1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
/*
* Copyright © 2014-2018 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <inttypes.h>
#include <stdio.h>
#include <fcntl.h>
#include <sched.h>
#include <sys/ioctl.h>
#include <string.h>
#include <errno.h>
#include <poll.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <sys/syscall.h>
#include <sys/mman.h>
#include <assert.h>
#include <pthread.h>
#include "igt.h"
#define MB(x) ((uint64_t)(x) * 1024 * 1024)
#ifndef PAGE_SIZE
#define PAGE_SIZE 4096
#endif
/* Currently the size of GuC log buffer is 19 pages & so is the size of relay
* subbuffer. If the size changes in future, then this define also needs to be
* updated accordingly.
*/
#define SUBBUF_SIZE (19*PAGE_SIZE)
/* Need large buffering from logger side to hide the DISK IO latency, Driver
* can only store 8 snapshots of GuC log buffer in relay.
*/
#define NUM_SUBBUFS 100
#define RELAY_FILE_NAME "guc_log"
#define DEFAULT_OUTPUT_FILE_NAME "guc_log_dump.dat"
#define CONTROL_FILE_NAME "i915_guc_log_control"
char *read_buffer;
char *out_filename;
int poll_timeout = 2; /* by default 2ms timeout */
pthread_mutex_t mutex;
pthread_t flush_thread;
int verbosity_level = 3; /* by default capture logs at max verbosity */
uint32_t produced, consumed;
uint64_t total_bytes_written;
int num_buffers = NUM_SUBBUFS;
int relay_fd, outfile_fd = -1;
uint32_t test_duration, max_filesize;
pthread_cond_t underflow_cond, overflow_cond;
bool stop_logging, discard_oldlogs, capturing_stopped;
static void guc_log_control(bool enable, uint32_t log_level)
{
int control_fd;
char data[19];
uint64_t val;
int ret;
igt_assert_lte(log_level, 3);
control_fd = igt_debugfs_open(-1, CONTROL_FILE_NAME, O_WRONLY);
igt_assert_f(control_fd >= 0, "couldn't open the guc log control file\n");
/*
* i915 expects GuC log level to be specified as:
* 0: disabled
* 1: enabled (verbosity level 0 = min)
* 2: enabled (verbosity level 1)
* 3: enabled (verbosity level 2)
* 4: enabled (verbosity level 3 = max)
*/
val = enable ? log_level + 1 : 0;
ret = snprintf(data, sizeof(data), "0x%" PRIx64, val);
igt_assert(ret > 2 && ret < sizeof(data));
ret = write(control_fd, data, ret);
igt_assert_f(ret > 0, "couldn't write to the log control file\n");
close(control_fd);
}
static void int_sig_handler(int sig)
{
igt_info("received signal %d\n", sig);
stop_logging = true;
}
static void pull_leftover_data(void)
{
unsigned int bytes_read = 0;
int ret;
do {
/* Read the logs from relay buffer */
ret = read(relay_fd, read_buffer, SUBBUF_SIZE);
if (!ret)
break;
igt_assert_f(ret > 0, "failed to read from the guc log file\n");
igt_assert_f(ret == SUBBUF_SIZE, "invalid read from relay file\n");
bytes_read += ret;
if (outfile_fd >= 0) {
ret = write(outfile_fd, read_buffer, SUBBUF_SIZE);
igt_assert_f(ret == SUBBUF_SIZE, "couldn't dump the logs in a file\n");
total_bytes_written += ret;
}
} while(1);
igt_debug("%u bytes flushed\n", bytes_read);
}
static int num_filled_bufs(void)
{
return (produced - consumed);
}
static void pull_data(void)
{
char *ptr;
int ret;
pthread_mutex_lock(&mutex);
while (num_filled_bufs() >= num_buffers) {
igt_debug("overflow, will wait, produced %u, consumed %u\n", produced, consumed);
/* Stall the main thread in case of overflow, as there are no
* buffers available to store the new logs, otherwise there
* could be corruption if both threads work on the same buffer.
*/
pthread_cond_wait(&overflow_cond, &mutex);
};
pthread_mutex_unlock(&mutex);
ptr = read_buffer + (produced % num_buffers) * SUBBUF_SIZE;
/* Read the logs from relay buffer */
ret = read(relay_fd, ptr, SUBBUF_SIZE);
igt_assert_f(ret >= 0, "failed to read from the guc log file\n");
igt_assert_f(!ret || ret == SUBBUF_SIZE, "invalid read from relay file\n");
if (ret) {
pthread_mutex_lock(&mutex);
produced++;
pthread_cond_signal(&underflow_cond);
pthread_mutex_unlock(&mutex);
} else {
/* Occasionally (very rare) read from the relay file returns no
* data, albeit the polling done prior to read call indicated
* availability of data.
*/
igt_debug("no data read from the relay file\n");
}
}
static void *flusher(void *arg)
{
char *ptr;
int ret;
igt_debug("execution started of flusher thread\n");
do {
pthread_mutex_lock(&mutex);
while (!num_filled_bufs()) {
/* Exit only after completing the flush of all the filled
* buffers as User would expect that all logs captured up
* till the point of interruption/exit are written out to
* the disk file.
*/
if (capturing_stopped) {
igt_debug("flusher to exit now\n");
pthread_mutex_unlock(&mutex);
return NULL;
}
pthread_cond_wait(&underflow_cond, &mutex);
};
pthread_mutex_unlock(&mutex);
ptr = read_buffer + (consumed % num_buffers) * SUBBUF_SIZE;
ret = write(outfile_fd, ptr, SUBBUF_SIZE);
igt_assert_f(ret == SUBBUF_SIZE, "couldn't dump the logs in a file\n");
total_bytes_written += ret;
if (max_filesize && (total_bytes_written > MB(max_filesize))) {
igt_debug("reached the target of %" PRIu64 " bytes\n", MB(max_filesize));
stop_logging = true;
}
pthread_mutex_lock(&mutex);
consumed++;
pthread_cond_signal(&overflow_cond);
pthread_mutex_unlock(&mutex);
} while(1);
return NULL;
}
static void init_flusher_thread(void)
{
struct sched_param thread_sched;
pthread_attr_t p_attr;
int ret;
pthread_cond_init(&underflow_cond, NULL);
pthread_cond_init(&overflow_cond, NULL);
pthread_mutex_init(&mutex, NULL);
ret = pthread_attr_init(&p_attr);
igt_assert_f(ret == 0, "error obtaining default thread attributes\n");
ret = pthread_attr_setinheritsched(&p_attr, PTHREAD_EXPLICIT_SCHED);
igt_assert_f(ret == 0, "couldn't set inheritsched\n");
ret = pthread_attr_setschedpolicy(&p_attr, SCHED_RR);
igt_assert_f(ret == 0, "couldn't set thread scheduling policy\n");
/* Keep the flusher task also at rt priority, so that it doesn't get
* too late in flushing the collected logs in local buffers to the disk,
* and so main thread always have spare buffers to collect the logs.
*/
thread_sched.sched_priority = 5;
ret = pthread_attr_setschedparam(&p_attr, &thread_sched);
igt_assert_f(ret == 0, "couldn't set thread priority\n");
ret = pthread_create(&flush_thread, &p_attr, flusher, NULL);
igt_assert_f(ret == 0, "thread creation failed\n");
ret = pthread_attr_destroy(&p_attr);
igt_assert_f(ret == 0, "error destroying thread attributes\n");
}
static void open_relay_file(void)
{
relay_fd = igt_debugfs_open(-1, RELAY_FILE_NAME, O_RDONLY);
igt_assert_f(relay_fd >= 0, "couldn't open the guc log file\n");
/* Purge the old/boot-time logs from the relay buffer.
* This is more for Val team's requirement, where they have to first
* purge the existing logs before starting the tests for which the logs
* are actually needed. After this logger will enter into a loop and
* wait for the new data, at that point benchmark can be launched from
* a different shell.
*/
if (discard_oldlogs)
pull_leftover_data();
}
static void open_output_file(void)
{
/* Use Direct IO mode for the output file, as the data written is not
* supposed to be accessed again, this saves a copy of data from App's
* buffer to kernel buffer (Page cache). Due to no buffering on kernel
* side, data is flushed out to disk faster and more buffering can be
* done on the logger side to hide the disk IO latency.
*/
outfile_fd = open(out_filename ? : DEFAULT_OUTPUT_FILE_NAME,
O_CREAT | O_WRONLY | O_TRUNC | O_DIRECT,
0440);
igt_assert_f(outfile_fd >= 0, "couldn't open the output file\n");
free(out_filename);
}
static void init_main_thread(void)
{
struct sched_param thread_sched;
int ret;
/* Run the main thread at highest priority to ensure that it always
* gets woken-up at earliest on arrival of new data and so is always
* ready to pull the logs, otherwise there could be loss logs if
* GuC firmware is generating logs at a very high rate.
*/
thread_sched.sched_priority = 1;
ret = sched_setscheduler(getpid(), SCHED_FIFO, &thread_sched);
igt_assert_f(ret == 0, "couldn't set the priority\n");
if (signal(SIGINT, int_sig_handler) == SIG_ERR)
igt_assert_f(0, "SIGINT handler registration failed\n");
if (signal(SIGALRM, int_sig_handler) == SIG_ERR)
igt_assert_f(0, "SIGALRM handler registration failed\n");
/* Need an aligned pointer for direct IO */
ret = posix_memalign((void **)&read_buffer, PAGE_SIZE, num_buffers * SUBBUF_SIZE);
igt_assert_f(ret == 0, "couldn't allocate the read buffer\n");
/* Keep the pages locked in RAM, avoid page fault overhead */
ret = mlock(read_buffer, num_buffers * SUBBUF_SIZE);
igt_assert_f(ret == 0, "failed to lock memory\n");
/* Enable the logging, it may not have been enabled from boot and so
* the relay file also wouldn't have been created.
*/
guc_log_control(true, verbosity_level);
open_relay_file();
open_output_file();
}
static int parse_options(int opt, int opt_index, void *data)
{
igt_debug("opt %c optarg %s\n", opt, optarg);
switch(opt) {
case 'v':
verbosity_level = atoi(optarg);
igt_assert_f(verbosity_level >= 0 && verbosity_level <= 3, "invalid input for -v option\n");
igt_debug("verbosity level to be used is %d\n", verbosity_level);
break;
case 'o':
out_filename = strdup(optarg);
igt_assert_f(out_filename, "Couldn't allocate the o/p filename\n");
igt_debug("logs to be stored in file %s\n", out_filename);
break;
case 'b':
num_buffers = atoi(optarg);
igt_assert_f(num_buffers > 0, "invalid input for -b option\n");
igt_debug("number of buffers to be used is %d\n", num_buffers);
break;
case 't':
test_duration = atoi(optarg);
igt_assert_f(test_duration > 0, "invalid input for -t option\n");
igt_debug("logger to run for %d second\n", test_duration);
break;
case 'p':
poll_timeout = atoi(optarg);
igt_assert_f(poll_timeout != 0, "invalid input for -p option\n");
if (poll_timeout > 0)
igt_debug("polling to be done with %d millisecond timeout\n", poll_timeout);
break;
case 's':
max_filesize = atoi(optarg);
igt_assert_f(max_filesize > 0, "invalid input for -s option\n");
igt_debug("max allowed size of the output file is %d MB\n", max_filesize);
break;
case 'd':
discard_oldlogs = true;
igt_debug("old/boot-time logs will be discarded\n");
break;
}
return 0;
}
static void process_command_line(int argc, char **argv)
{
static struct option long_options[] = {
{"verbosity", required_argument, 0, 'v'},
{"outputfile", required_argument, 0, 'o'},
{"buffers", required_argument, 0, 'b'},
{"testduration", required_argument, 0, 't'},
{"polltimeout", required_argument, 0, 'p'},
{"size", required_argument, 0, 's'},
{"discard", no_argument, 0, 'd'},
{ 0, 0, 0, 0 }
};
const char *help =
" -v --verbosity=level verbosity level of GuC logging (0-3)\n"
" -o --outputfile=name name of the output file, including the location, where logs will be stored\n"
" -b --buffers=num number of buffers to be maintained on logger side for storing logs\n"
" -t --testduration=sec max duration in seconds for which the logger should run\n"
" -p --polltimeout=ms polling timeout in ms, -1 == indefinite wait for the new data\n"
" -s --size=MB max size of output file in MBs after which logging will be stopped\n"
" -d --discard discard the old/boot-time logs before entering into the capture loop\n";
igt_simple_init_parse_opts(&argc, argv, "v:o:b:t:p:s:d", long_options,
help, parse_options, NULL);
}
int main(int argc, char **argv)
{
struct pollfd relay_poll_fd;
int nfds;
int ret;
process_command_line(argc, argv);
init_main_thread();
/* Use a separate thread for flushing the logs to a file on disk.
* Main thread will buffer the data from relay file in its pool of
* buffers and other thread will flush the data to disk in background.
* This is needed, albeit by default data is written out to disk in
* async mode, as when there are too many dirty pages in the RAM,
* (/proc/sys/vm/dirty_ratio), kernel starts blocking the processes
* doing the file writes.
*/
init_flusher_thread();
relay_poll_fd.fd = relay_fd;
relay_poll_fd.events = POLLIN;
relay_poll_fd.revents = 0;
nfds = 1; /* only one fd to poll */
alarm(test_duration); /* Start the alarm */
do {
/* Wait/poll for the new data to be available, relay doesn't
* provide a blocking read.
* On older kernels need to do polling with a timeout instead of
* indefinite wait to avoid relying on relay for the wakeup, as
* relay used to do the wakeup in a deferred manner on jiffies
* granularity by scheduling a timer and moreover that timer was
* re-scheduled on every newly produced buffer and so was pushed
* out if there were multiple flush interrupts in a very quick
* succession (less than a jiffy gap between 2 flush interrupts)
* causing relay to run out of sub buffers to store new logs.
*/
ret = poll(&relay_poll_fd, nfds, poll_timeout);
if (ret < 0) {
if (errno == EINTR)
break;
igt_assert_f(0, "poll call failed\n");
}
/* No data available yet, poll again, hopefully new data is round the corner */
if (!relay_poll_fd.revents)
continue;
pull_data();
} while (!stop_logging);
/* Pause logging on the GuC side */
guc_log_control(false, 0);
/* Signal flusher thread to make an exit */
capturing_stopped = 1;
pthread_cond_signal(&underflow_cond);
pthread_join(flush_thread, NULL);
pull_leftover_data();
igt_info("total bytes written %" PRIu64 "\n", total_bytes_written);
free(read_buffer);
close(relay_fd);
close(outfile_fd);
igt_exit();
}
|