1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2024 Intel Corporation
*/
/**
* TEST: Test the parallel submission of jobs in LR and dma fence modes
* Category: Core
* Mega feature: General Core features
* Sub-category: CMD submission
* Functionality: fault mode
* GPU requirements: GPU needs support for DRM_XE_VM_CREATE_FLAG_FAULT_MODE
*/
#include <fcntl.h>
#include "igt.h"
#include "lib/igt_syncobj.h"
#include "lib/intel_reg.h"
#include "xe_drm.h"
#include "xe/xe_ioctl.h"
#include "xe/xe_query.h"
#include "xe/xe_spin.h"
#include "xe/xe_util.h"
#include <string.h>
#define FLAG_EXEC_MODE_LR (0x1 << 0)
#define FLAG_JOB_TYPE_SIMPLE (0x1 << 1)
#define NUM_INTERRUPTING_JOBS 1
#define USER_FENCE_VALUE 0xdeadbeefdeadbeefull
#define VM_DATA 0
#define SPIN_DATA 1
#define EXEC_DATA 2
#define DATA_COUNT 3
struct data {
struct xe_spin spin;
uint32_t batch[16];
uint64_t vm_sync;
uint32_t data;
uint64_t exec_sync;
uint64_t addr;
};
static void store_dword_batch(struct data *data, uint64_t addr, int value)
{
int b;
uint64_t batch_offset = (char *)&(data->batch) - (char *)data;
uint64_t batch_addr = addr + batch_offset;
uint64_t sdi_offset = (char *)&(data->data) - (char *)data;
uint64_t sdi_addr = addr + sdi_offset;
b = 0;
data->batch[b++] = MI_STORE_DWORD_IMM_GEN4;
data->batch[b++] = sdi_addr;
data->batch[b++] = sdi_addr >> 32;
data->batch[b++] = value;
data->batch[b++] = MI_BATCH_BUFFER_END;
igt_assert(b <= ARRAY_SIZE(data->batch));
data->addr = batch_addr;
}
enum engine_execution_mode {
EXEC_MODE_LR,
EXEC_MODE_DMA_FENCE,
};
enum job_type {
SIMPLE_BATCH_STORE,
SPINNER_INTERRUPTED,
};
static void
run_job(int fd, struct drm_xe_engine_class_instance *hwe,
enum engine_execution_mode engine_execution_mode,
enum job_type job_type, bool allow_recursion,
struct xe_spin *dma_fence_job_spin)
{
struct drm_xe_sync sync[1] = {
{ .flags = DRM_XE_SYNC_FLAG_SIGNAL, },
};
struct drm_xe_exec exec = {
.num_batch_buffer = 1,
.num_syncs = 1,
.syncs = to_user_pointer(&sync),
};
struct data *data;
uint32_t vm;
uint32_t exec_queue;
size_t bo_size;
int value = 0x123456;
uint64_t addr = 0x100000;
uint32_t bo = 0;
unsigned int vm_flags = 0;
struct xe_spin_opts spin_opts = { .preempt = true };
struct timespec tv;
enum engine_execution_mode interrupting_engine_execution_mode;
int64_t timeout_short = 1;
if (engine_execution_mode == EXEC_MODE_LR) {
sync[0].type = DRM_XE_SYNC_TYPE_USER_FENCE;
sync[0].timeline_value = USER_FENCE_VALUE;
vm_flags = DRM_XE_VM_CREATE_FLAG_LR_MODE | DRM_XE_VM_CREATE_FLAG_FAULT_MODE;
} else if (engine_execution_mode == EXEC_MODE_DMA_FENCE) {
sync[0].type = DRM_XE_SYNC_TYPE_SYNCOBJ;
sync[0].handle = syncobj_create(fd, 0);
}
vm = xe_vm_create(fd, vm_flags, 0);
bo_size = sizeof(*data) * DATA_COUNT;
bo_size = xe_bb_size(fd, bo_size);
bo = xe_bo_create(fd, vm, bo_size,
vram_if_possible(fd, hwe->gt_id),
DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM);
data = xe_bo_map(fd, bo, bo_size);
if (engine_execution_mode == EXEC_MODE_LR)
sync[0].addr = to_user_pointer(&data[VM_DATA].vm_sync);
xe_vm_bind_async(fd, vm, 0, bo, 0, addr, bo_size, &sync[0], 1);
store_dword_batch(data, addr, value);
if (engine_execution_mode == EXEC_MODE_LR) {
xe_wait_ufence(fd, &data[VM_DATA].vm_sync, USER_FENCE_VALUE, 0, NSEC_PER_SEC);
sync[0].addr = addr + (char *)&data[EXEC_DATA].exec_sync - (char *)data;
} else if (engine_execution_mode == EXEC_MODE_DMA_FENCE) {
igt_assert(syncobj_wait(fd, &sync[0].handle, 1, INT64_MAX, 0, NULL));
syncobj_reset(fd, &sync[0].handle, 1);
sync[0].flags &= DRM_XE_SYNC_FLAG_SIGNAL;
}
exec_queue = xe_exec_queue_create(fd, vm, hwe, 0);
exec.exec_queue_id = exec_queue;
if (job_type == SPINNER_INTERRUPTED) {
spin_opts.addr = addr + (char *)&data[SPIN_DATA].spin - (char *)data;
xe_spin_init(&data[SPIN_DATA].spin, &spin_opts);
if (engine_execution_mode == EXEC_MODE_LR)
sync[0].addr = addr + (char *)&data[SPIN_DATA].exec_sync - (char *)data;
exec.address = spin_opts.addr;
} else if (job_type == SIMPLE_BATCH_STORE) {
exec.address = data->addr;
}
xe_exec(fd, &exec);
if (job_type == SPINNER_INTERRUPTED) {
if (engine_execution_mode == EXEC_MODE_LR)
interrupting_engine_execution_mode = EXEC_MODE_DMA_FENCE;
else if (engine_execution_mode == EXEC_MODE_DMA_FENCE)
interrupting_engine_execution_mode = EXEC_MODE_LR;
xe_spin_wait_started(&data[SPIN_DATA].spin);
} else if (job_type == SIMPLE_BATCH_STORE) {
interrupting_engine_execution_mode = engine_execution_mode;
}
if (allow_recursion) {
igt_gettime(&tv);
for (int i = 0; i < NUM_INTERRUPTING_JOBS; i++)
{
struct xe_spin *spin_arg;
if (job_type == SPINNER_INTERRUPTED &&
engine_execution_mode == EXEC_MODE_DMA_FENCE &&
interrupting_engine_execution_mode == EXEC_MODE_LR)
/**
* In this case, jobs in LR mode are submitted while a job in dma
* fence mode is running. It is expected that the KMD will wait
* for completion of the dma fence job before executing the jobs
* in LR mode. Provide a pointer to the spinner to the interrupting
* dma fence job so that it can check that it was blocked, then
* end the spinner, then check that it was unblocked and completed,
* see "if (dma_fence_job_spin) ... " below.
*/
spin_arg = &data[SPIN_DATA].spin;
run_job(fd, hwe, interrupting_engine_execution_mode, SIMPLE_BATCH_STORE,
false, spin_arg);
if (job_type == SPINNER_INTERRUPTED &&
engine_execution_mode == EXEC_MODE_LR &&
interrupting_engine_execution_mode == EXEC_MODE_DMA_FENCE) {
/**
* In that case, jobs in dma fence mode are submitted while a job
* in LR mode is running. It is expected that the KMD will preempt
* the LR mode job to execute the dma fence mode jobs. At this
* point the dma fence job has completed, check that the LR mode
* job is still running, meaning was successfully preempted.
*/
igt_assert_neq(0, __xe_wait_ufence(fd, &data[SPIN_DATA].exec_sync,
USER_FENCE_VALUE,
0, &timeout_short));
}
}
}
if (dma_fence_job_spin) {
igt_assert_neq(0, __xe_wait_ufence(fd, &data[EXEC_DATA].exec_sync,
USER_FENCE_VALUE, 0, &timeout_short));
xe_spin_end(dma_fence_job_spin);
} else if (job_type == SPINNER_INTERRUPTED &&
engine_execution_mode == EXEC_MODE_LR) {
xe_spin_end(&data[SPIN_DATA].spin);
}
if (engine_execution_mode == EXEC_MODE_LR) {
if (job_type == SPINNER_INTERRUPTED)
xe_wait_ufence(fd, &data[SPIN_DATA].exec_sync, USER_FENCE_VALUE, 0, NSEC_PER_SEC);
else if (job_type == SIMPLE_BATCH_STORE)
xe_wait_ufence(fd, &data[EXEC_DATA].exec_sync, USER_FENCE_VALUE, 0, NSEC_PER_SEC);
} else if (engine_execution_mode == EXEC_MODE_DMA_FENCE) {
igt_assert(syncobj_wait(fd, &sync[0].handle, 1, INT64_MAX, 0, NULL));
syncobj_destroy(fd, sync[0].handle);
}
if (job_type == SIMPLE_BATCH_STORE)
igt_assert_eq(data->data, value);
munmap(data, bo_size);
gem_close(fd, bo);
xe_exec_queue_destroy(fd, exec_queue);
xe_vm_destroy(fd, vm);
}
/**
* SUBTEST: exec-simple-batch-store-lr
* Description: Execute a simple batch store job in long running mode
*
* SUBTEST: exec-simple-batch-store-dma-fence
* Description: Execute a simple batch store job in dma fence mode
*
* SUBTEST: exec-spinner-interrupted-lr
* Description: Spin in long running mode then get interrupted by a simple
* batch store job in dma fence mode
*
* SUBTEST: exec-spinner-interrupted-dma-fence
* Description: Spin in dma fence mode then get interrupted by a simple
* batch store job in long running mode
*/
static void
test_exec(int fd, struct drm_xe_engine_class_instance *hwe,
unsigned int flags)
{
enum engine_execution_mode engine_execution_mode;
enum job_type job_type;
if (flags & FLAG_EXEC_MODE_LR)
engine_execution_mode = EXEC_MODE_LR;
else
engine_execution_mode = EXEC_MODE_DMA_FENCE;
if (flags & FLAG_JOB_TYPE_SIMPLE)
job_type = SIMPLE_BATCH_STORE;
else
job_type = SPINNER_INTERRUPTED;
run_job(fd, hwe, engine_execution_mode, job_type, true, NULL);
}
igt_main
{
struct drm_xe_engine_class_instance *hwe;
const struct section {
const char *name;
unsigned int flags;
} sections[] = {
{ "simple-batch-store-lr", FLAG_JOB_TYPE_SIMPLE | FLAG_EXEC_MODE_LR },
{ "simple-batch-store-dma-fence", FLAG_JOB_TYPE_SIMPLE },
{ "spinner-interrupted-lr", FLAG_EXEC_MODE_LR },
{ "spinner-interrupted-dma-fence", 0 },
{ NULL },
};
int fd;
igt_fixture {
bool supports_faults;
int ret = 0;
fd = drm_open_driver(DRIVER_XE);
ret = xe_supports_faults(fd);
supports_faults = !ret;
igt_require(supports_faults);
}
for (const struct section *s = sections; s->name; s++) {
igt_subtest_f("exec-%s", s->name)
xe_for_each_engine(fd, hwe)
if (hwe->engine_class == DRM_XE_ENGINE_CLASS_COMPUTE)
test_exec(fd, hwe, s->flags);
}
igt_fixture {
drm_close_driver(fd);
}
}
|