1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2025 Intel Corporation
*/
#include "igt.h"
#include "igt_sriov_device.h"
#include "igt_syncobj.h"
#include "igt_sysfs.h"
#include "xe_drm.h"
#include "xe/xe_ioctl.h"
#include "xe/xe_spin.h"
#include "xe/xe_sriov_provisioning.h"
/**
* TEST: Tests for SR-IOV scheduling parameters.
* Category: Core
* Mega feature: SR-IOV
* Sub-category: scheduling
* Functionality: vGPU profiles scheduling parameters
* Description: Verify behavior after modifying scheduling attributes.
*/
enum subm_sync_method { SYNC_NONE, SYNC_BARRIER };
struct subm_opts {
enum subm_sync_method sync_method;
uint32_t exec_quantum_ms;
uint32_t preempt_timeout_us;
double outlier_treshold;
/* --inflight=0 => auto; >=1 => explicit K */
unsigned int inflight;
};
struct subm_work_desc {
uint64_t duration_ms;
bool preempt;
unsigned int repeats;
};
struct subm_stats {
igt_stats_t samples;
uint64_t start_timestamp;
uint64_t end_timestamp;
uint64_t *complete_ts; /* absolute completion timestamps (ns) */
unsigned int num_early_finish;
unsigned int concurrent_execs;
double concurrent_rate;
double concurrent_mean;
};
struct subm {
char id[32];
int fd;
int vf_num;
struct subm_work_desc work;
uint32_t expected_ticks;
uint32_t vm;
struct drm_xe_engine_class_instance hwe;
uint32_t exec_queue_id;
/* K slots (K BOs / addresses / mapped spinners / done fences / submit timestamps) */
unsigned int slots;
uint64_t *addr;
uint32_t *bo;
size_t bo_size;
struct xe_spin **spin;
uint32_t *done_fence;
uint64_t *submit_ts;
struct drm_xe_sync sync[1];
struct drm_xe_exec exec;
};
struct subm_thread_data {
struct subm subm;
struct subm_stats stats;
const struct subm_opts *opts;
pthread_t thread;
pthread_barrier_t *barrier;
};
struct subm_set {
struct subm_thread_data *data;
int ndata;
enum subm_sync_method sync_method;
pthread_barrier_t barrier;
};
static void subm_init(struct subm *s, int fd, int vf_num, uint64_t addr,
struct drm_xe_engine_class_instance hwe,
unsigned int inflight)
{
uint64_t base, stride;
memset(s, 0, sizeof(*s));
s->fd = fd;
s->vf_num = vf_num;
s->hwe = hwe;
snprintf(s->id, sizeof(s->id), "VF%d %d:%d:%d", vf_num,
hwe.engine_class, hwe.engine_instance, hwe.gt_id);
s->slots = inflight ? inflight : 1;
s->vm = xe_vm_create(s->fd, 0, 0);
s->exec_queue_id = xe_exec_queue_create(s->fd, s->vm, &s->hwe, 0);
s->bo_size = ALIGN(sizeof(struct xe_spin) + xe_cs_prefetch_size(s->fd),
xe_get_default_alignment(s->fd));
s->addr = calloc(s->slots, sizeof(*s->addr));
s->bo = calloc(s->slots, sizeof(*s->bo));
s->spin = calloc(s->slots, sizeof(*s->spin));
s->done_fence = calloc(s->slots, sizeof(*s->done_fence));
s->submit_ts = calloc(s->slots, sizeof(*s->submit_ts));
igt_assert(s->addr && s->bo && s->spin && s->done_fence && s->submit_ts);
base = addr ? addr : 0x1a0000;
stride = ALIGN(s->bo_size, 0x10000);
for (unsigned int i = 0; i < s->slots; i++) {
s->addr[i] = base + i * stride;
s->bo[i] = xe_bo_create(s->fd, s->vm, s->bo_size,
vram_if_possible(fd, s->hwe.gt_id),
DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM);
s->spin[i] = xe_bo_map(s->fd, s->bo[i], s->bo_size);
xe_vm_bind_sync(s->fd, s->vm, s->bo[i], 0, s->addr[i], s->bo_size);
s->done_fence[i] = syncobj_create(s->fd, 0);
}
s->exec.num_batch_buffer = 1;
s->exec.exec_queue_id = s->exec_queue_id;
/* s->exec.address set per submission */
}
static void subm_fini(struct subm *s)
{
for (unsigned int i = 0; i < s->slots; i++) {
xe_vm_unbind_sync(s->fd, s->vm, 0, s->addr[i], s->bo_size);
gem_munmap(s->spin[i], s->bo_size);
gem_close(s->fd, s->bo[i]);
if (s->done_fence[i])
syncobj_destroy(s->fd, s->done_fence[i]);
}
xe_exec_queue_destroy(s->fd, s->exec_queue_id);
xe_vm_destroy(s->fd, s->vm);
free(s->addr);
free(s->bo);
free(s->spin);
free(s->done_fence);
free(s->submit_ts);
}
static void subm_workload_init(struct subm *s, struct subm_work_desc *work)
{
s->work = *work;
s->expected_ticks = xe_spin_nsec_to_ticks(s->fd, s->hwe.gt_id,
s->work.duration_ms * 1000000);
for (unsigned int i = 0; i < s->slots; i++)
xe_spin_init_opts(s->spin[i], .addr = s->addr[i],
.preempt = s->work.preempt,
.ctx_ticks = s->expected_ticks);
}
static void subm_wait_slot(struct subm *s, unsigned int slot, uint64_t abs_timeout_nsec)
{
igt_assert(syncobj_wait(s->fd, &s->done_fence[slot], 1,
abs_timeout_nsec, 0, NULL));
}
static void subm_exec_slot(struct subm *s, unsigned int slot)
{
struct timespec tv;
syncobj_reset(s->fd, &s->done_fence[slot], 1);
memset(&s->sync[0], 0, sizeof(s->sync));
s->sync[0].type = DRM_XE_SYNC_TYPE_SYNCOBJ;
s->sync[0].flags = DRM_XE_SYNC_FLAG_SIGNAL;
s->sync[0].handle = s->done_fence[slot];
s->exec.num_syncs = 1;
s->exec.syncs = to_user_pointer(&s->sync[0]);
s->exec.address = s->addr[slot];
igt_gettime(&tv);
s->submit_ts[slot] = (uint64_t)tv.tv_sec * (uint64_t)NSEC_PER_SEC + (uint64_t)tv.tv_nsec;
xe_exec(s->fd, &s->exec);
}
static bool subm_is_work_complete(struct subm *s, unsigned int slot)
{
return s->expected_ticks <= ~s->spin[slot]->ticks_delta;
}
static bool subm_is_exec_queue_banned(struct subm *s)
{
struct drm_xe_exec_queue_get_property args = {
.exec_queue_id = s->exec_queue_id,
.property = DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN,
};
int ret = igt_ioctl(s->fd, DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY, &args);
return ret || args.value;
}
static void subm_exec_loop(struct subm *s, struct subm_stats *stats,
const struct subm_opts *opts)
{
const unsigned int inflight = s->slots;
unsigned int submitted = 0;
struct timespec tv;
unsigned int i;
igt_gettime(&tv);
stats->start_timestamp =
tv.tv_sec * (uint64_t)NSEC_PER_SEC + tv.tv_nsec;
igt_debug("[%s] start_timestamp: %f\n", s->id, stats->start_timestamp * 1e-9);
/* Prefill */
if (s->work.repeats) {
unsigned int can_prefill = min(inflight, s->work.repeats);
for (i = 0; i < can_prefill; i++)
subm_exec_slot(s, i % inflight);
submitted = can_prefill;
}
/* Process completions in order: sample i -> slot (i % inflight) */
for (i = 0; i < s->work.repeats; ++i) {
unsigned int slot = i % inflight;
subm_wait_slot(s, slot, INT64_MAX);
igt_gettime(&tv);
stats->complete_ts[i] = (uint64_t)tv.tv_sec * (uint64_t)NSEC_PER_SEC +
(uint64_t)tv.tv_nsec;
igt_stats_push(&stats->samples, stats->complete_ts[i] - s->submit_ts[slot]);
if (!subm_is_work_complete(s, slot)) {
stats->num_early_finish++;
igt_debug("[%s] subm #%d early_finish=%u\n",
s->id, i, stats->num_early_finish);
if (subm_is_exec_queue_banned(s))
break;
}
/* Keep the pipeline full */
if (submitted < s->work.repeats) {
unsigned int next_slot = submitted % inflight;
subm_exec_slot(s, next_slot);
submitted++;
}
}
igt_gettime(&tv);
stats->end_timestamp = tv.tv_sec * (uint64_t)NSEC_PER_SEC + tv.tv_nsec;
igt_debug("[%s] end_timestamp: %f\n", s->id, stats->end_timestamp * 1e-9);
}
static void *subm_thread(void *thread_data)
{
struct subm_thread_data *td = thread_data;
struct timespec tv;
igt_gettime(&tv);
igt_debug("[%s] thread started %ld.%ld\n", td->subm.id, tv.tv_sec,
tv.tv_nsec);
if (td->barrier)
pthread_barrier_wait(td->barrier);
subm_exec_loop(&td->subm, &td->stats, td->opts);
return NULL;
}
static void subm_set_dispatch_and_wait_threads(struct subm_set *set)
{
int i;
for (i = 0; i < set->ndata; ++i)
igt_assert_eq(0, pthread_create(&set->data[i].thread, NULL,
subm_thread, &set->data[i]));
for (i = 0; i < set->ndata; ++i)
pthread_join(set->data[i].thread, NULL);
}
static void subm_set_alloc_data(struct subm_set *set, unsigned int ndata)
{
igt_assert(!set->data);
set->ndata = ndata;
set->data = calloc(set->ndata, sizeof(struct subm_thread_data));
igt_assert(set->data);
}
static void subm_set_free_data(struct subm_set *set)
{
free(set->data);
set->data = NULL;
set->ndata = 0;
}
static void subm_set_init_sync_method(struct subm_set *set, enum subm_sync_method sm)
{
set->sync_method = sm;
if (set->sync_method == SYNC_BARRIER)
pthread_barrier_init(&set->barrier, NULL, set->ndata);
}
static void subm_set_close_handles(struct subm_set *set)
{
struct subm *s;
int i;
if (!set->ndata)
return;
for (i = 0; i < set->ndata; ++i) {
s = &set->data[i].subm;
if (s->fd != -1) {
subm_fini(s);
drm_close_driver(s->fd);
s->fd = -1;
}
}
}
static void subm_set_fini(struct subm_set *set)
{
int i;
if (!set->ndata)
return;
if (set->sync_method == SYNC_BARRIER)
pthread_barrier_destroy(&set->barrier);
subm_set_close_handles(set);
for (i = 0; i < set->ndata; ++i) {
igt_stats_fini(&set->data[i].stats.samples);
free(set->data[i].stats.complete_ts);
}
subm_set_free_data(set);
}
struct init_vf_ids_opts {
bool shuffle;
bool shuffle_pf;
};
static void init_vf_ids(uint8_t *array, size_t n,
const struct init_vf_ids_opts *opts)
{
size_t i, j;
if (!opts->shuffle_pf && n) {
array[0] = 0;
n -= 1;
array = array + 1;
}
for (i = 0; i < n; i++) {
j = (opts->shuffle) ? rand() % (i + 1) : i;
if (j != i)
array[i] = array[j];
array[j] = i + (opts->shuffle_pf ? 0 : 1);
}
}
struct vf_sched_params {
uint32_t exec_quantum_ms;
uint32_t preempt_timeout_us;
};
static void set_vfs_scheduling_params(int pf_fd, int num_vfs,
const struct vf_sched_params *p)
{
unsigned int gt;
xe_for_each_gt(pf_fd, gt) {
for (int vf = 0; vf <= num_vfs; ++vf) {
xe_sriov_set_exec_quantum_ms(pf_fd, vf, gt, p->exec_quantum_ms);
xe_sriov_set_preempt_timeout_us(pf_fd, vf, gt, p->preempt_timeout_us);
}
}
}
static bool check_within_epsilon(const double x, const double ref, const double tol)
{
return x <= (1.0 + tol) * ref && x >= (1.0 - tol) * ref;
}
static void compute_common_time_frame_stats(struct subm_set *set)
{
struct subm_thread_data *data = set->data;
int i, j, ndata = set->ndata;
struct subm_stats *stats;
uint64_t common_start = 0;
uint64_t common_end = UINT64_MAX;
uint64_t first_ts, last_ts;
/* Find common window from completion timestamps */
for (i = 0; i < ndata; i++) {
stats = &data[i].stats;
if (!stats->samples.n_values)
continue;
first_ts = stats->complete_ts[0];
last_ts = stats->complete_ts[stats->samples.n_values - 1];
if (first_ts > common_start)
common_start = first_ts;
if (last_ts < common_end)
common_end = last_ts;
}
igt_info("common time frame: [%" PRIu64 ";%" PRIu64 "] %.2fms\n",
common_start, common_end, (common_end - common_start) / 1e6);
if (igt_warn_on_f(common_end <= common_start, "No common time frame for all sets found\n"))
return;
/* Compute concurrent_rate for each sample set within the common time frame */
for (i = 0; i < ndata; i++) {
const double window_s = (common_end - common_start) * 1e-9;
stats = &data[i].stats;
stats->concurrent_execs = 0;
stats->concurrent_rate = 0.0;
stats->concurrent_mean = 0.0;
for (j = 0; j < stats->samples.n_values; j++) {
uint64_t cts = stats->complete_ts[j];
if (cts >= common_start && cts <= common_end) {
stats->concurrent_execs++;
stats->concurrent_mean += stats->samples.values_u64[j];
}
}
stats->concurrent_rate = (window_s > 0.0) ?
((double)stats->concurrent_execs / window_s) : 0.0;
stats->concurrent_mean = stats->concurrent_execs ?
(double)stats->concurrent_mean /
stats->concurrent_execs : 0.0;
igt_info("[%s] Throughput = %.4f execs/s mean submit->signal latency=%.4fms nsamples=%d\n",
data[i].subm.id, stats->concurrent_rate, stats->concurrent_mean * 1e-6,
stats->concurrent_execs);
}
}
static void log_sample_values(char *id, struct subm_stats *stats,
double comparison_mean, double outlier_treshold)
{
const uint64_t *values = stats->samples.values_u64;
unsigned int n = stats->samples.n_values;
char buffer[2048];
char *p = buffer, *pend = buffer + sizeof(buffer);
unsigned int i;
const unsigned int edge_items = 3;
bool is_outlier;
double tolerance = outlier_treshold * comparison_mean;
p += snprintf(p, pend - p,
"[%s] start=%f end=%f nsamples=%u comparison_mean=%.2fms\n",
id, stats->start_timestamp * 1e-9, stats->end_timestamp * 1e-9, n,
comparison_mean * 1e-6);
for (i = 0; i < n && p < pend; ++i) {
is_outlier = fabs(values[i] - comparison_mean) > tolerance;
if (n <= 2 * edge_items || i < edge_items ||
i >= n - edge_items || is_outlier) {
if (is_outlier) {
double pct_diff =
100 *
(comparison_mean ?
(values[i] - comparison_mean) /
comparison_mean :
1.0);
p += snprintf(p, pend - p,
"%0.2f @%d Pct Diff %0.2f%%\n",
values[i] * 1e-6, i,
pct_diff);
} else {
p += snprintf(p, pend - p, "%0.2f\n",
values[i] * 1e-6);
}
}
if (i == edge_items && n > 2 * edge_items)
p += snprintf(p, pend - p, "...\n");
}
igt_debug("%s\n", buffer);
}
#define MIN_NUM_REPEATS 25
#define MIN_EXEC_QUANTUM_MS 1
#define MAX_EXEC_QUANTUM_MS 32
#define MIN_JOB_DURATION_MS 2
#define MAX_TOTAL_DURATION_MS 15000
#define PREFERRED_TOTAL_DURATION_MS 10000
#define MAX_PREFERRED_REPEATS 100
struct job_sched_params {
int duration_ms;
int num_repeats;
struct vf_sched_params sched_params;
};
static uint32_t sysfs_get_job_timeout_ms(int fd, struct drm_xe_engine_class_instance *eci)
{
int engine_dir;
uint32_t ret;
engine_dir = xe_sysfs_engine_open(fd, eci->gt_id, eci->engine_class);
ret = igt_sysfs_get_u32(engine_dir, "job_timeout_ms");
close(engine_dir);
return ret;
}
static uint32_t derive_preempt_timeout_us(const uint32_t exec_quantum_ms)
{
return exec_quantum_ms * 2 * USEC_PER_MSEC;
}
static int calculate_job_duration_ms(int execution_ms)
{
return execution_ms * 2 > MIN_JOB_DURATION_MS ? execution_ms * 2 :
MIN_JOB_DURATION_MS;
}
static bool compute_max_exec_quantum_ms(uint32_t *exec_quantum_ms,
int num_threads,
int min_num_repeats,
int job_timeout_ms)
{
for (int test_execution_ms = MAX_EXEC_QUANTUM_MS;
test_execution_ms >= MIN_EXEC_QUANTUM_MS; test_execution_ms--) {
int test_duration_ms =
calculate_job_duration_ms(test_execution_ms);
int max_delay_ms = (num_threads - 1) * test_execution_ms;
/*
* Check if the job can complete within job_timeout_ms,
* including the maximum scheduling delay
*/
if (test_duration_ms + max_delay_ms <= job_timeout_ms) {
int estimated_num_repeats =
MAX_TOTAL_DURATION_MS /
(num_threads * test_duration_ms);
if (estimated_num_repeats >= min_num_repeats) {
*exec_quantum_ms = test_execution_ms;
return true;
}
}
}
return false;
}
static int adjust_num_repeats(int duration_ms, int num_threads)
{
int preferred_max_repeats = PREFERRED_TOTAL_DURATION_MS /
(num_threads * duration_ms);
int optimal_repeats = min(preferred_max_repeats, MAX_PREFERRED_REPEATS);
return max(optimal_repeats, MIN_NUM_REPEATS);
}
/* inflight K selection:
* user_k == 0 => auto
* user_k >= 1 => explicit K
*/
static unsigned int select_inflight_k(unsigned int duration_ms,
unsigned int user_k,
bool nonpreempt)
{
if (user_k)
return user_k >= 1 ? user_k : 1;
if (nonpreempt)
return 1;
if (duration_ms <= 12)
return 4;
if (duration_ms <= 20)
return 3;
return 2;
}
static struct vf_sched_params prepare_vf_sched_params(int num_threads,
int min_num_repeats,
int job_timeout_ms,
const struct subm_opts *opts)
{
struct vf_sched_params params = { MIN_EXEC_QUANTUM_MS,
derive_preempt_timeout_us(MIN_EXEC_QUANTUM_MS) };
if (opts->exec_quantum_ms || opts->preempt_timeout_us) {
if (opts->exec_quantum_ms)
params.exec_quantum_ms = opts->exec_quantum_ms;
if (opts->preempt_timeout_us)
params.preempt_timeout_us = opts->preempt_timeout_us;
} else {
if (igt_debug_on(!compute_max_exec_quantum_ms(¶ms.exec_quantum_ms,
num_threads,
min_num_repeats,
job_timeout_ms)))
return params;
/*
* After computing a feasible max_exec_quantum_ms,
* select a random exec_quantum_ms within the new range
*/
params.exec_quantum_ms = MIN_EXEC_QUANTUM_MS +
rand() % (params.exec_quantum_ms -
MIN_EXEC_QUANTUM_MS + 1);
params.preempt_timeout_us = derive_preempt_timeout_us(params.exec_quantum_ms);
}
return params;
}
static struct job_sched_params
prepare_job_sched_params(int num_threads, int job_timeout_ms, const struct subm_opts *opts)
{
struct job_sched_params params = { };
params.sched_params = prepare_vf_sched_params(num_threads, MIN_NUM_REPEATS,
job_timeout_ms, opts);
params.duration_ms = calculate_job_duration_ms(params.sched_params.exec_quantum_ms);
params.num_repeats = adjust_num_repeats(params.duration_ms, num_threads);
return params;
}
/**
* SUBTEST: equal-throughput
* Description:
* Check all VFs with same scheduling settings running same workload
* achieve the same throughput.
*/
static void throughput_ratio(int pf_fd, int num_vfs, const struct subm_opts *opts)
{
struct subm_set set_ = {}, *set = &set_;
uint8_t vf_ids[num_vfs + 1 /*PF*/];
uint32_t job_timeout_ms = sysfs_get_job_timeout_ms(pf_fd, &xe_engine(pf_fd, 0)->instance);
struct job_sched_params job_sched_params = prepare_job_sched_params(num_vfs + 1,
job_timeout_ms,
opts);
const unsigned int k = select_inflight_k(job_sched_params.duration_ms,
opts->inflight, false);
igt_info("eq=%ums pt=%uus duration=%ums repeats=%d inflight=%u num_vfs=%d job_timeout=%ums\n",
job_sched_params.sched_params.exec_quantum_ms,
job_sched_params.sched_params.preempt_timeout_us,
job_sched_params.duration_ms, job_sched_params.num_repeats,
k, num_vfs + 1, job_timeout_ms);
init_vf_ids(vf_ids, ARRAY_SIZE(vf_ids),
&(struct init_vf_ids_opts){ .shuffle = true,
.shuffle_pf = true });
xe_sriov_require_default_scheduling_attributes(pf_fd);
/* enable VFs */
igt_sriov_disable_driver_autoprobe(pf_fd);
igt_sriov_enable_vfs(pf_fd, num_vfs);
/* set scheduling params (PF and VFs) */
set_vfs_scheduling_params(pf_fd, num_vfs, &job_sched_params.sched_params);
/* probe VFs */
igt_sriov_enable_driver_autoprobe(pf_fd);
for (int vf = 1; vf <= num_vfs; ++vf)
igt_sriov_bind_vf_drm_driver(pf_fd, vf);
/* init subm_set */
subm_set_alloc_data(set, num_vfs + 1 /*PF*/);
subm_set_init_sync_method(set, opts->sync_method);
for (int n = 0; n < set->ndata; ++n) {
int vf_fd =
vf_ids[n] ?
igt_sriov_open_vf_drm_device(pf_fd, vf_ids[n]) :
drm_reopen_driver(pf_fd);
igt_assert_fd(vf_fd);
set->data[n].opts = opts;
subm_init(&set->data[n].subm, vf_fd, vf_ids[n], 0,
xe_engine(vf_fd, 0)->instance, k);
subm_workload_init(&set->data[n].subm,
&(struct subm_work_desc){
.duration_ms = job_sched_params.duration_ms,
.preempt = true,
.repeats = job_sched_params.num_repeats });
igt_stats_init_with_size(&set->data[n].stats.samples,
set->data[n].subm.work.repeats);
set->data[n].stats.complete_ts = calloc(set->data[n].subm.work.repeats,
sizeof(uint64_t));
if (set->sync_method == SYNC_BARRIER)
set->data[n].barrier = &set->barrier;
}
/* dispatch spinners, wait for results */
subm_set_dispatch_and_wait_threads(set);
subm_set_close_handles(set);
/* verify results */
compute_common_time_frame_stats(set);
for (int n = 0; n < set->ndata; ++n) {
struct subm_stats *stats = &set->data[n].stats;
const double ref_rate = set->data[0].stats.concurrent_rate;
igt_assert_eq(0, stats->num_early_finish);
if (!check_within_epsilon(stats->concurrent_rate, ref_rate,
opts->outlier_treshold)) {
log_sample_values(set->data[0].subm.id,
&set->data[0].stats,
set->data[0].stats.concurrent_mean,
opts->outlier_treshold);
log_sample_values(set->data[n].subm.id, stats,
set->data[0].stats.concurrent_mean,
opts->outlier_treshold);
igt_assert_f(false,
"Throughput=%.3f execs/s not within +-%.0f%% of expected=%.3f execs/s\n",
stats->concurrent_rate,
opts->outlier_treshold * 100, ref_rate);
}
}
/* cleanup */
subm_set_fini(set);
set_vfs_scheduling_params(pf_fd, num_vfs, &(struct vf_sched_params){});
igt_sriov_disable_vfs(pf_fd);
}
/**
* SUBTEST: nonpreempt-engine-resets
* Description:
* Check all VFs running a non-preemptible workload with a duration
* exceeding the sum of its execution quantum and preemption timeout,
* will experience engine reset due to preemption timeout.
*/
static void nonpreempt_engine_resets(int pf_fd, int num_vfs,
const struct subm_opts *opts)
{
struct subm_set set_ = {}, *set = &set_;
uint32_t job_timeout_ms = sysfs_get_job_timeout_ms(pf_fd, &xe_engine(pf_fd, 0)->instance);
struct vf_sched_params vf_sched_params = prepare_vf_sched_params(num_vfs, 1,
job_timeout_ms, opts);
uint64_t duration_ms = 2 * vf_sched_params.exec_quantum_ms +
vf_sched_params.preempt_timeout_us / USEC_PER_MSEC;
int preemptible_end = 1;
uint8_t vf_ids[num_vfs + 1 /*PF*/];
const unsigned int k = select_inflight_k(duration_ms, opts->inflight, true);
igt_info("eq=%ums pt=%uus duration=%" PRIu64 "ms inflight=%u num_vfs=%d job_timeout=%ums\n",
vf_sched_params.exec_quantum_ms, vf_sched_params.preempt_timeout_us,
duration_ms, k, num_vfs, job_timeout_ms);
init_vf_ids(vf_ids, ARRAY_SIZE(vf_ids),
&(struct init_vf_ids_opts){ .shuffle = true,
.shuffle_pf = true });
xe_sriov_require_default_scheduling_attributes(pf_fd);
/* enable VFs */
igt_sriov_disable_driver_autoprobe(pf_fd);
igt_sriov_enable_vfs(pf_fd, num_vfs);
/* set scheduling params (PF and VFs) */
set_vfs_scheduling_params(pf_fd, num_vfs, &vf_sched_params);
/* probe VFs */
igt_sriov_enable_driver_autoprobe(pf_fd);
for (int vf = 1; vf <= num_vfs; ++vf)
igt_sriov_bind_vf_drm_driver(pf_fd, vf);
/* init subm_set */
subm_set_alloc_data(set, num_vfs + 1 /*PF*/);
subm_set_init_sync_method(set, opts->sync_method);
for (int n = 0; n < set->ndata; ++n) {
int vf_fd =
vf_ids[n] ?
igt_sriov_open_vf_drm_device(pf_fd, vf_ids[n]) :
drm_reopen_driver(pf_fd);
igt_assert_fd(vf_fd);
set->data[n].opts = opts;
subm_init(&set->data[n].subm, vf_fd, vf_ids[n], 0,
xe_engine(vf_fd, 0)->instance, k);
subm_workload_init(&set->data[n].subm,
&(struct subm_work_desc){
.duration_ms = duration_ms,
.preempt = (n < preemptible_end),
.repeats = MIN_NUM_REPEATS });
igt_stats_init_with_size(&set->data[n].stats.samples,
set->data[n].subm.work.repeats);
set->data[n].stats.complete_ts = calloc(set->data[n].subm.work.repeats,
sizeof(uint64_t));
if (set->sync_method == SYNC_BARRIER)
set->data[n].barrier = &set->barrier;
}
/* dispatch spinners, wait for results */
subm_set_dispatch_and_wait_threads(set);
subm_set_close_handles(set);
/* verify results */
for (int n = 0; n < set->ndata; ++n) {
if (n < preemptible_end) {
igt_assert_eq(0, set->data[n].stats.num_early_finish);
igt_assert_eq(set->data[n].subm.work.repeats,
set->data[n].stats.samples.n_values);
} else {
igt_assert_eq(1, set->data[n].stats.num_early_finish);
}
}
/* cleanup */
subm_set_fini(set);
set_vfs_scheduling_params(pf_fd, num_vfs, &(struct vf_sched_params){});
igt_sriov_disable_vfs(pf_fd);
}
static struct subm_opts subm_opts = {
.sync_method = SYNC_BARRIER,
.outlier_treshold = 0.1,
.inflight = 0,
};
static bool extended_scope;
static int subm_opts_handler(int opt, int opt_index, void *data)
{
switch (opt) {
case 'e':
extended_scope = true;
break;
case 's':
subm_opts.sync_method = atoi(optarg);
igt_info("Sync method: %d\n", subm_opts.sync_method);
break;
case 'q':
subm_opts.exec_quantum_ms = atoi(optarg);
igt_info("Execution quantum ms: %u\n", subm_opts.exec_quantum_ms);
break;
case 'p':
subm_opts.preempt_timeout_us = atoi(optarg);
igt_info("Preempt timeout us: %u\n", subm_opts.preempt_timeout_us);
break;
case 't':
subm_opts.outlier_treshold = atoi(optarg) / 100.0;
igt_info("Outlier threshold: %.2f\n", subm_opts.outlier_treshold);
break;
case 'i': {
int val = atoi(optarg);
subm_opts.inflight = val > 0 ? val : 0;
if (subm_opts.inflight)
igt_info("In-flight submissions: %u\n", subm_opts.inflight);
else
igt_info("In-flight submissions: auto (0)\n");
break;
}
default:
return IGT_OPT_HANDLER_ERROR;
}
return IGT_OPT_HANDLER_SUCCESS;
}
static const struct option long_opts[] = {
{ .name = "extended", .has_arg = false, .val = 'e', },
{ .name = "sync", .has_arg = true, .val = 's', },
{ .name = "threshold", .has_arg = true, .val = 't', },
{ .name = "eq_ms", .has_arg = true, .val = 'q', },
{ .name = "pt_us", .has_arg = true, .val = 'p', },
{ .name = "inflight", .has_arg = true, .val = 'i', },
{}
};
static const char help_str[] =
" --extended\tRun the extended test scope\n"
" --sync\tThreads synchronization method: 0 - none 1 - barrier (Default 1)\n"
" --threshold\tSample outlier threshold (Default 0.1)\n"
" --eq_ms\texec_quantum_ms\n"
" --pt_us\tpreempt_timeout_us\n"
" --inflight\tNumber of submissions kept in flight per VF (0=auto)\n";
igt_main_args("", long_opts, help_str, subm_opts_handler, NULL)
{
int pf_fd;
bool autoprobe;
igt_fixture {
pf_fd = drm_open_driver(DRIVER_XE);
igt_require(igt_sriov_is_pf(pf_fd));
igt_require(igt_sriov_get_enabled_vfs(pf_fd) == 0);
autoprobe = igt_sriov_is_driver_autoprobe_enabled(pf_fd);
xe_sriov_require_default_scheduling_attributes(pf_fd);
}
igt_describe("Check VFs achieve equal throughput");
igt_subtest_with_dynamic("equal-throughput") {
if (extended_scope)
for_each_sriov_num_vfs(pf_fd, vf)
igt_dynamic_f("numvfs-%d", vf)
throughput_ratio(pf_fd, vf, &subm_opts);
for_random_sriov_vf(pf_fd, vf)
igt_dynamic("numvfs-random")
throughput_ratio(pf_fd, vf, &subm_opts);
}
igt_describe("Check VFs experience engine reset due to preemption timeout");
igt_subtest_with_dynamic("nonpreempt-engine-resets") {
if (extended_scope)
for_each_sriov_num_vfs(pf_fd, vf)
igt_dynamic_f("numvfs-%d", vf)
nonpreempt_engine_resets(pf_fd, vf,
&subm_opts);
for_random_sriov_vf(pf_fd, vf)
igt_dynamic("numvfs-random")
nonpreempt_engine_resets(pf_fd, vf, &subm_opts);
}
igt_fixture {
set_vfs_scheduling_params(pf_fd, igt_sriov_get_total_vfs(pf_fd),
&(struct vf_sched_params){});
igt_sriov_disable_vfs(pf_fd);
/* abort to avoid execution of next tests with enabled VFs */
igt_abort_on_f(igt_sriov_get_enabled_vfs(pf_fd) > 0,
"Failed to disable VF(s)");
autoprobe ? igt_sriov_enable_driver_autoprobe(pf_fd) :
igt_sriov_disable_driver_autoprobe(pf_fd);
igt_abort_on_f(autoprobe != igt_sriov_is_driver_autoprobe_enabled(pf_fd),
"Failed to restore sriov_drivers_autoprobe value\n");
drm_close_driver(pf_fd);
}
}
|