
uint64_t offset, uint64_t addr, uint64_t size, uint32_t op,
uint32_t flags, struct drm_xe_sync *sync, uint32_t num_syncs,
uint32_t prefetch_region, uint8_t pat_index, uint64_t ext)
{
return ___xe_vm_bind(fd, vm, exec_queue, bo, offset, addr, size, op,
flags, sync, num_syncs, prefetch_region,
pat_index, ext, 0);
}
void __xe_vm_bind_assert(int fd, uint32_t vm, uint32_t exec_queue, uint32_t bo,
uint64_t offset, uint64_t addr, uint64_t size,
uint32_t op, uint32_t flags, struct drm_xe_sync *sync,
uint32_t num_syncs, uint32_t prefetch_region, uint64_t ext)
{
igt_assert_eq(__xe_vm_bind(fd, vm, exec_queue, bo, offset, addr, size,
op, flags, sync, num_syncs, prefetch_region,
DEFAULT_PAT_INDEX, ext), 0);
}
void xe_vm_prefetch_async(int fd, uint32_t vm, uint32_t exec_queue, uint64_t offset,
uint64_t addr, uint64_t size,
struct drm_xe_sync *sync, uint32_t num_syncs,
uint32_t region)
{
__xe_vm_bind_assert(fd, vm, exec_queue, 0, offset, addr, size,
DRM_XE_VM_BIND_OP_PREFETCH, 0,
sync, num_syncs, region, 0);
}
void xe_vm_bind_async(int fd, uint32_t vm, uint32_t exec_queue, uint32_t bo,
uint64_t offset, uint64_t addr, uint64_t size,
struct drm_xe_sync *sync, uint32_t num_syncs)
{
__xe_vm_bind_assert(fd, vm, exec_queue, bo, offset, addr, size,
DRM_XE_VM_BIND_OP_MAP, 0, sync,
num_syncs, 0, 0);
}
void xe_vm_bind_async_flags(int fd, uint32_t vm, uint32_t exec_queue, uint32_t bo,
uint64_t offset, uint64_t addr, uint64_t size,
struct drm_xe_sync *sync, uint32_t num_syncs,
uint32_t flags)
{
__xe_vm_bind_assert(fd, vm, exec_queue, bo, offset, addr, size,
DRM_XE_VM_BIND_OP_MAP, flags,
sync, num_syncs, 0, 0);
}
void xe_vm_bind_userptr_async(int fd, uint32_t vm, uint32_t exec_queue,
uint64_t userptr, uint64_t addr, uint64_t size,
struct drm_xe_sync *sync, uint32_t num_syncs)
{
__xe_vm_bind_assert(fd, vm, exec_queue, 0, userptr, addr, size,
DRM_XE_VM_BIND_OP_MAP_USERPTR, 0,
sync, num_syncs, 0, 0);
}
void xe_vm_bind_userptr_async_flags(int fd, uint32_t vm, uint32_t exec_queue,
uint64_t userptr, uint64_t addr,
uint64_t size, struct drm_xe_sync *sync,
uint32_t num_syncs, uint32_t flags)
{
__xe_vm_bind_assert(fd, vm, exec_queue, 0, userptr, addr, size,
DRM_XE_VM_BIND_OP_MAP_USERPTR, flags,
sync, num_syncs, 0, 0);
}
void xe_vm_unbind_async(int fd, uint32_t vm, uint32_t exec_queue,
uint64_t offset, uint64_t addr, uint64_t size,
struct drm_xe_sync *sync, uint32_t num_syncs)
{
__xe_vm_bind_assert(fd, vm, exec_queue, 0, offset, addr, size,
DRM_XE_VM_BIND_OP_UNMAP, 0, sync,
num_syncs, 0, 0);
}
static void __xe_vm_bind_sync(int fd, uint32_t vm, uint32_t bo, uint64_t offset,
uint64_t addr, uint64_t size, uint32_t op)
{
struct drm_xe_sync sync = {
.type = DRM_XE_SYNC_TYPE_SYNCOBJ,
.flags = DRM_XE_SYNC_FLAG_SIGNAL,
.handle = syncobj_create(fd, 0),
};
__xe_vm_bind_assert(fd, vm, 0, bo, offset, addr, size, op, 0, &sync, 1,
0, 0);
igt_assert(syncobj_wait(fd, &sync.handle, 1, INT64_MAX, 0, NULL));
syncobj_destroy(fd, sync.handle);
}
void xe_vm_bind_sync(int fd, uint32_t vm, uint32_t bo, uint64_t offset,
uint64_t addr, uint64_t size)
{
__xe_vm_bind_sync(fd, vm, bo, offset, addr, size, DRM_XE_VM_BIND_OP_MAP);
}
void xe_vm_unbind_sync(int fd, uint32_t vm, uint64_t offset,
uint64_t addr, uint64_t size)
{
__xe_vm_bind_sync(fd, vm, 0, offset, addr, size, DRM_XE_VM_BIND_OP_UNMAP);
}
void xe_vm_destroy(int fd, uint32_t vm)
{
struct drm_xe_vm_destroy destroy = {
.vm_id = vm,
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_VM_DESTROY, &destroy), 0);
}
uint16_t __xe_default_cpu_caching(int fd, uint32_t placement, uint32_t flags)
{
if ((placement & all_memory_regions(fd)) != system_memory(fd) ||
flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
/* VRAM placements or scanout should always use WC */
return DRM_XE_GEM_CPU_CACHING_WC;
return DRM_XE_GEM_CPU_CACHING_WB;
}
static bool vram_selected(int fd, uint32_t selected_regions)
{
uint64_t regions = all_memory_regions(fd) & selected_regions;
uint64_t region;
xe_for_each_mem_region(fd, regions, region)
if (xe_mem_region(fd, region)->mem_class == DRM_XE_MEM_REGION_CLASS_VRAM)
return true;
return false;
}
static uint32_t ___xe_bo_create(int fd, uint32_t vm, uint64_t size, uint32_t placement,
uint32_t flags, uint16_t cpu_caching, void *ext,
uint32_t *handle)
{
struct drm_xe_gem_create create = {
.vm_id = vm,
.size = size,
.placement = placement,
.flags = flags,
.cpu_caching = cpu_caching,
};
int err;
if (ext)
create.extensions = to_user_pointer(ext);
/*
* In case vram_if_possible returned system_memory,
* visible VRAM cannot be requested through flags
*/
if (!vram_selected(fd, placement))
create.flags &= ~DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM;
err = igt_ioctl(fd, DRM_IOCTL_XE_GEM_CREATE, &create);
if (err)
return err;
*handle = create.handle;
return 0;
}
uint32_t __xe_bo_create(int fd, uint32_t vm, uint64_t size, uint32_t placement,
uint32_t flags, void *ext, uint32_t *handle)
{
uint16_t cpu_caching = __xe_default_cpu_caching(fd, placement, flags);
return ___xe_bo_create(fd, vm, size, placement, flags, cpu_caching, ext, handle);
}
uint32_t xe_bo_create(int fd, uint32_t vm, uint64_t size, uint32_t placement,
uint32_t flags)
{
uint32_t handle;
igt_assert_eq(__xe_bo_create(fd, vm, size, placement, flags, NULL, &handle), 0);
return handle;
}
uint32_t __xe_bo_create_caching(int fd, uint32_t vm, uint64_t size, uint32_t placement,
uint32_t flags, uint16_t cpu_caching, uint32_t *handle)
{
return ___xe_bo_create(fd, vm, size, placement, flags, cpu_caching, NULL, handle);
}
uint32_t xe_bo_create_caching(int fd, uint32_t vm, uint64_t size, uint32_t placement,
uint32_t flags, uint16_t cpu_caching)
{
uint32_t handle;
igt_assert_eq(__xe_bo_create_caching(fd, vm, size, placement, flags,
cpu_caching, &handle), 0);
return handle;
}
uint32_t xe_bind_exec_queue_create(int fd, uint32_t vm, uint64_t ext)
{
struct drm_xe_engine_class_instance instance = {
.engine_class = DRM_XE_ENGINE_CLASS_VM_BIND,
};
struct drm_xe_exec_queue_create create = {
.extensions = ext,
.vm_id = vm,
.width = 1,
.num_placements = 1,
.instances = to_user_pointer(&instance),
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &create), 0);
return create.exec_queue_id;
}
int __xe_exec_queue_create(int fd, uint32_t vm, uint16_t width, uint16_t num_placements,
struct drm_xe_engine_class_instance *instance,
uint64_t ext, uint32_t *exec_queue_id)
{
struct drm_xe_exec_queue_create create = {
.extensions = ext,
.vm_id = vm,
.width = width,
.num_placements = num_placements,
.instances = to_user_pointer(instance),
};
int err;
err = igt_ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &create);
if (err) {
err = -errno;
igt_assume(err);
errno = 0;
return err;
}
*exec_queue_id = create.exec_queue_id;
return 0;
}
uint32_t xe_exec_queue_create(int fd, uint32_t vm,
struct drm_xe_engine_class_instance *instance,
uint64_t ext)
{
uint32_t exec_queue_id;
igt_assert_eq(__xe_exec_queue_create(fd, vm, 1, 1, instance, ext, &exec_queue_id), 0);
return exec_queue_id;
}
uint32_t xe_exec_queue_create_class(int fd, uint32_t vm, uint16_t class)
{
struct drm_xe_engine_class_instance instance = {
.engine_class = class,
.engine_instance = 0,
.gt_id = 0,
};
struct drm_xe_exec_queue_create create = {
.vm_id = vm,
.width = 1,
.num_placements = 1,
.instances = to_user_pointer(&instance),
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &create), 0);
return create.exec_queue_id;
}
void xe_exec_queue_destroy(int fd, uint32_t exec_queue)
{
struct drm_xe_exec_queue_destroy destroy = {
.exec_queue_id = exec_queue,
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_DESTROY, &destroy), 0);
}
uint64_t xe_bo_mmap_offset(int fd, uint32_t bo)
{
struct drm_xe_gem_mmap_offset mmo = {
.handle = bo,
};
igt_assert_eq(igt_ioctl(fd, DRM_IOCTL_XE_GEM_MMAP_OFFSET, &mmo), 0);
return mmo.offset;
}
static void *__xe_bo_map(int fd, uint32_t bo, size_t size, int prot)
{
uint64_t mmo;
void *map;
mmo = xe_bo_mmap_offset(fd, bo);
map = mmap(NULL, size, prot, MAP_SHARED, fd, mmo);
igt_assert(map != MAP_FAILED);
return map;
}
void *xe_bo_map(int fd, uint32_t bo, size_t size)
{
return __xe_bo_map(fd, bo, size, PROT_WRITE);
}
void *xe_bo_map_fixed(int fd, uint32_t bo, size_t size, uint64_t addr)
{
uint64_t mmo;
void *map;
mmo = xe_bo_mmap_offset(fd, bo);
map = mmap(from_user_pointer(addr), size, PROT_WRITE, MAP_SHARED | MAP_FIXED, fd, mmo);
igt_assert(map != MAP_FAILED);
return map;
}
void *xe_bo_mmap_ext(int fd, uint32_t bo, size_t size, int prot)
{
return __xe_bo_map(fd, bo, size, prot);
}
int __xe_exec(int fd, struct drm_xe_exec *exec)
{
int err = 0;
if (igt_ioctl(fd, DRM_IOCTL_XE_EXEC, exec)) {
err = -errno;
igt_assume(err != 0);
}
errno = 0;
return err;
}
void xe_exec(int fd, struct drm_xe_exec *exec)
{
igt_assert_eq(__xe_exec(fd, exec), 0);
}
/**
* xe_exec_sync_failable:
* @fd: xe device fd
* @exec_queue: exec_queue id
* @addr: address of the batch to execute within the VM used by the exec_queue
* @sync: array of drm_xe_sync structs to be used in the exec
* @num_syncs: number of entries in the sync array
*
* Calls the DRM_IOCTL_XE_EXEC ioctl using the provided information.
*
* Returns 0 on success, -errno of ioctl on error.
*/
int xe_exec_sync_failable(int fd, uint32_t exec_queue, uint64_t addr,
struct drm_xe_sync *sync, uint32_t num_syncs)
{
struct drm_xe_exec exec = {
.exec_queue_id = exec_queue,
.syncs = (uintptr_t)sync,
.num_syncs = num_syncs,
.address = addr,
.num_batch_buffer = 1,
};
return __xe_exec(fd, &exec);
}
/**
* xe_exec_sync:
* @fd: xe device fd
* @exec_queue: exec_queue id
* @addr: address of the batch to execute within the VM used by the exec_queue
* @sync: array of drm_xe_sync structs to be used in the exec
* @num_syncs: number of entries in the sync array
*
* Calls the DRM_IOCTL_XE_EXEC ioctl using the provided information. Asserts on
* failure.
*/
void xe_exec_sync(int fd, uint32_t exec_queue, uint64_t addr,
struct drm_xe_sync *sync, uint32_t num_syncs)
{
igt_assert_eq(xe_exec_sync_failable(fd, exec_queue, addr, sync, num_syncs), 0);
}
void xe_exec_wait(int fd, uint32_t exec_queue, uint64_t addr)
{
struct drm_xe_sync sync = {
.type = DRM_XE_SYNC_TYPE_SYNCOBJ,
.flags = DRM_XE_SYNC_FLAG_SIGNAL,
.handle = syncobj_create(fd, 0),
};
xe_exec_sync(fd, exec_queue, addr, &sync, 1);
igt_assert(syncobj_wait(fd, &sync.handle, 1, INT64_MAX, 0, NULL));
syncobj_destroy(fd, sync.handle);
}
/**
* __xe_wait_ufence:
* @fd: xe device fd
* @addr: address of value to compare
* @value: expected value (equal) in @address
* @exec_queue: exec_queue id
* @timeout: pointer to time to wait in nanoseconds
*
* Function compares @value with memory pointed by @addr until they are equal.
*
* Returns (in @timeout), the elapsed time in nanoseconds if user fence was
* signalled. Returns 0 on success, -errno of ioctl on error.
*/
int __xe_wait_ufence(int fd, uint64_t *addr, uint64_t value,
uint32_t exec_queue, int64_t *timeout)
{
struct drm_xe_wait_user_fence wait = {
.addr = to_user_pointer(addr),
.op = DRM_XE_UFENCE_WAIT_OP_EQ,
.flags = 0,
.value = value,
.mask = DRM_XE_UFENCE_WAIT_MASK_U64,
.exec_queue_id = exec_queue,
};
igt_assert(timeout);
wait.timeout = *timeout;
if (igt_ioctl(fd, DRM_IOCTL_XE_WAIT_USER_FENCE, &wait))
return -errno;
*timeout = wait.timeout;
return 0;
}
/**
* xe_wait_ufence:
* @fd: xe device fd
* @addr: address of value to compare
* @value: expected value (equal) in @address
* @exec_queue: exec_queue id
* @timeout: time to wait in nanoseconds
*
* Function compares @value with memory pointed by @addr until they are equal.
* Asserts that ioctl returned without error.
*
* Returns elapsed time in nanoseconds if user fence was signalled.
*/
int64_t xe_wait_ufence(int fd, uint64_t *addr, uint64_t value,
uint32_t exec_queue, int64_t timeout)
{
igt_assert_eq(__xe_wait_ufence(fd, addr, value, exec_queue, &timeout), 0);
return timeout;
}
int __xe_vm_madvise(int fd, uint32_t vm, uint64_t addr, uint64_t range,
uint64_t ext, uint32_t type, uint32_t op_val, uint16_t policy)
{
struct drm_xe_madvise madvise = {
.type = type,
.extensions = ext,
.vm_id = vm,
.start = addr,
.range = range,
};
switch (type) {
case DRM_XE_MEM_RANGE_ATTR_ATOMIC:
madvise.atomic.val = op_val;
break;
case DRM_XE_MEM_RANGE_ATTR_PREFERRED_LOC:
madvise.preferred_mem_loc.devmem_fd = op_val;
madvise.preferred_mem_loc.migration_policy = policy;
igt_debug("madvise.preferred_mem_loc.devmem_fd = %d\n",
madvise.preferred_mem_loc.devmem_fd);
break;
case DRM_XE_MEM_RANGE_ATTR_PAT:
madvise.pat_index.val = op_val;
break;
default:
igt_warn("Unknown attribute\n");
return -EINVAL;
}
if (igt_ioctl(fd, DRM_IOCTL_XE_MADVISE, &madvise))
return -errno;
return 0;
}
/**
* xe_vm_madvise:
* @fd: xe device fd
* @vm: vm_id of the virtual range
* @addr: start of the virtual address range
* @range: size of the virtual address range
* @ext: Pointer to the first extension struct, if any
* @type: type of attribute
* @op_val: fd/atomic value/pat index, depending upon type of operation
* @policy: Page migration policy
*
* Function initializes different members of struct drm_xe_madvise and calls
* MADVISE IOCTL .
*
* Asserts in case of error returned by DRM_IOCTL_XE_MADVISE.
*/
void xe_vm_madvise(int fd, uint32_t vm, uint64_t addr, uint64_t range,
uint64_t ext, uint32_t type, uint32_t op_val, uint16_t policy)
{
igt_assert_eq(__xe_vm_madvise(fd, vm, addr, range, ext, type, op_val, policy), 0);
}
|