1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "ProcessFuncAttributes.h"
#include "Compiler/CISACodeGen/EstimateFunctionSize.h"
#include "Compiler/MetaDataApi/IGCMetaDataHelper.h"
#include "Compiler/MetaDataUtilsWrapper.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CodeGenPublic.h"
#include "Compiler/CodeGenContextWrapper.hpp"
#include "SPIRV/SPIRVInternal.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/IR/Attributes.h"
#include "llvmWrapper/IR/InstrTypes.h"
#include "llvmWrapper/IR/Instructions.h"
#include <llvm/Pass.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/Function.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/InstIterator.h>
#include <llvm/IR/Value.h>
#include <llvm/IR/Attributes.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/Support/Regex.h>
#include <llvm/Analysis/CallGraph.h>
#include "llvm/ADT/SCCIterator.h"
#include "common/LLVMWarningsPop.hpp"
#include "common/igc_regkeys.hpp"
#include <fstream>
#include <string>
#include <set>
using namespace llvm;
using namespace IGC;
using namespace IGC::IGCMD;
namespace {
class ProcessFuncAttributes : public ModulePass
{
public:
static char ID;
virtual void getAnalysisUsage(llvm::AnalysisUsage& AU) const
{
AU.setPreservesCFG();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<CodeGenContextWrapper>();
AU.addRequired<EstimateFunctionSize>();
AU.addRequired<llvm::CallGraphWrapperPass>();
}
ProcessFuncAttributes();
~ProcessFuncAttributes() {}
virtual bool runOnModule(Module &M);
virtual llvm::StringRef getPassName() const
{
return "ProcessFuncAttributes";
}
private:
bool isGASPointer(Value* arg);
};
} // namespace
// Register pass to igc-opt
#define PASS_FLAG "igc-process-func-attributes"
#define PASS_DESCRIPTION "Set Functions' linkage and attributes"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(ProcessFuncAttributes, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(EstimateFunctionSize)
IGC_INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
IGC_INITIALIZE_PASS_END(ProcessFuncAttributes, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
char ProcessFuncAttributes::ID = 0;
ProcessFuncAttributes::ProcessFuncAttributes() : ModulePass(ID)
{
initializeProcessFuncAttributesPass(*PassRegistry::getPassRegistry());
}
inline bool ProcessFuncAttributes::isGASPointer(Value* V)
{
if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
{
return PTy->getAddressSpace() == ADDRESS_SPACE_GENERIC;
}
return false;
}
ModulePass *createProcessFuncAttributesPass()
{
return new ProcessFuncAttributes();
}
extern bool isSupportedAggregateArgument(Argument* arg);
// Only pointer, struct and array types are considered. E.g. vector type
// cannot contain opaque subtypes, function type may contain but ignored.
static void getContainedStructType(Type *T, SmallPtrSetImpl<StructType *> &Tys)
{
if (StructType *ST = dyn_cast<llvm::StructType>(T))
{
// Check if this has been checked, to avoid spinning on %T = { %T *}.
if (!Tys.count(ST))
{
Tys.insert(ST);
for (auto I = ST->element_begin(), E = ST->element_end(); I != E; ++I)
{
getContainedStructType(*I, Tys);
}
}
}
else if (auto PT = dyn_cast<PointerType>(T))
{
return getContainedStructType(PT->getPointerElementType(), Tys);
}
else if (auto AT = dyn_cast<ArrayType>(T))
{
return getContainedStructType(AT->getElementType(), Tys);
}
}
// Check the existence of an image type.
static bool containsImageType(llvm::Type *T)
{
// All (nested) struct types in T.
SmallPtrSet<StructType *, 8> StructTys;
getContainedStructType(T, StructTys);
for (auto I = StructTys.begin(), E = StructTys.end(); I != E; ++I)
{
StructType *ST = *I;
if (ST->isOpaque())
{
auto typeName = ST->getName();
llvm::SmallVector<llvm::StringRef, 3> buf;
typeName.split(buf, ".");
if (buf.size() < 2) return false;
bool isOpenCLImage = buf[0].equals("opencl") && buf[1].startswith("image") && buf[1].endswith("_t");
bool isSPIRVImage = buf[0].equals("spirv") && buf[1].startswith("Image");
if (isOpenCLImage || isSPIRVImage)
return true;
}
}
return false;
}
static bool isOptNoneBuiltin(StringRef name)
{
return name == "__intel_typedmemfence_optnone" ||
name == "__intel_memfence_optnone";
}
// Convert functions with recursion to stackcall, since subroutines do not support recursion
static bool convertRecursionToStackCall(CallGraph& CG)
{
bool hasRecursion = false;
// Use Tarjan's algorithm to detect recursions.
for (auto I = scc_begin(&CG), E = scc_end(&CG); I != E; ++I)
{
const std::vector<CallGraphNode*>& SCCNodes = *I;
if (SCCNodes.size() >= 2)
{
hasRecursion = true;
// Convert all functions in the SCC to stackcall
for (auto Node : SCCNodes)
{
Node->getFunction()->addFnAttr("visaStackCall");
Node->getFunction()->addFnAttr("hasRecursion");
}
}
else
{
// Check self-recursion.
auto Node = SCCNodes.back();
for (const auto& Callee : *Node)
{
if (Callee.second == Node)
{
hasRecursion = true;
Node->getFunction()->addFnAttr("visaStackCall");
Node->getFunction()->addFnAttr("hasRecursion");
break;
}
}
}
}
return hasRecursion;
}
// __builtin_spirv related OpGroup call implementations contain both
// workgroup and subgroup code in them that is switched on based on the
// 'Execution' and 'Operation' parameters and these will almost always
// be compile time literals. Let's inline these functions so we have a chance
// at optimizing away the branches that contain workgroup code that will cause
// SLM allocations when we're really doing a subgroup calls.
static DenseSet<Function*> collectMemPoolUsage(const Module &M)
{
const char *BUILTIN_MEMPOOL = "__builtin_IB_AllocLocalMemPool";
auto *MemPool = M.getFunction(BUILTIN_MEMPOOL);
DenseSet<Function*> FuncsToInline;
if (!MemPool)
return FuncsToInline;
for (auto *U : MemPool->users())
{
if (auto *CI = dyn_cast<CallInst>(U))
{
FuncsToInline.insert(CI->getFunction());
}
}
return FuncsToInline;
}
void addFnAttrRecursive(Function* F, StringRef Attr, StringRef Val)
{
F->addFnAttr(Attr, Val);
for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i) {
if (CallInst* CI = dyn_cast<CallInst>(&*i)) {
Function* Callee = CI->getCalledFunction();
if (Callee != nullptr) {
addFnAttrRecursive(Callee, Attr, Val);
}
}
}
}
bool ProcessFuncAttributes::runOnModule(Module& M)
{
MetaDataUtilsWrapper &mduw = getAnalysis<MetaDataUtilsWrapper>();
MetaDataUtils *pMdUtils = mduw.getMetaDataUtils();
ModuleMetaData *modMD = mduw.getModuleMetaData();
auto MemPoolFuncs = collectMemPoolUsage(M);
CodeGenContext* pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
EstimateFunctionSize& efs = getAnalysis<EstimateFunctionSize>();
bool isOptDisable = getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData()->compOpt.OptDisable;
auto FCtrl = getFunctionControl(pCtx);
std::set<llvm::Function *> fastMathFunct;
GlobalVariable *gv_fastMath = M.getGlobalVariable("__FastRelaxedMath", true);
if (gv_fastMath)
{
if (gv_fastMath->getInitializer()->isOneValue())
{
// Find the functions which __FastRelaxedMath belongs to....
for (Value::user_iterator U = gv_fastMath->user_begin(), UE = gv_fastMath->user_end(); U != UE; ++U)
{
if (Instruction* user = dyn_cast<Instruction>(*U))
fastMathFunct.insert(user->getParent()->getParent());
}
}
}
auto SetNoInline = [](Function* F)->void
{
F->addFnAttr(llvm::Attribute::NoInline);
F->removeFnAttr(llvm::Attribute::AlwaysInline);
};
auto SetAlwaysInline = [](Function* F)->void
{
F->addFnAttr(llvm::Attribute::AlwaysInline);
F->removeFnAttr(llvm::Attribute::NoInline);
};
// Returns true if a function is either import or export and requires external linking
auto NeedsLinking = [](Function* F)->bool
{
// SPIRV FE translate import/export linkage to "ExternalLinkage" in LLVMIR
// Check all "ExternalLinkage" functions. Func declarations = Import, Func definition = Export
if (F->hasExternalLinkage() && F->getCallingConv() == CallingConv::SPIR_FUNC)
{
// builtins should not be externally linked, they will always be resolved by IGC
return !(F->hasFnAttribute(llvm::Attribute::Builtin)
|| F->getName().startswith("__builtin_")
|| F->getName().startswith("__igcbuiltin_")
|| F->getName().startswith("llvm.")
|| F->getName().equals("printf")
|| Regex("^_Z[0-9]+__spirv_").match(F->getName()));
}
return false;
};
// Returns true if a function is built-in double math function
// Our implementations of double math built-in functions are precise only
// if we don't make any fast relaxed math optimizations.
auto IsBuiltinFP64 = [](Function* F)->bool
{
StringRef buildinPrefixOpenCL = igc_spv::kLLVMName::builtinExtInstPrefixOpenCL;
if (F->getName().startswith(buildinPrefixOpenCL))
{
if (F->getReturnType()->isDoubleTy() ||
(F->getReturnType()->isVectorTy() && F->getReturnType()->getContainedType(0)->isDoubleTy()))
{
auto functionName = F->getName();
functionName = functionName.drop_front(buildinPrefixOpenCL.size());
functionName = functionName.take_front(functionName.find('_'));
static std::set<StringRef> mathFunctionNames = {
#define _OCL_EXT_OP(name, num) #name,
#include "SPIRV/libSPIRV/OpenCL.stdfuncs.h"
#undef _OCL_EXT_OP
};
if (mathFunctionNames.find(functionName) != mathFunctionNames.end()) {
return true;
}
}
}
return false;
};
// Process through all functions and add the appropriate function attributes
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
{
Function* F = &(*I);
if (F->isDeclaration())
{
if (F->getName() == "__translate_sampler_initializer")
F->addFnAttr(llvm::Attribute::ReadOnly);
// Functions requiring import from external module
if (F->hasFnAttribute("referenced-indirectly") || NeedsLinking(F))
{
pCtx->m_enableFunctionPointer = true;
F->addFnAttr("referenced-indirectly");
F->addFnAttr("visaStackCall");
}
// It is not a defined function
continue;
}
// Do not reset it for critical section builtins
if (F->hasFnAttribute("KMPLOCK"))
{
continue;
}
// Do not reset attributes for SYCL unmasked functions.
if (IGC_IS_FLAG_ENABLED(EnableUnmaskedFunctions) && F->hasFnAttribute("sycl-unmasked"))
{
continue;
}
// Always inline for non-compute
if (pCtx->type != ShaderType::OPENCL_SHADER &&
pCtx->type != ShaderType::RAYTRACING_SHADER &&
pCtx->type != ShaderType::COMPUTE_SHADER)
{
SetAlwaysInline(F);
continue;
}
// Set noinline on optnone user functions.
if (!F->hasFnAttribute(llvm::Attribute::Builtin) &&
F->hasFnAttribute(llvm::Attribute::OptimizeNone))
{
SetNoInline(F);
}
for (auto I : F->users()) {
if (CallInst* callInst = dyn_cast<CallInst>(&*I)) {
// Go through call sites and remove NoInline atrributes.
// Verifier fails if a call has optnone but not noinline, so if we remove noinline, we must also remove optnone
if (callInst->hasFnAttr(llvm::Attribute::NoInline)) {
IGCLLVM::removeFnAttr(callInst, llvm::Attribute::NoInline);
IGCLLVM::removeFnAttr(callInst, llvm::Attribute::OptimizeNone);
}
// Remove AlwaysInline at callsites
if (isOptDisable && callInst->hasFnAttr(llvm::Attribute::AlwaysInline)) {
IGCLLVM::removeFnAttr(callInst, llvm::Attribute::AlwaysInline);
}
}
}
// set function attributes according to build options so
// inliner doesn't conservatively turn off unsafe optimizations
// when inlining BIFs (see mergeAttributesForInlining() in inliner).
const auto& opts = modMD->compOpt;
if (opts.MadEnable)
F->addFnAttr("less-precise-fpmad", "true");
// Fast relaxed math implies all other flags.
if (opts.UnsafeMathOptimizations || opts.FastRelaxedMath)
F->addFnAttr("unsafe-fp-math", "true");
// Finite math implies no infs and nans.
if (opts.FiniteMathOnly || opts.FastRelaxedMath) {
F->addFnAttr("no-infs-fp-math", "true");
F->addFnAttr("no-nans-fp-math", "true");
}
// Unsafe math implies no signed zeros.
if (opts.NoSignedZeros || opts.UnsafeMathOptimizations || opts.FastRelaxedMath) {
F->addFnAttr("no-signed-zeros-fp-math", "true");
}
// Add Optnone to user functions but not on builtins. This allows to run
// optimizations on builtins.
if (isOptDisable)
{
if (!F->hasFnAttribute(llvm::Attribute::Builtin))
{
F->addFnAttr(llvm::Attribute::OptimizeNone);
}
}
bool istrue = false;
auto funcIt = modMD->FuncMD.find(F);
if (funcIt != modMD->FuncMD.end())
{
istrue = IGC::isContinuation(funcIt->second);
}
// set hasVLA function attribute
{
bool isSet = false;
for (auto& BB : F->getBasicBlockList()) {
for (auto& Inst : BB.getInstList()) {
if (AllocaInst* AI = dyn_cast<AllocaInst>(&Inst)) {
if (!isa<ConstantInt>(AI->getArraySize())) {
F->addFnAttr("hasVLA");
isSet = true;
break;
}
}
}
if (isSet)
break;
}
}
// Set for kernel functions
const bool isKernel = isEntryFunc(pMdUtils, F);
// Functions that have the spir_kernel calling convention
// This may be true even if isEntryFunc returns false, for invoke kernels and cloned callable kernels
if (!isKernel && !istrue && (F->getCallingConv() == CallingConv::SPIR_KERNEL))
{
// WA for callable kernels, always inline these.
SetAlwaysInline(F);
continue;
}
// Check for functions that can be indirectly called
bool isIndirect = false;
if (!isKernel || istrue)
{
isIndirect = F->hasFnAttribute("referenced-indirectly") ||
(getAnalysis<MetaDataUtilsWrapper>().getModuleMetaData()->compOpt.IsLibraryCompilation && NeedsLinking(F));
if (!isIndirect)
{
// Functions without Export Linkage and does not have the indirect attribute set can still be called indirectly.
// Set the indirect flag if the function's address is taken by a non-call instruction.
for (auto u = F->user_begin(), e = F->user_end(); u != e; u++)
{
CallInst* call = dyn_cast<CallInst>(*u);
if (!call || IGCLLVM::getCalledValue(call) != F)
{
isIndirect = true;
break;
}
}
}
}
if (isIndirect)
{
// Add indirect call function attributes
pCtx->m_enableFunctionPointer = true;
F->addFnAttr("referenced-indirectly");
if (!istrue)
{
F->addFnAttr("visaStackCall");
}
F->setLinkage(GlobalValue::ExternalLinkage);
}
if (isKernel)
{
// No need to process further for kernels
continue;
}
else if (!isIndirect)
{
// Set internal linkage for remaining non-kernel functions
F->setLinkage(GlobalValue::InternalLinkage);
}
// Flag for function calls where alwaysinline must be true
bool mustAlwaysInline = false;
// Add always attribute if function is a builtin
if (F->hasFnAttribute(llvm::Attribute::Builtin) ||
F->getName().startswith(igc_spv::kLLVMName::builtinPrefix))
{
// OptNone builtins are special versions of builtins assuring that all
// theirs parameters are constant values.
if (isOptNoneBuiltin(F->getName()))
{
// OptimizeNone attribute was only required to prevent clang optimizations.
// We can remove it now to unblock IGC optimizations.
F->removeFnAttr(llvm::Attribute::OptimizeNone);
// Remove the noinline attribute to allow IGC inlining heuristic to determine inlining
F->removeFnAttr(llvm::Attribute::NoInline);
}
else
{
mustAlwaysInline = true;
}
}
// inline all OCL math functions if __FastRelaxedMath is set
else if (fastMathFunct.find(F) != fastMathFunct.end())
{
mustAlwaysInline = true;
}
else
{
// Curently, ExtensionArgAnalysis assumes that all functions with image arguments
// to be inlined. We add always inline for such cases.
for (auto& arg : F->args())
{
if (containsImageType(arg.getType()))
{
mustAlwaysInline = true;
break;
}
}
}
// WA for scheduler kernel, must inline all calls otherwise we cannot prevent spilling
if (pCtx->type == ShaderType::OPENCL_SHADER)
{
auto ClContext = static_cast<OpenCLProgramContext*>(pCtx);
if (ClContext->m_InternalOptions.NoSpill)
{
mustAlwaysInline = true;
}
}
if (mustAlwaysInline)
{
SetAlwaysInline(F);
continue;
}
// Fixme: Can we support user noinline attrib from non-OCL shader?
if (pCtx->type != ShaderType::OPENCL_SHADER)
{
F->removeFnAttr(llvm::Attribute::NoInline);
}
// Set default inline mode
if (FCtrl == FLAG_FCALL_DEFAULT)
{
// Set default function call mode to stack call
if (IGC_IS_FLAG_ENABLED(EnableStackCallFuncCall))
{
F->addFnAttr("visaStackCall");
}
// default stackcall for -O0, or when FE force stackcall using attribute
if (isOptDisable || F->hasFnAttribute("igc-force-stackcall"))
{
F->addFnAttr("visaStackCall");
SetNoInline(F);
}
if (IGC_IS_FLAG_ENABLED(PartitionUnit) && efs.isStackCallAssigned(F))
{
F->addFnAttr("visaStackCall");
SetNoInline(F);
}
if (!F->hasFnAttribute(llvm::Attribute::NoInline) &&
IGC_IS_FLAG_DISABLED(DisableAddingAlwaysAttribute))
{
bool shouldAlwaysInline = (MemPoolFuncs.count(F) != 0);
if (!shouldAlwaysInline)
{
for (auto& arg : F->args())
{
// If argument is a pointer to GAS or aggregate type, always inline it for perf reasons
if (isSupportedAggregateArgument(&arg) || isGASPointer(&arg))
{
shouldAlwaysInline = true;
break;
}
}
}
if (shouldAlwaysInline)
{
if ((IGC_IS_FLAG_ENABLED(ControlKernelTotalSize) || IGC_IS_FLAG_ENABLED(ControlUnitSize)) &&
efs.shouldEnableSubroutine() &&
efs.isTrimmedFunction(F))
{
if( ( IGC_GET_FLAG_VALUE( PrintControlKernelTotalSize ) & 0x4 ) != 0 )
{
std::cout << "Trimmed function " << F->getName().str() << std::endl;
}
if (IGC_IS_FLAG_ENABLED(AddNoInlineToTrimmedFunctions))
{
SetNoInline(F);
}
}
else
{
SetAlwaysInline(F);
}
}
}
}
else if (FCtrl == FLAG_FCALL_FORCE_INLINE)
{
// Forced inlining all functions
SetAlwaysInline(F);
}
else
{
// Forcing subroutines/stack-call/indirect-call
bool forceSubroutine = FCtrl == FLAG_FCALL_FORCE_SUBROUTINE;
bool forceStackCall = FCtrl == FLAG_FCALL_FORCE_STACKCALL;
bool forceIndirectCall = (FCtrl == FLAG_FCALL_FORCE_INDIRECTCALL || F->hasFnAttribute("IFCALL_BUILTIN"));
if (forceSubroutine || forceStackCall || forceIndirectCall)
{
SetNoInline(F);
if (forceStackCall)
{
F->addFnAttr("visaStackCall");
}
else if (forceIndirectCall)
{
pCtx->m_enableFunctionPointer = true;
F->addFnAttr("referenced-indirectly");
F->addFnAttr("visaStackCall");
F->setLinkage(GlobalValue::ExternalLinkage);
}
}
}
}
// This selectively sets the FunctionControl mode for the list of line-separated
// functions existing in 'FunctionDebug.txt' in the default IGC output folder.
// This flag will override the default FunctionControl setting for these functions.
//
// For example:
// We can set FunctionControl=1 and SelectiveFuncionControl=3, such that all functions
// in the module are inlined, except those found in the 'FunctionDebug.txt' file, which
// are stack-called instead.
//
auto SelectFCtrl = IGC_GET_FLAG_VALUE(SelectiveFunctionControl);
if (SelectFCtrl != FLAG_FCALL_DEFAULT)
{
if (SelectFCtrl == FLAG_FCALL_DUMP_CALLABLE_FUNCTIONS)
{
// Dump all callable function names
std::ofstream outputFile(IGC::Debug::GetFunctionDebugFile());
if (outputFile.is_open())
{
for (auto& F : M)
{
if (!F.isDeclaration() && !isEntryFunc(pMdUtils , &F))
outputFile << F.getName().str() << std::endl;
}
}
outputFile.close();
}
else
{
std::ifstream inputFile(IGC::Debug::GetFunctionDebugFile());
if (inputFile.is_open())
{
std::string line;
while (std::getline(inputFile, line))
{
if (Function* F = M.getFunction(line))
{
if (SelectFCtrl == FLAG_FCALL_FORCE_INLINE)
{
F->removeFnAttr("referenced-indirectly");
F->removeFnAttr("visaStackCall");
SetAlwaysInline(F);
}
else if (SelectFCtrl == FLAG_FCALL_FORCE_SUBROUTINE)
{
F->removeFnAttr("referenced-indirectly");
F->removeFnAttr("visaStackCall");
SetNoInline(F);
}
else if (SelectFCtrl == FLAG_FCALL_FORCE_STACKCALL)
{
F->removeFnAttr("referenced-indirectly");
F->addFnAttr("visaStackCall");
SetNoInline(F);
}
else if (SelectFCtrl == FLAG_FCALL_FORCE_INDIRECTCALL)
{
pCtx->m_enableFunctionPointer = true;
F->addFnAttr("referenced-indirectly");
F->addFnAttr("visaStackCall");
F->setLinkage(GlobalValue::ExternalLinkage);
SetNoInline(F);
}
}
}
inputFile.close();
}
}
}
// Process through all functions and reset the *-fp-math attributes
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
Function* F = &(*I);
if (!F->isDeclaration()) {
if (IsBuiltinFP64(F)) {
addFnAttrRecursive(F, "unsafe-fp-math", "false");
addFnAttrRecursive(F, "no-infs-fp-math", "false");
addFnAttrRecursive(F, "no-nans-fp-math", "false");
addFnAttrRecursive(F, "no-signed-zeros-fp-math", "false");
}
}
}
// Detect recursive calls, and convert them to stack calls, since subroutines does not support recursion
CallGraph& CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
if (convertRecursionToStackCall(CG))
{
if (IGC_IS_FLAG_DISABLED(EnableRecursionOpenCL) &&
!pCtx->m_DriverInfo.AllowRecursion())
{
IGC_ASSERT_MESSAGE(0, "Recursion detected but not enabled!");
}
if (IGC::ForceAlwaysInline(pCtx))
{
IGC_ASSERT_MESSAGE(0, "Cannot have recursion when forcing inline!");
}
}
// Enable subroutines flag based on function attributes
pCtx->CheckEnableSubroutine(M);
return true;
}
//
// ProcessBuiltinMetaData
//
namespace {
class ProcessBuiltinMetaData : public ModulePass
{
public:
static char ID;
virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const
{
AU.setPreservesCFG();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<CodeGenContextWrapper>();
}
ProcessBuiltinMetaData();
~ProcessBuiltinMetaData() {}
virtual bool runOnModule(Module &M);
virtual llvm::StringRef getPassName() const
{
return "ProcessBuiltinMetaData";
}
private:
void updateBuiltinFunctionMetaData(llvm::Function*);
MetaDataUtils *m_pMdUtil;
};
} // namespace
// Register pass to igc-opt
#define PASS_FLAG2 "igc-process-builtin-metaData"
#define PASS_DESCRIPTION2 "Set builtin MetaData"
#define PASS_CFG_ONLY2 false
#define PASS_ANALYSIS2 false
IGC_INITIALIZE_PASS_BEGIN(ProcessBuiltinMetaData, PASS_FLAG2, PASS_DESCRIPTION2, PASS_CFG_ONLY2, PASS_ANALYSIS2)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(ProcessBuiltinMetaData, PASS_FLAG2, PASS_DESCRIPTION2, PASS_CFG_ONLY2, PASS_ANALYSIS2)
char ProcessBuiltinMetaData::ID = 0;
ProcessBuiltinMetaData::ProcessBuiltinMetaData() : ModulePass(ID)
{
initializeProcessBuiltinMetaDataPass(*PassRegistry::getPassRegistry());
}
ModulePass *createProcessBuiltinMetaDataPass()
{
return new ProcessBuiltinMetaData();
}
bool ProcessBuiltinMetaData::runOnModule(Module& M)
{
CodeGenContext* pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
if (IGC::ForceAlwaysInline(pCtx))
{
return false;
}
m_pMdUtil = getAnalysis<MetaDataUtilsWrapper>().getMetaDataUtils();
bool Changed = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
{
Function* F = &(*I);
if (!F || F->isDeclaration()) continue;
// disable JumpThread optimization on the block that contains this function
F->setConvergent();
if (m_pMdUtil->findFunctionsInfoItem(F) == m_pMdUtil->end_FunctionsInfo())
{
// It is user Function
updateBuiltinFunctionMetaData(F);
}
Changed = true;
}
if (Changed)
m_pMdUtil->save(M.getContext());
return Changed;
}
void ProcessBuiltinMetaData::updateBuiltinFunctionMetaData(llvm::Function* pFunc)
{
IGCMD::FunctionInfoMetaDataHandle fHandle = IGCMD::FunctionInfoMetaDataHandle(IGCMD::FunctionInfoMetaData::get());
IGC::ModuleMetaData* modMD = getAnalysis<CodeGenContextWrapper>().getCodeGenContext()->getModuleMetaData();
FunctionMetaData *funcMD = &modMD->FuncMD[pFunc]; //okay to insert if not present
funcMD->functionType = IGC::FunctionTypeMD::UserFunction;
fHandle->setType(FunctionTypeMD::UserFunction);
for (auto arg = pFunc->arg_begin(); arg != pFunc->arg_end(); ++arg)
{
std::string typeStr;
llvm::raw_string_ostream x(typeStr);
arg->getType()->print(x);
funcMD->m_OpenCLArgNames.push_back(arg->getName().str());
funcMD->m_OpenCLArgAccessQualifiers.push_back("none");
funcMD->m_OpenCLArgBaseTypes.push_back(x.str());
}
m_pMdUtil->setFunctionsInfoItem(pFunc, fHandle);
}
//
// InsertDummyKernelForSymbolTable
//
namespace {
class InsertDummyKernelForSymbolTable : public ModulePass
{
public:
static char ID;
virtual void getAnalysisUsage(llvm::AnalysisUsage& AU) const
{
AU.setPreservesCFG();
AU.addRequired<MetaDataUtilsWrapper>();
AU.addRequired<CodeGenContextWrapper>();
}
InsertDummyKernelForSymbolTable();
~InsertDummyKernelForSymbolTable() {}
virtual bool runOnModule(Module& M);
virtual llvm::StringRef getPassName() const
{
return "InsertDummyKernelForSymbolTable";
}
private:
};
} // namespace
// Register pass to igc-opt
#define PASS_FLAG3 "igc-insert-dummy-kernel-for-symbol-table"
#define PASS_DESCRIPTION3 "If symbol table is needed, insert a dummy kernel to attach it to"
#define PASS_CFG_ONLY3 false
#define PASS_ANALYSIS3 false
IGC_INITIALIZE_PASS_BEGIN(InsertDummyKernelForSymbolTable, PASS_FLAG3, PASS_DESCRIPTION3, PASS_CFG_ONLY3, PASS_ANALYSIS3)
IGC_INITIALIZE_PASS_DEPENDENCY(MetaDataUtilsWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(InsertDummyKernelForSymbolTable, PASS_FLAG3, PASS_DESCRIPTION3, PASS_CFG_ONLY3, PASS_ANALYSIS3)
char InsertDummyKernelForSymbolTable::ID = 0;
InsertDummyKernelForSymbolTable::InsertDummyKernelForSymbolTable() : ModulePass(ID)
{
initializeInsertDummyKernelForSymbolTablePass(*PassRegistry::getPassRegistry());
}
ModulePass* createInsertDummyKernelForSymbolTablePass()
{
return new InsertDummyKernelForSymbolTable();
}
// The code is based on the assumption that a kernel that takes an address
// of an indirectly called function has to match in SIMD size with the kernel
// invoking the function and the indirectly called function itself. Thus try
// to propagate simd size from the caller. As of now assert if the function's
// users have different simd sizes.
inline void checkKernelSimdSize(Function* F, FunctionInfoMetaDataHandle funcInfoMD, MetaDataUtils* pMdUtils)
{
Function* caller = nullptr;
int simd_size = 0;
for (auto U : F->users())
{
if (Instruction* I = dyn_cast<Instruction>(U))
{
// Get a kernel and its simd size
caller = I->getParent()->getParent();
FunctionInfoMetaDataHandle funcInfoMD = pMdUtils->getFunctionsInfoItem(caller);
int sz = funcInfoMD->getSubGroupSize()->getSIMD_size();
if (sz != 0 && simd_size == 0)
simd_size = sz;
// Assert now if sizes don't match.
// TODO. Extend this code to support indirect function call with
// different simd sizes
IGC_ASSERT_MESSAGE(simd_size == sz, "Function is called with different sub group size");
}
}
if (simd_size != 0)
{
IGC_ASSERT_MESSAGE((simd_size == 8) || (simd_size == 16) || (simd_size == 32),
"Kernel has incorrect SIMD size");
// Now propagate the computed simd size to the default kernel, which was
// created by the compiler, and to which all indirectly called functions
// are attached.
IGCMD::SubGroupSizeMetaDataHandle sgHandle = funcInfoMD->getSubGroupSize();
if (sgHandle->getSIMD_size() == 0)
{
// The kernel still has no info set about simd size, thus set it.
sgHandle->setSIMD_size(simd_size);
}
else if (sgHandle->getSIMD_size() != simd_size)
{
// TODO. A placeholder for a code to mark the kernel with info
// that there should be code generation with multiple simd sizes.
// Until there is a mechanism to support this, issue an assert here.
IGC_ASSERT_MESSAGE(false, "INTEL_SYMBOL_TABLE_VOID_PROGRAM requires variant SIMD sizes");
}
}
}
bool InsertDummyKernelForSymbolTable::runOnModule(Module& M)
{
MetaDataUtilsWrapper& mduw = getAnalysis<MetaDataUtilsWrapper>();
MetaDataUtils* pMdUtils = mduw.getMetaDataUtils();
ModuleMetaData* modMD = mduw.getModuleMetaData();
CodeGenContext* pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
bool needDummyKernel = false;
// Check when we need to generate a dummy kernel. This is only useful for attaching
// the symbol table to its program output for indirect calls and global variable relocation.
if (IGC_IS_FLAG_ENABLED(EnableFunctionPointer) && pCtx->type == ShaderType::OPENCL_SHADER)
{
if (pCtx->m_enableFunctionPointer) {
// Symbols are needed for external functions and function pointers
needDummyKernel = true;
}
else if (!modMD->inlineProgramScopeOffsets.empty()) {
// Create one also if global variables are present and require symbols
needDummyKernel = true;
}
else if (pCtx->m_hasStackCalls && !getUniqueEntryFunc(pMdUtils, modMD)) {
// If there are stackcalls and multiple kernels from which it could be called, conservatively create a
// dummy kernel in case we need to transform them into indirect calls to avoid cloning in GenCodeGenModule.cpp
needDummyKernel = true;
}
}
if (needDummyKernel)
{
// Create empty kernel function
IGC_ASSERT(IGC::getIntelSymbolTableVoidProgram(&M) == nullptr);
Type* voidTy = Type::getVoidTy(M.getContext());
FunctionType* fTy = FunctionType::get(voidTy, false);
Function* pNewFunc = Function::Create(fTy, GlobalValue::ExternalLinkage, IGC::INTEL_SYMBOL_TABLE_VOID_PROGRAM, &M);
BasicBlock* entry = BasicBlock::Create(M.getContext(), "entry", pNewFunc);
IRBuilder<> builder(entry);
builder.CreateRetVoid();
// Set spirv calling convention and kernel metadata
pNewFunc->setCallingConv(llvm::CallingConv::SPIR_KERNEL);
IGCMD::FunctionInfoMetaDataHandle fHandle = IGCMD::FunctionInfoMetaDataHandle(IGCMD::FunctionInfoMetaData::get());
FunctionMetaData* funcMD = &modMD->FuncMD[pNewFunc];
funcMD->functionType = IGC::FunctionTypeMD::KernelFunction;
fHandle->setType(FunctionTypeMD::KernelFunction);
// Promote SIMD size information from kernels, which has indirectly called
// functions. All such functions will be connected to the default kernel in
// GenCodeGenModule.cpp
for (auto I = M.begin(), E = M.end(); I != E; ++I)
{
Function* F = &(*I);
if (F->isDeclaration() || isEntryFunc(pMdUtils, F)) continue;
if (F->hasFnAttribute("referenced-indirectly"))
{
checkKernelSimdSize(F, fHandle, pMdUtils);
}
}
pMdUtils->setFunctionsInfoItem(pNewFunc, fHandle);
pMdUtils->save(M.getContext());
return true;
}
return false;
}
|