1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
///
/// Adapted from CoroFrame.cpp, this provides a utility to determine whether
/// a given value is live across some "suspend point" (e.g., barrier, TraceRay).
///
/// As a precondition, the function should first split each of the suspend
/// points into their own basic blocks (via splitAround()) to aid the analysis.
///
//===----------------------------------------------------------------------===//
#include "CrossingAnalysis.h"
#include "debug/Dump.hpp"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/ADT/SmallVector.h>
#include <llvm/IR/Function.h>
#include "common/LLVMWarningsPop.hpp"
using namespace llvm;
using namespace IGC;
// Splits the block at a particular instruction unless it is the first
// instruction in the block with a single predecessor.
static BasicBlock* splitBlockIfNotFirst(Instruction* I, const Twine& Name) {
auto* BB = I->getParent();
if (&BB->front() == I) {
if (BB->getSinglePredecessor()) {
BB->setName(Name);
return BB;
}
}
return BB->splitBasicBlock(I, Name);
}
namespace IGC {
void splitAround(llvm::Instruction* I, const llvm::Twine& Name)
{
splitBlockIfNotFirst(I, Name);
if (I->getNextNode())
{ //if I is terminator, we cannot split it further
splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
}
}
} // namespace IGC
iterator_range<succ_iterator> SuspendCrossingInfo::successors(BlockData const& BD) const {
BasicBlock* BB = Mapping.indexToBlock((unsigned)(&BD - &Block[0]));
return llvm::successors(BB);
}
SuspendCrossingInfo::BlockData& SuspendCrossingInfo::getBlockData(BasicBlock* BB) {
return Block[Mapping.blockToIndex(BB)];
}
LLVM_DUMP_METHOD void SuspendCrossingInfo::print(
raw_ostream& OS, StringRef Label, BitVector const& BV) const {
OS << Label << ":";
for (size_t I = 0, N = BV.size(); I < N; ++I)
if (BV[I])
OS << " " << Mapping.indexToBlock(I)->getName();
OS << "\n";
}
LLVM_DUMP_METHOD void SuspendCrossingInfo::print(raw_ostream& OS) const {
for (size_t I = 0, N = Block.size(); I < N; ++I) {
BasicBlock* const B = Mapping.indexToBlock(I);
OS << B->getName() << ":\n";
print(OS, " Consumes", Block[I].Consumes);
print(OS, " Kills", Block[I].Kills);
}
OS << "\n";
}
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const
{
print(outs());
}
// Used for dumping into a file with a fixed name while running in debugger
LLVM_DUMP_METHOD void SuspendCrossingInfo::dumpToFile(const CodeGenContext *Ctx) const
{
using namespace Debug;
auto name =
DumpName(IGC::Debug::GetShaderOutputName())
.Hash(Ctx->hash)
.Type(Ctx->type)
.Pass("WIAnalysis")
.Extension("txt");
print(Dump(name, DumpType::DBG_MSG_TEXT).stream());
}
SuspendCrossingInfo::SuspendCrossingInfo(
Function& F, const std::vector<Instruction*>& SuspendPoints)
: Mapping(F) {
const size_t N = Mapping.size();
Block.resize(N);
// Initialize every block so that it consumes itself
for (size_t I = 0; I < N; ++I) {
auto& B = Block[I];
B.Consumes.resize(N);
B.Kills.resize(N);
B.Consumes.set(I);
}
// Mark all suspend blocks and indicate that they kill everything they
// consume.
auto markSuspendBlock = [&](Instruction* BarrierInst) {
BasicBlock* SuspendBlock = BarrierInst->getParent();
auto& B = getBlockData(SuspendBlock);
B.Suspend = true;
B.Kills |= B.Consumes;
};
for (auto *SP : SuspendPoints) {
markSuspendBlock(SP);
}
// Iterate propagating consumes and kills until they stop changing.
bool Changed;
do {
Changed = false;
for (size_t I = 0; I < N; ++I) {
auto& B = Block[I];
for (BasicBlock* SI : successors(B)) {
auto SuccNo = Mapping.blockToIndex(SI);
// Saved Consumes and Kills bitsets so that it is easy to see
// if anything changed after propagation.
auto& S = Block[SuccNo];
auto SavedConsumes = S.Consumes;
auto SavedKills = S.Kills;
// Propagate Kills and Consumes from block B into its successor S.
S.Consumes |= B.Consumes;
S.Kills |= B.Kills;
// If block B is a suspend block, it should propagate kills into the
// its successor for every block B consumes.
if (B.Suspend) {
S.Kills |= B.Consumes;
}
if (S.Suspend) {
// If block S is a suspend block, it should kill all of the blocks it
// consumes.
S.Kills |= S.Consumes;
}
else {
// This is reached when S block is not Suspend and it
// needs to make sure that it is not in the kill set.
S.Kills.reset(SuccNo);
}
// See if anything changed.
Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes);
}
}
} while (Changed);
}
bool SuspendCrossingInfo::hasPathCrossingSuspendPoint(BasicBlock* DefBB, BasicBlock* UseBB) const {
size_t const DefIndex = Mapping.blockToIndex(DefBB);
size_t const UseIndex = Mapping.blockToIndex(UseBB);
IGC_ASSERT_MESSAGE(Block[UseIndex].Consumes[DefIndex], "use must consume def");
bool const Result = Block[UseIndex].Kills[DefIndex];
return Result;
}
bool SuspendCrossingInfo::isDefinitionAcrossSuspend(BasicBlock* DefBB, User* U) const {
auto* I = cast<Instruction>(U);
// We rewrote PHINodes, so that only the ones with exactly one incoming
// value need to be analyzed.
if (auto* PN = dyn_cast<PHINode>(I))
if (PN->getNumIncomingValues() > 1)
return false;
BasicBlock* UseBB = I->getParent();
return hasPathCrossingSuspendPoint(DefBB, UseBB);
}
bool SuspendCrossingInfo::isDefinitionAcrossSuspend(Argument& A, User* U) const {
return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U);
}
bool SuspendCrossingInfo::isDefinitionAcrossSuspend(Instruction& I, User* U) const {
return isDefinitionAcrossSuspend(I.getParent(), U);
}
|