1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2019-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//===----------------------------------------------------------------------===//
///
/// After running ConvertDXIL (at least through the DX path), accesses to
/// root signature entries (i.e., descriptor tables, root constants and root
/// descriptors) will be represented by calls to GenISA_RuntimeValue and
/// GenISA_LocalRootSignatureValue. We don't want to complicate ConvertDXIL
/// with extra raytracing specific processing so we then lower those intrinsics
/// to global and local pointer offsets.
///
//===----------------------------------------------------------------------===//
#include "RTBuilder.h"
#include "RTStackFormat.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CodeGenPublicEnums.h"
#include <vector>
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/InstIterator.h>
#include <llvm/ADT/Optional.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
using namespace IGC;
using namespace llvm;
class BindlessKernelArgLoweringPass : public ModulePass
{
public:
BindlessKernelArgLoweringPass(): ModulePass(ID)
{
initializeBindlessKernelArgLoweringPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(llvm::AnalysisUsage &AU) const override
{
AU.addRequired<CodeGenContextWrapper>();
}
bool runOnModule(Module &M) override;
StringRef getPassName() const override
{
return "BindlessKernelArgLoweringPass";
}
static char ID;
};
char BindlessKernelArgLoweringPass::ID = 0;
// Register pass to igc-opt
#define PASS_FLAG1 "Bindless-Kernel-argument-lowering-pass"
#define PASS_DESCRIPTION1 "lowering kernel arguments"
#define PASS_CFG_ONLY1 false
#define PASS_ANALYSIS1 false
IGC_INITIALIZE_PASS_BEGIN(BindlessKernelArgLoweringPass, PASS_FLAG1, PASS_DESCRIPTION1, PASS_CFG_ONLY1, PASS_ANALYSIS1)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(BindlessKernelArgLoweringPass, PASS_FLAG1, PASS_DESCRIPTION1, PASS_CFG_ONLY1, PASS_ANALYSIS1)
struct SlotInfo
{
uint32_t GEPIdx = 0;
Type* Ty = nullptr;
SlotInfo(Type* Ty) : Ty(Ty) {}
};
using Slots = std::map<uint64_t, SlotInfo>;
// A given function may access at most one global root signature and/or one
// local root signature (you could, for example, have a module in which every
// shader has a unique global or local root signature).
//
// This computes, for that function, the struct type to access a root signature
// based on the 'RuntimeValue' and 'LocalRootSignatureValue' uses that we
// observe in the shader. Note that the accesses don't have to be contiguous
// so there may be padding inserted into the struct.
static StructType* processSlot(Function& F, Slots& Slot, uint32_t Align, bool isGlobalRootSig, const Twine &Name = "")
{
auto& DL = F.getParent()->getDataLayout();
auto& C = F.getContext();
SmallVector<Type*, 4> Tys;
uint64_t CurrIdx = 0;
uint64_t CurrConsumedBytes = 0;
for (auto& P : Slot)
{
// The offset in the global root signature is in dwords, so convert it to bytes.
// The offset in the local root signature is already in bytes.
uint64_t ByteOffset = isGlobalRootSig ? sizeof(DWORD) * P.first : P.first;
if (CurrConsumedBytes < ByteOffset)
{
// Inject explicit padding
uint64_t Padding = ByteOffset - CurrConsumedBytes;
auto* ArrayTy = ArrayType::get(Type::getInt8Ty(C), Padding);
Tys.push_back(ArrayTy);
CurrConsumedBytes = ByteOffset;
CurrIdx++;
}
SlotInfo& SI = P.second;
SI.GEPIdx = (uint32_t)CurrIdx;
Tys.push_back(SI.Ty);
CurrConsumedBytes += DL.getTypeAllocSize(SI.Ty);
CurrIdx++;
}
RTBuilder::injectPadding(*F.getParent(), Tys, Align, true);
auto* RootSigTy = !Name.isTriviallyEmpty() ?
StructType::create(C, Tys, Name.str(), true) :
StructType::get(C, Tys, true);
return RootSigTy;
}
static std::pair<Type*, Type*> getSlots(
Function &F, Slots& GlobalSlots, Slots& LocalSlots)
{
for (auto& I : instructions(F))
{
if (isa<GenIntrinsicInst>(&I, GenISAIntrinsic::GenISA_RuntimeValue))
{
// If an array of AccelerationStructures is accessed indirectly
// a slot for entire array should be created.
if (!isa<ConstantInt>(I.getOperand(0)))
{
// Accesses to an array of AccelerationStructures are marked metadata,
// which stores the size of an array and its offset in the payload.
llvm::MDNode* accArrayOffsetNode = I.getMetadata("accelerationStructureArrayOffset");
llvm::MDNode* accArraySizeNode = I.getMetadata("accelerationStructureArraySize");
if ((accArrayOffsetNode != nullptr) && (accArraySizeNode != nullptr))
{
llvm::Value* operandValue = llvm::cast<llvm::ValueAsMetadata>(accArrayOffsetNode->getOperand(0))->getValue();
uint32_t accArrayOffset = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();
operandValue = llvm::cast<llvm::ValueAsMetadata>(accArraySizeNode->getOperand(0))->getValue();
uint32_t accArraySize = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();
llvm::Type* arrayType = llvm::ArrayType::get(Type::getInt64Ty(F.getContext()), accArraySize);
GlobalSlots.insert(std::make_pair(accArrayOffset, SlotInfo(arrayType)));
}
}
else
{
uint64_t DwordOffset =
cast<ConstantInt>(I.getOperand(0))->getZExtValue();
GlobalSlots.insert(std::make_pair(DwordOffset, SlotInfo(I.getType())));
}
}
else if (isa<GenIntrinsicInst>(&I, GenISAIntrinsic::GenISA_LocalRootSignatureValue))
{
// If an array is accessed indirectly, a slot for entire array should be created.
if (!isa<ConstantInt>(I.getOperand(0)))
{
// Array access related data is passed through metadata.
// Metadata stores the size of an array and its offset in shader record buffer.
llvm::MDNode* arrayOffsetNode = I.getMetadata("shaderRecordArrayOffset");
llvm::MDNode* arraySizeNode = I.getMetadata("shaderRecordArraySize");
if ((arrayOffsetNode != nullptr) && (arraySizeNode != nullptr))
{
llvm::Value* operandValue = llvm::cast<llvm::ValueAsMetadata>(arrayOffsetNode->getOperand(0))->getValue();
uint32_t accArrayOffset = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();
operandValue = llvm::cast<llvm::ValueAsMetadata>(arraySizeNode->getOperand(0))->getValue();
uint32_t accArraySize = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();
llvm::Type* arrayType = llvm::ArrayType::get(I.getType(), accArraySize);
LocalSlots.insert(std::make_pair(accArrayOffset, SlotInfo(arrayType)));
}
}
else
{
uint64_t byteOffset =
cast<ConstantInt>(I.getOperand(0))->getZExtValue();
LocalSlots.insert(std::make_pair(byteOffset, SlotInfo(I.getType())));
}
}
}
Type *GlobalTy = [&]()
{
std::string Name = std::string("IGC::RTGlobalsAndRootSig::") + F.getName().str();
auto* GlobalRootSigTy = processSlot(
F, GlobalSlots, alignof(IGC::TypeHoleGlobalRootSig), true);
auto* CombinedTy =
RTBuilder::getRTGlobalsAndRootSig(
*F.getParent(),
GlobalRootSigTy,
Name);
return CombinedTy;
}();
Type *LocalTy = [&]()
{
std::string Name = std::string("IGC::LocalRootSig::") + F.getName().str();
auto* LocalRootSigTy = processSlot(
F, LocalSlots, alignof(RTStackFormat::TypeHoleLocalRootSig), false, Name);
return LocalRootSigTy;
}();
return std::make_pair(GlobalTy, LocalTy);
}
bool BindlessKernelArgLoweringPass::runOnModule(Module &M)
{
auto* pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
std::vector<Instruction*> toDelete;
RTBuilder builder(M.getContext(), *pCtx);
for (auto& F : M)
{
if (F.isDeclaration())
continue;
Slots GlobalSlots;
Slots LocalSlots;
auto [GlobalStructTy, LocalStructTy] = getSlots(
F, GlobalSlots, LocalSlots);
for (auto& I : instructions(F))
{
bool found = false;
Value* basePtr = nullptr;
Instruction* intrin = &I;
builder.SetInsertPoint(intrin);
if (isa<GenIntrinsicInst>(intrin, GenISAIntrinsic::GenISA_RuntimeValue))
{
basePtr = builder.getGlobalBufferPtr();
uint32_t AddrSpace = basePtr->getType()->getPointerAddressSpace();
basePtr = builder.CreateBitCast(
basePtr,
GlobalStructTy->getPointerTo(AddrSpace),
VALUE_NAME("&RTGlobalsAndRootSig"));
SmallVector<Value*, 4> Indices;
// If an array of AccelerationStructures is accessed indirectly,
// create a GEP with a proper number of indices.
if (!isa<ConstantInt>(intrin->getOperand(0)))
{
// Accesses to an array of AccelerationStructures are marked metadata,
// which stores AccelerationStructures array offset in the payload.
llvm::MDNode* accArrayOffsetNode = intrin->getMetadata("accelerationStructureArrayOffset");
if (accArrayOffsetNode != nullptr)
{
// Get the offset from the payload from metadata.
llvm::Value* operandValue = llvm::cast<llvm::ValueAsMetadata>(accArrayOffsetNode->getOperand(0))->getValue();
uint32_t accArrayOffset = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();
auto I = GlobalSlots.find(accArrayOffset);
// Subtract the offset from index taken from RuntimeValue intrinsic.
// The offset will be applied in the GEP indices as the value from
// GlobalSlots.
llvm::Value* gepIndex = builder.CreateSub(intrin->getOperand(0), builder.getInt32(accArrayOffset));
Indices =
{
builder.getInt32(0),
builder.getInt32(1), // access the global root sig
builder.getInt32(I->second.GEPIdx),
gepIndex
};
}
else
{
IGC_ASSERT_MESSAGE(0, "Missing AccelerationStructure array info metadata.");
}
}
else
{
uint64_t DwordOffset =
cast<ConstantInt>(intrin->getOperand(0))->getZExtValue();
auto I = GlobalSlots.find(DwordOffset);
IGC_ASSERT_MESSAGE((I != GlobalSlots.end()), "missing?");
Indices =
{
builder.getInt32(0),
builder.getInt32(1), // access the global root sig
builder.getInt32(I->second.GEPIdx)
};
}
static_assert(offsetof(IGC::RTGlobalsAndRootSig, GlobalRootSig) ==
sizeof(RayDispatchGlobalData), "changed?");
basePtr = builder.CreateInBoundsGEP(basePtr, Indices,
VALUE_NAME("&GlobalRootSigElt[]"));
found = true;
}
else if (auto* gen_intrinsic = dyn_cast<GenIntrinsicInst>(intrin, GenISAIntrinsic::GenISA_LocalRootSignatureValue))
{
Optional<unsigned> RootSigSize;
if (uint64_t Size = gen_intrinsic->getImm64Operand(1))
RootSigSize = static_cast<uint32_t>(Size);
basePtr = builder.getLocalBufferPtr(RootSigSize);
basePtr = builder.CreateBitCast(
basePtr,
LocalStructTy->getPointerTo(basePtr->getType()->getPointerAddressSpace()),
VALUE_NAME("localPtr"));
SmallVector<Value*, 4> Indices;
// If an array is accessed indirectly, create a GEP with a proper number of indices.
if (!isa<ConstantInt>(intrin->getOperand(0)))
{
// Metadata stores the size of an array and its offset in shader record buffer.
llvm::MDNode* arrayOffsetNode = intrin->getMetadata("shaderRecordArrayOffset");
if (arrayOffsetNode != nullptr)
{
// Get the offset from metadata.
llvm::Value* operandValue = llvm::cast<llvm::ValueAsMetadata>(arrayOffsetNode->getOperand(0))->getValue();
uint32_t arrayOffset = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();
auto I = LocalSlots.find(arrayOffset);
IGC_ASSERT_MESSAGE((I != LocalSlots.end()), "missing?");
// Calculate the offset in bytes from the beginning of array
llvm::Value* gepIndex = builder.CreateSub(intrin->getOperand(0), builder.getInt32(arrayOffset));
// Divide by the size of array element to get element index
uint32_t typeSizeInBytes = (uint32_t)(F.getParent()->getDataLayout().getTypeAllocSize(I->second.Ty->getArrayElementType()));
gepIndex = builder.CreateUDiv(gepIndex, builder.getInt32(typeSizeInBytes));
Indices =
{
builder.getInt32(0),
builder.getInt32(I->second.GEPIdx),
gepIndex
};
}
else
{
IGC_ASSERT_MESSAGE(0, "Missing shader record buffer array info metadata.");
}
}
else
{
uint64_t byteOffset =
cast<ConstantInt>(intrin->getOperand(0))->getZExtValue();
auto I = LocalSlots.find(byteOffset);
IGC_ASSERT_MESSAGE((I != LocalSlots.end()), "missing?");
Indices = {
builder.getInt32(0),
builder.getInt32(I->second.GEPIdx)
};
}
basePtr = builder.CreateInBoundsGEP(basePtr, Indices,
VALUE_NAME("&LocalRootSigElt[]"));
found = true;
}
if (found)
{
LoadInst* LI = builder.CreateLoad(basePtr);
RTBuilder::setInvariantLoad(LI);
intrin->replaceAllUsesWith(LI);
toDelete.push_back(intrin);
}
}
}
for (auto it : toDelete)
{
it->eraseFromParent();
}
return true;
}
namespace IGC
{
Pass* CreateBindlessKernelArgLoweringPass(void)
{
return new BindlessKernelArgLoweringPass();
}
} // namespace IGC
|