1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
/**
* TEST: Test gtidle properties
* Category: Core
* Mega feature: Power management
* Sub-category: GT C-states and idle residency tests
* Functionality: GT C States
* Test category: functionality test
*/
#include <fcntl.h>
#include <limits.h>
#include <time.h>
#include "igt.h"
#include "igt_device.h"
#include "igt_power.h"
#include "igt_sysfs.h"
#include "lib/igt_syncobj.h"
#include "xe/xe_ioctl.h"
#include "xe/xe_gt.h"
#include "xe/xe_query.h"
#define NUM_REPS 16 /* No of Repetitions */
#define SLEEP_DURATION 3 /* in seconds */
const double tolerance = 0.1;
int fw_handle = -1;
enum test_type {
TEST_S2IDLE,
TEST_IDLE,
};
/**
* SUBTEST: gt-c6-on-idle
* Description: Validate GT C6 state on idle
*
* SUBTEST: idle-residency
* Description: basic residency test to validate idle residency
* measured over a time interval is within the tolerance
*
* SUBTEST: idle-residency-on-exec
* Description: Validate idle residency measured when a background
* load is only active for ~1% of the time
*
* SUBTEST: gt-c6-freeze
* Description: Validate idle residency measured over suspend(s2idle)
* is greater than suspend time or within tolerance
*
* SUBTEST: toggle-gt-c6
* Description: toggles GT C states by acquiring/releasing forcewake,
* also validates power consumed by GPU in GT C6 is lesser than
* that of GT C0.
*
* SUBTEST: cpg-basic
* Description: Validate GT coarse power gating status with S3 cycle.
*
* SUBTEST: cpg-gt-toggle
* Description: Toggle GT coarse power gating states by acquiring/releasing
* forcewake.
*/
IGT_TEST_DESCRIPTION("Tests for gtidle properties");
static void close_fw_handle(int sig)
{
if (fw_handle >= 0)
close(fw_handle);
}
static void exec_load(int fd, struct drm_xe_engine_class_instance *hwe, unsigned long *done)
{
uint32_t bo = 0;
uint32_t exec_queue, syncobj, vm;
uint64_t addr = 0x1a0000;
uint64_t batch_addr, batch_offset, data_addr, data_offset;
size_t bo_size;
int b;
struct {
uint32_t batch[16];
uint64_t pad;
uint32_t data;
} *data;
struct drm_xe_sync sync = {
.type = DRM_XE_SYNC_TYPE_SYNCOBJ, .flags = DRM_XE_SYNC_FLAG_SIGNAL,
};
struct drm_xe_exec exec = {
.num_batch_buffer = 1,
.num_syncs = 1,
.syncs = to_user_pointer(&sync),
};
vm = xe_vm_create(fd, 0, 0);
exec_queue = xe_exec_queue_create(fd, vm, hwe, 0);
bo_size = xe_bb_size(fd, SZ_4K);
bo = xe_bo_create(fd, vm, bo_size,
vram_if_possible(fd, hwe->gt_id),
DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM);
data = xe_bo_map(fd, bo, bo_size);
syncobj = syncobj_create(fd, 0);
xe_vm_bind_sync(fd, vm, bo, 0, addr, bo_size);
batch_offset = (char *)&data->batch - (char *)data;
batch_addr = addr + batch_offset;
data_offset = (char *)&data->data - (char *)data;
data_addr = addr + data_offset;
/* Aim for ~1% busy */
do {
uint64_t submit, elapsed;
struct timespec tv = {};
b = 0;
done[1]++;
data->batch[b++] = MI_STORE_DWORD_IMM_GEN4;
data->batch[b++] = data_addr;
data->batch[b++] = data_addr >> 32;
data->batch[b++] = done[1];
data->batch[b++] = MI_BATCH_BUFFER_END;
igt_assert(b <= ARRAY_SIZE(data->batch));
exec.exec_queue_id = exec_queue;
exec.address = batch_addr;
sync.handle = syncobj;
igt_nsec_elapsed(&tv);
xe_exec(fd, &exec);
submit = igt_nsec_elapsed(&tv);
igt_assert(syncobj_wait(fd, &syncobj, 1, INT64_MAX, 0, NULL));
elapsed = igt_nsec_elapsed(&tv);
igt_assert_eq(data->data, done[1]);
igt_debug("Execution took %.3fms (submit %.1fus, wait %.1fus)\n",
1e-6 * elapsed,
1e-3 * submit,
1e-3 * (elapsed - submit));
/*
* MI_STORE_DWORD generally completes within couple of ms.
* Assert if it takes more than 1.2 seconds, as it will cause
* IGT test to timeout due to sleep of 120 seconds which is
* the current per test timeout. Currently there is no way to
* read this timeout from IGT test.
*/
igt_assert((uint64_t)elapsed < (uint64_t)(1.2 * NSEC_PER_SEC));
syncobj_reset(fd, &syncobj, 1);
/*
* Execute the above workload for ~1% of the elapsed time and sleep for
* the rest of the time (~99%)
*/
usleep(elapsed / 10);
} while (!READ_ONCE(*done));
xe_vm_unbind_sync(fd, vm, 0, addr, bo_size);
syncobj_destroy(fd, syncobj);
munmap(data, bo_size);
gem_close(fd, bo);
xe_exec_queue_destroy(fd, exec_queue);
xe_vm_destroy(fd, vm);
}
static unsigned long read_idle_residency(int fd, int gt)
{
unsigned long residency = 0;
int gt_fd;
gt_fd = xe_sysfs_gt_open(fd, gt);
igt_assert_lte(0, gt_fd);
igt_assert(igt_sysfs_scanf(gt_fd, "gtidle/idle_residency_ms", "%lu", &residency) == 1);
close(gt_fd);
return residency;
}
static void test_idle_residency(int fd, int gt, enum test_type flag)
{
unsigned long elapsed_ms, residency_start, residency_end;
igt_assert_f(igt_wait(xe_gt_is_in_c6(fd, gt), 1000, 1), "GT %d not in C6\n", gt);
if (flag == TEST_S2IDLE) {
/*
* elapsed time during suspend is approximately equal to autoresume delay
* when a full suspend cycle(SUSPEND_TEST_NONE) is used.
*/
elapsed_ms = igt_get_autoresume_delay(SUSPEND_STATE_FREEZE);
residency_start = read_idle_residency(fd, gt);
igt_system_suspend_autoresume(SUSPEND_STATE_FREEZE, SUSPEND_TEST_NONE);
residency_end = read_idle_residency(fd, gt);
}
if (flag == TEST_IDLE) {
residency_start = read_idle_residency(fd, gt);
elapsed_ms = igt_measured_usleep(SLEEP_DURATION * USEC_PER_SEC) / 1000;
residency_end = read_idle_residency(fd, gt);
}
igt_info("Measured %lums of idle residency in %lums\n",
residency_end - residency_start, elapsed_ms);
/*
* When suspended (system or runtime suspend), device needs to be woken up to read
* residency. Idle residency may increase during resume thus being greater than
* elapsed ms.
*/
if ((residency_end - residency_start) >= elapsed_ms)
return;
assert_within_epsilon(residency_end - residency_start, elapsed_ms, tolerance);
}
static void idle_residency_on_exec(int fd, struct drm_xe_engine_class_instance *hwe)
{
const int tol = 20;
unsigned long *done;
unsigned long end, start;
unsigned long elapsed_ms, residency_end, residency_start;
igt_info("Running on %s:%d\n",
xe_engine_class_string(hwe->engine_class), hwe->engine_instance);
done = mmap(0, 4096, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
igt_assert(done != MAP_FAILED);
memset(done, 0, 4096);
igt_fork(child, 1)
exec_load(fd, hwe, done);
start = READ_ONCE(done[1]);
residency_start = read_idle_residency(fd, hwe->gt_id);
elapsed_ms = igt_measured_usleep(SLEEP_DURATION * USEC_PER_SEC) / 1000;
residency_end = read_idle_residency(fd, hwe->gt_id);
end = READ_ONCE(done[1]);
*done = 1;
igt_waitchildren();
/* At least one wakeup/s needed for a reasonable test */
igt_assert(end - start);
/* While very nearly busy, expect full GT C6 */
assert_within_epsilon((residency_end - residency_start), elapsed_ms, tol);
munmap(done, 4096);
}
static void measure_power(struct igt_power *gpu, double *power)
{
struct power_sample power_sample[2];
igt_power_get_energy(gpu, &power_sample[0]);
igt_measured_usleep(SLEEP_DURATION * USEC_PER_SEC);
igt_power_get_energy(gpu, &power_sample[1]);
*power = igt_power_get_mW(gpu, &power_sample[0], &power_sample[1]);
}
static void toggle_gt_c6(int fd, int n)
{
double gt_c0_power, gt_c6_power;
int gt, ret;
struct igt_power gpu;
/*
* igt_power_get_mW will always return 0 if igt_power_open fails,
* so skip the power check in this case.
*/
ret = igt_power_open(fd, &gpu, "gpu");
do {
fw_handle = igt_debugfs_open(fd, "forcewake_all", O_RDONLY);
igt_assert_lte(0, fw_handle);
/* check if all gts are in C0 after forcewake is acquired */
xe_for_each_gt(fd, gt)
igt_assert_f(!xe_gt_is_in_c6(fd, gt),
"Forcewake acquired, GT %d should be in C0\n", gt);
if (n == NUM_REPS)
measure_power(&gpu, >_c0_power);
close(fw_handle);
/* check if all gts are in C6 after forcewake is released */
xe_for_each_gt(fd, gt)
igt_assert_f(igt_wait(xe_gt_is_in_c6(fd, gt), 1000, 1),
"Forcewake released, GT %d should be in C6\n", gt);
if (n == NUM_REPS)
measure_power(&gpu, >_c6_power);
} while (--n);
igt_power_close(&gpu);
igt_info("GPU consumed %fmW in GT C6 and %fmW in GT C0\n", gt_c6_power, gt_c0_power);
/* FIXME: Remove dgfx check after hwmon is added */
if (!(xe_has_vram(fd) || ret))
igt_assert_f(gt_c6_power < gt_c0_power,
"Power consumed in GT C6 should be lower than GT C0\n");
}
static void cpg_enabled(int fd, int gt)
{
const char *render_power_gating = "Render Power Gating Enabled: ";
const char *media_power_gating = "Media Power Gating Enabled: ";
char str[512], path[PATH_MAX], *render_substr, *media_substr;
snprintf(path, sizeof(path), "gt%d/powergate_info", gt);
igt_debugfs_read(fd, path, str);
render_substr = strstr(str, render_power_gating);
if (render_substr)
igt_assert_f(strncmp(render_substr + strlen(render_power_gating), "yes", 3) == 0,
"Render Power Gating should be enabled");
media_substr = strstr(str, media_power_gating);
if (media_substr)
igt_assert_f(strncmp(media_substr + strlen(media_power_gating), "yes", 3) == 0,
"Media Power Gating should be enabled");
}
static void powergate_status(int fd, int gt, const char *expected_status)
{
const char *power_gate_status = "Power Gate Status: ";
char str[512], path[PATH_MAX], *status_substr;
snprintf(path, sizeof(path), "gt%d/powergate_info", gt);
igt_debugfs_read(fd, path, str);
status_substr = strstr(str, power_gate_status);
while (status_substr) {
igt_assert_f((strncmp(status_substr + strlen(power_gate_status), expected_status,
strlen(expected_status)) == 0),
"Power Gate Status Should be %s\n %s\n", expected_status, str);
status_substr = strstr(status_substr + strlen(power_gate_status),
power_gate_status);
}
}
static void cpg_basic(int fd, int gt)
{
cpg_enabled(fd, gt);
igt_system_suspend_autoresume(SUSPEND_STATE_S3, SUSPEND_TEST_NONE);
cpg_enabled(fd, gt);
}
static void cpg_gt_toggle(int fd)
{
int gt;
fw_handle = igt_debugfs_open(fd, "forcewake_all", O_RDONLY);
igt_assert_lte(0, fw_handle);
xe_for_each_gt(fd, gt) {
cpg_enabled(fd, gt);
powergate_status(fd, gt, "up");
}
close(fw_handle);
sleep(1);
xe_for_each_gt(fd, gt)
powergate_status(fd, gt, "down");
}
igt_main
{
uint32_t d3cold_allowed;
int fd, gt;
char pci_slot_name[NAME_MAX];
struct drm_xe_engine_class_instance *hwe;
igt_fixture {
fd = drm_open_driver(DRIVER_XE);
igt_require(!IS_PONTEVECCHIO(xe_dev_id(fd)));
igt_require(xe_sysfs_gt_has_node(fd, 0, "gtidle"));
}
igt_describe("Validate GT C6 on idle");
igt_subtest_with_dynamic("gt-c6-on-idle") {
xe_for_each_gt(fd, gt)
igt_dynamic_f("gt%u", gt)
igt_assert_f(igt_wait(xe_gt_is_in_c6(fd, gt), 1000, 1),
"GT %d not in C6\n", gt);
}
igt_describe("Validate idle residency measured over suspend cycle is within the tolerance");
igt_subtest_with_dynamic("gt-c6-freeze") {
if (xe_has_vram(fd)) {
igt_device_get_pci_slot_name(fd, pci_slot_name);
igt_pm_get_d3cold_allowed(pci_slot_name, &d3cold_allowed);
igt_pm_set_d3cold_allowed(pci_slot_name, 0);
}
xe_for_each_gt(fd, gt)
igt_dynamic_f("gt%u", gt)
test_idle_residency(fd, gt, TEST_S2IDLE);
if (xe_has_vram(fd))
igt_pm_set_d3cold_allowed(pci_slot_name, d3cold_allowed);
}
igt_describe("Validate idle residency measured over a time interval is within the tolerance");
igt_subtest_with_dynamic("idle-residency") {
xe_for_each_gt(fd, gt)
igt_dynamic_f("gt%u", gt)
test_idle_residency(fd, gt, TEST_IDLE);
}
igt_describe("Validate idle residency on exec");
igt_subtest_with_dynamic("idle-residency-on-exec") {
xe_for_each_gt(fd, gt) {
xe_for_each_engine(fd, hwe) {
if (gt == hwe->gt_id && !hwe->engine_instance) {
igt_dynamic_f("gt%u-engine-%s", gt,
xe_engine_class_string(hwe->engine_class))
idle_residency_on_exec(fd, hwe);
}
}
}
}
igt_describe("Toggle GT C states by acquiring/releasing forcewake and validate power measured");
igt_subtest("toggle-gt-c6") {
igt_install_exit_handler(close_fw_handle);
toggle_gt_c6(fd, NUM_REPS);
}
igt_describe("Validate Coarse power gating status with S3 cycle");
igt_subtest("cpg-basic")
xe_for_each_gt(fd, gt)
cpg_basic(fd, gt);
igt_describe("Toggle GT coarse power gating states by managing forcewake");
igt_subtest("cpg-gt-toggle") {
igt_install_exit_handler(close_fw_handle);
cpg_gt_toggle(fd);
}
igt_fixture {
close(fd);
}
}
|