1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2024 Intel Corporation
*/
/**
* TEST: sysfs preempt timeout
* Category: Core
* Mega feature: SysMan
* Sub-category: SysMan tests
* Functionality: sysfs preempt timeout
* Feature: SMI, context
* Test category: SysMan
*
* SUBTEST: preempt_timeout_us-timeout
* Description: Test to measure the delay from requesting the preemption to its
* completion. Send down some non-preemptable workloads and then
* request a switch to a higher priority context. The HW will not
* be able to respond, so the kernel will be forced to reset the hog.
* Test category: functionality test
*
*/
#include <fcntl.h>
#include "igt.h"
#include "igt_syncobj.h"
#include "igt_sysfs.h"
#include "xe/xe_ioctl.h"
#include "xe/xe_spin.h"
#define ATTR "preempt_timeout_us"
static void set_preempt_timeout(int engine, unsigned int value)
{
unsigned int delay;
igt_assert_lte(0, igt_sysfs_printf(engine, ATTR, "%u", value));
igt_sysfs_scanf(engine, ATTR, "%u", &delay);
igt_assert_eq(delay, value);
}
static uint64_t __test_timeout(int fd, int engine, unsigned int timeout, uint16_t gt, int class)
{
struct drm_xe_sync sync = {
.handle = syncobj_create(fd, 0),
.type = DRM_XE_SYNC_TYPE_SYNCOBJ,
.flags = DRM_XE_SYNC_FLAG_SIGNAL,
};
struct drm_xe_exec exec = {
.num_batch_buffer = 1,
.num_syncs = 1,
.syncs = to_user_pointer(&sync),
};
/* high priority property */
struct drm_xe_ext_set_property ext = {
.base.next_extension = 0,
.base.name = DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY,
.property = DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY,
.value = 2, /* High priority */
};
struct drm_xe_engine_class_instance *hwe = NULL, *_hwe;
uint64_t ahnd[2];
uint32_t exec_queues[2];
uint32_t vm[2];
uint32_t bo[2];
size_t bo_size;
struct xe_spin *spin[2];
struct timespec ts = {};
double elapsed;
uint64_t addr1 = 0x1a0000, addr2 = 0x100000;
xe_for_each_engine(fd, _hwe)
if (_hwe->engine_class == class && _hwe->gt_id == gt)
hwe = _hwe;
if (!hwe)
return -1;
/* set preempt timeout*/
set_preempt_timeout(engine, timeout);
vm[0] = xe_vm_create(fd, 0, 0);
vm[1] = xe_vm_create(fd, 0, 0);
exec_queues[0] = xe_exec_queue_create(fd, vm[0], hwe, 0);
exec_queues[1] = xe_exec_queue_create(fd, vm[1], hwe, to_user_pointer(&ext));
ahnd[0] = intel_allocator_open(fd, 0, INTEL_ALLOCATOR_RELOC);
bo_size = xe_bb_size(fd, sizeof(*spin));
bo[0] = xe_bo_create(fd, vm[0], bo_size, vram_if_possible(fd, 0),
DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM);
spin[0] = xe_bo_map(fd, bo[0], bo_size);
xe_vm_bind_async(fd, vm[0], 0, bo[0], 0, addr1, bo_size, &sync, 1);
xe_spin_init_opts(spin[0], .addr = addr1,
.preempt = false);
exec.address = addr1;
exec.exec_queue_id = exec_queues[0];
xe_exec(fd, &exec);
xe_spin_wait_started(spin[0]);
igt_nsec_elapsed(&ts);
ahnd[1] = intel_allocator_open(fd, 0, INTEL_ALLOCATOR_RELOC);
bo[1] = xe_bo_create(fd, vm[1], bo_size, vram_if_possible(fd, 0),
DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM);
spin[1] = xe_bo_map(fd, bo[1], bo_size);
xe_vm_bind_sync(fd, vm[1], bo[1], 0, addr2, bo_size);
xe_spin_init_opts(spin[1], .addr = addr2);
exec.address = addr2;
exec.exec_queue_id = exec_queues[1];
xe_exec(fd, &exec);
xe_spin_wait_started(spin[1]);
elapsed = igt_nsec_elapsed(&ts);
xe_spin_end(spin[1]);
xe_vm_unbind_async(fd, vm[0], 0, 0, addr1, bo_size, &sync, 1);
igt_assert(syncobj_wait(fd, &sync.handle, 1, INT64_MAX, 0, NULL));
xe_spin_end(spin[0]);
xe_vm_unbind_sync(fd, vm[1], 0, addr2, bo_size);
syncobj_destroy(fd, sync.handle);
xe_exec_queue_destroy(fd, exec_queues[0]);
xe_vm_destroy(fd, vm[0]);
xe_exec_queue_destroy(fd, exec_queues[1]);
xe_vm_destroy(fd, vm[1]);
put_ahnd(ahnd[1]);
put_ahnd(ahnd[0]);
return elapsed;
}
static void test_timeout(int fd, int engine, const char **property, uint16_t class, int gt)
{
uint64_t delays[] = { 1000, 50000, 100000, 500000 };
unsigned int saved;
uint64_t elapsed;
uint64_t epsilon;
/*
* Send down some non-preemptable workloads and then request a
* switch to a higher priority context. The HW will not be able to
* respond, so the kernel will be forced to reset the hog. This
* timeout should match our specification, and so we can measure
* the delay from requesting the preemption to its completion.
*/
igt_assert(igt_sysfs_scanf(engine, property[0], "%u", &saved) == 1);
igt_debug("Initial %s:%u\n", property[0], saved);
elapsed = __test_timeout(fd, engine, 1000, gt, class);
epsilon = 2 * elapsed / 1000;
if (epsilon < 50000)
epsilon = 50000;
igt_info("Minimum timeout measured as %.3fus; setting error threshold to %" PRId64 "us\n",
elapsed * 1e-3, epsilon);
igt_require(epsilon < 10000000);
for (int i = 0; i < ARRAY_SIZE(delays); i++) {
elapsed = __test_timeout(fd, engine, delays[i], gt, class);
igt_info("%s:%"PRId64", elapsed=%.3fus\n",
property[0], delays[i], elapsed * 1e-3);
/*
* We need to give a couple of jiffies slack for the scheduler
* timeouts and then a little more slack for the overhead in
* submitting and measuring.
*/
igt_assert_f(elapsed / 1000 < delays[i] + epsilon,
"Forced preemption timeout exceeded request!\n");
}
set_preempt_timeout(engine, saved);
}
#define MAX_GTS 8
igt_main
{
static const struct {
const char *name;
void (*fn)(int, int, const char **, uint16_t, int);
} tests[] = {
{ "timeout", test_timeout },
{ }
};
const char *property[][3] = { {"preempt_timeout_us",
"preempt_timeout_min",
"preempt_timeout_max"}, };
int count = sizeof(property) / sizeof(property[0]);
int gt_count = 0;
int fd = -1, sys_fd, gt;
int engines_fd[MAX_GTS], gt_fd[MAX_GTS];
unsigned int pts[MAX_GTS][XE_MAX_ENGINE_INSTANCE];
int *engine_list[MAX_GTS];
igt_fixture {
fd = drm_open_driver(DRIVER_XE);
sys_fd = igt_sysfs_open(fd);
igt_require(sys_fd != -1);
close(sys_fd);
xe_for_each_gt(fd, gt) {
int *list, i = 0;
igt_require(gt_count < MAX_GTS);
gt_fd[gt_count] = xe_sysfs_gt_open(fd, gt);
igt_require(gt_fd[gt_count] != -1);
engines_fd[gt_count] = openat(gt_fd[gt_count], "engines", O_RDONLY);
igt_require(engines_fd[gt_count] != -1);
list = igt_sysfs_get_engine_list(engines_fd[gt_count]);
while (list[i] != -1) {
igt_require(igt_sysfs_scanf(list[i], "preempt_timeout_us", "%u",
&pts[gt_count][i]) == 1);
i++;
}
igt_require(i > 0);
engine_list[gt_count] = list;
gt_count++;
}
}
for (int i = 0; i < count; i++) {
for (typeof(*tests) *t = tests; t->name; t++) {
igt_subtest_with_dynamic_f("%s-%s", property[i][0], t->name) {
int j = 0;
xe_for_each_gt(fd, gt) {
int e = engines_fd[j];
igt_sysfs_engines(fd, e, gt, 1, property[i], t->fn);
j++;
}
}
}
}
igt_fixture {
for (int i = 0; i < gt_count; i++) {
int *list, j = 0;
list = engine_list[i];
while (list[j] != -1) {
unsigned int store = UINT_MAX;
igt_sysfs_printf(list[j], "preempt_timeout_us",
"%u", pts[i][j]);
igt_sysfs_scanf(list[j], "preempt_timeout_us",
"%u", &store);
igt_abort_on_f(store != pts[i][j],
"preempt_timeout_us not restored!\n");
j++;
}
igt_sysfs_free_engine_list(list);
close(engines_fd[i]);
close(gt_fd[i]);
}
drm_close_driver(fd);
}
}
|