File: KernelArgLoweringPass.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (399 lines) | stat: -rw-r--r-- 16,138 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*========================== begin_copyright_notice ============================

Copyright (C) 2019-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//===----------------------------------------------------------------------===//
///
/// After running ConvertDXIL (at least through the DX path), accesses to
/// root signature entries (i.e., descriptor tables, root constants and root
/// descriptors) will be represented by calls to GenISA_RuntimeValue and
/// GenISA_LocalRootSignatureValue.  We don't want to complicate ConvertDXIL
/// with extra raytracing specific processing so we then lower those intrinsics
/// to global and local pointer offsets.
///
//===----------------------------------------------------------------------===//

#include "RTBuilder.h"
#include "RTStackFormat.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CodeGenPublicEnums.h"
#include <vector>
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/InstIterator.h>
#include <llvm/ADT/Optional.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"

using namespace IGC;
using namespace llvm;

class BindlessKernelArgLoweringPass : public ModulePass
{
public:
    BindlessKernelArgLoweringPass(): ModulePass(ID)
    {
        initializeBindlessKernelArgLoweringPassPass(*PassRegistry::getPassRegistry());
    }

    void getAnalysisUsage(llvm::AnalysisUsage &AU) const override
    {
        AU.addRequired<CodeGenContextWrapper>();
    }

    bool runOnModule(Module &M) override;
    StringRef getPassName() const override
    {
        return "BindlessKernelArgLoweringPass";
    }

    static char ID;
};

char BindlessKernelArgLoweringPass::ID = 0;

// Register pass to igc-opt
#define PASS_FLAG1 "Bindless-Kernel-argument-lowering-pass"
#define PASS_DESCRIPTION1 "lowering kernel arguments"
#define PASS_CFG_ONLY1 false
#define PASS_ANALYSIS1 false
IGC_INITIALIZE_PASS_BEGIN(BindlessKernelArgLoweringPass, PASS_FLAG1, PASS_DESCRIPTION1, PASS_CFG_ONLY1, PASS_ANALYSIS1)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(BindlessKernelArgLoweringPass, PASS_FLAG1, PASS_DESCRIPTION1, PASS_CFG_ONLY1, PASS_ANALYSIS1)

struct SlotInfo
{
    uint32_t GEPIdx = 0;
    Type* Ty = nullptr;
    SlotInfo(Type* Ty) : Ty(Ty) {}
};

using Slots = std::map<uint64_t, SlotInfo>;

// A given function may access at most one global root signature and/or one
// local root signature (you could, for example, have a module in which every
// shader has a unique global or local root signature).
//
// This computes, for that function, the struct type to access a root signature
// based on the 'RuntimeValue' and 'LocalRootSignatureValue' uses that we
// observe in the shader.  Note that the accesses don't have to be contiguous
// so there may be padding inserted into the struct.
static StructType* processSlot(Function& F, Slots& Slot, uint32_t Align, bool isGlobalRootSig, const Twine &Name = "")
{
    auto& DL = F.getParent()->getDataLayout();
    auto& C = F.getContext();

    SmallVector<Type*, 4> Tys;

    uint64_t CurrIdx = 0;
    uint64_t CurrConsumedBytes = 0;
    for (auto& P : Slot)
    {
        // The offset in the global root signature is in dwords, so convert it to bytes.
        // The offset in the local root signature is already in bytes.
        uint64_t ByteOffset = isGlobalRootSig ? sizeof(DWORD) * P.first : P.first;
        if (CurrConsumedBytes < ByteOffset)
        {
            // Inject explicit padding
            uint64_t Padding = ByteOffset - CurrConsumedBytes;
            auto* ArrayTy = ArrayType::get(Type::getInt8Ty(C), Padding);
            Tys.push_back(ArrayTy);
            CurrConsumedBytes = ByteOffset;
            CurrIdx++;
        }
        SlotInfo& SI = P.second;
        SI.GEPIdx = (uint32_t)CurrIdx;

        Tys.push_back(SI.Ty);
        CurrConsumedBytes += DL.getTypeAllocSize(SI.Ty);
        CurrIdx++;
    }

    RTBuilder::injectPadding(*F.getParent(), Tys, Align, true);

    auto* RootSigTy = !Name.isTriviallyEmpty() ?
        StructType::create(C, Tys, Name.str(), true) :
        StructType::get(C, Tys, true);
    return RootSigTy;
}

static std::pair<Type*, Type*> getSlots(
    Function &F, Slots& GlobalSlots, Slots& LocalSlots)
{
    for (auto& I : instructions(F))
    {
        if (isa<GenIntrinsicInst>(&I, GenISAIntrinsic::GenISA_RuntimeValue))
        {
            // If an array of AccelerationStructures is accessed indirectly
            // a slot for entire array should be created.
            if (!isa<ConstantInt>(I.getOperand(0)))
            {
                // Accesses to an array of AccelerationStructures are marked metadata,
                // which stores the size of an array and its offset in the payload.
                llvm::MDNode* accArrayOffsetNode = I.getMetadata("accelerationStructureArrayOffset");
                llvm::MDNode* accArraySizeNode = I.getMetadata("accelerationStructureArraySize");

                if ((accArrayOffsetNode != nullptr) && (accArraySizeNode != nullptr))
                {
                    llvm::Value* operandValue = llvm::cast<llvm::ValueAsMetadata>(accArrayOffsetNode->getOperand(0))->getValue();
                    uint32_t accArrayOffset = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();

                    operandValue = llvm::cast<llvm::ValueAsMetadata>(accArraySizeNode->getOperand(0))->getValue();
                    uint32_t accArraySize = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();

                    llvm::Type* arrayType = llvm::ArrayType::get(Type::getInt64Ty(F.getContext()), accArraySize);

                    GlobalSlots.insert(std::make_pair(accArrayOffset, SlotInfo(arrayType)));
                }
            }
            else
            {
                uint64_t DwordOffset =
                    cast<ConstantInt>(I.getOperand(0))->getZExtValue();
                GlobalSlots.insert(std::make_pair(DwordOffset, SlotInfo(I.getType())));
            }
        }
        else if (isa<GenIntrinsicInst>(&I, GenISAIntrinsic::GenISA_LocalRootSignatureValue))
        {
            // If an array is accessed indirectly, a slot for entire array should be created.
            if (!isa<ConstantInt>(I.getOperand(0)))
            {
                // Array access related data is passed through metadata.
                // Metadata stores the size of an array and its offset in shader record buffer.
                llvm::MDNode* arrayOffsetNode = I.getMetadata("shaderRecordArrayOffset");
                llvm::MDNode* arraySizeNode = I.getMetadata("shaderRecordArraySize");

                if ((arrayOffsetNode != nullptr) && (arraySizeNode != nullptr))
                {
                    llvm::Value* operandValue = llvm::cast<llvm::ValueAsMetadata>(arrayOffsetNode->getOperand(0))->getValue();
                    uint32_t accArrayOffset = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();

                    operandValue = llvm::cast<llvm::ValueAsMetadata>(arraySizeNode->getOperand(0))->getValue();
                    uint32_t accArraySize = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();

                    llvm::Type* arrayType = llvm::ArrayType::get(I.getType(), accArraySize);

                    LocalSlots.insert(std::make_pair(accArrayOffset, SlotInfo(arrayType)));
                }
            }
            else
            {
                uint64_t byteOffset =
                    cast<ConstantInt>(I.getOperand(0))->getZExtValue();
               LocalSlots.insert(std::make_pair(byteOffset, SlotInfo(I.getType())));
            }
        }
    }

    Type *GlobalTy = [&]()
    {
        std::string Name = std::string("IGC::RTGlobalsAndRootSig::") + F.getName().str();
        auto* GlobalRootSigTy = processSlot(
            F, GlobalSlots, alignof(IGC::TypeHoleGlobalRootSig), true);

        auto* CombinedTy =
            RTBuilder::getRTGlobalsAndRootSig(
                *F.getParent(),
                GlobalRootSigTy,
                Name);

        return CombinedTy;
    }();

    Type *LocalTy = [&]()
    {
        std::string Name = std::string("IGC::LocalRootSig::") + F.getName().str();
        auto* LocalRootSigTy = processSlot(
            F, LocalSlots, alignof(RTStackFormat::TypeHoleLocalRootSig), false, Name);

        return LocalRootSigTy;
    }();

    return std::make_pair(GlobalTy, LocalTy);
}

bool BindlessKernelArgLoweringPass::runOnModule(Module &M)
{
    auto* pCtx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();
    std::vector<Instruction*> toDelete;
    RTBuilder builder(M.getContext(), *pCtx);
    for (auto& F : M)
    {
        if (F.isDeclaration())
            continue;

        Slots GlobalSlots;
        Slots LocalSlots;
        auto [GlobalStructTy, LocalStructTy] = getSlots(
            F, GlobalSlots, LocalSlots);
        for (auto& I : instructions(F))
        {
            bool found = false;
            Value* basePtr = nullptr;
            Instruction* intrin = &I;
            builder.SetInsertPoint(intrin);

            if (isa<GenIntrinsicInst>(intrin, GenISAIntrinsic::GenISA_RuntimeValue))
            {
                basePtr = builder.getGlobalBufferPtr();
                uint32_t AddrSpace = basePtr->getType()->getPointerAddressSpace();
                basePtr = builder.CreateBitCast(
                    basePtr,
                    GlobalStructTy->getPointerTo(AddrSpace),
                    VALUE_NAME("&RTGlobalsAndRootSig"));

                SmallVector<Value*, 4> Indices;

                // If an array of AccelerationStructures is accessed indirectly,
                // create a GEP with a proper number of indices.
                if (!isa<ConstantInt>(intrin->getOperand(0)))
                {
                    // Accesses to an array of AccelerationStructures are marked metadata,
                    // which stores AccelerationStructures array offset in the payload.
                    llvm::MDNode* accArrayOffsetNode = intrin->getMetadata("accelerationStructureArrayOffset");

                    if (accArrayOffsetNode != nullptr)
                    {
                        // Get the offset from the payload from metadata.
                        llvm::Value* operandValue = llvm::cast<llvm::ValueAsMetadata>(accArrayOffsetNode->getOperand(0))->getValue();
                        uint32_t accArrayOffset = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();

                        auto I = GlobalSlots.find(accArrayOffset);

                        // Subtract the offset from index taken from RuntimeValue intrinsic.
                        // The offset will be applied in the GEP indices as the value from
                        // GlobalSlots.
                        llvm::Value* gepIndex = builder.CreateSub(intrin->getOperand(0), builder.getInt32(accArrayOffset));

                        Indices =
                        {
                            builder.getInt32(0),
                            builder.getInt32(1), // access the global root sig
                            builder.getInt32(I->second.GEPIdx),
                            gepIndex
                        };
                    }
                    else
                    {
                        IGC_ASSERT_MESSAGE(0, "Missing AccelerationStructure array info metadata.");
                    }
                }
                else
                {
                    uint64_t DwordOffset =
                        cast<ConstantInt>(intrin->getOperand(0))->getZExtValue();
                    auto I = GlobalSlots.find(DwordOffset);
                    IGC_ASSERT_MESSAGE((I != GlobalSlots.end()), "missing?");

                    Indices =
                    {
                        builder.getInt32(0),
                        builder.getInt32(1), // access the global root sig
                        builder.getInt32(I->second.GEPIdx)
                    };
                }

                static_assert(offsetof(IGC::RTGlobalsAndRootSig, GlobalRootSig) ==
                    sizeof(RayDispatchGlobalData), "changed?");

                basePtr = builder.CreateInBoundsGEP(basePtr, Indices,
                    VALUE_NAME("&GlobalRootSigElt[]"));

                found = true;
            }
            else if (auto* gen_intrinsic = dyn_cast<GenIntrinsicInst>(intrin, GenISAIntrinsic::GenISA_LocalRootSignatureValue))
            {
                Optional<unsigned> RootSigSize;
                if (uint64_t Size = gen_intrinsic->getImm64Operand(1))
                    RootSigSize = static_cast<uint32_t>(Size);

                basePtr = builder.getLocalBufferPtr(RootSigSize);

                basePtr = builder.CreateBitCast(
                    basePtr,
                    LocalStructTy->getPointerTo(basePtr->getType()->getPointerAddressSpace()),
                    VALUE_NAME("localPtr"));

                SmallVector<Value*, 4> Indices;

                // If an array is accessed indirectly, create a GEP with a proper number of indices.
                if (!isa<ConstantInt>(intrin->getOperand(0)))
                {
                    // Metadata stores the size of an array and its offset in shader record buffer.
                    llvm::MDNode* arrayOffsetNode = intrin->getMetadata("shaderRecordArrayOffset");

                    if (arrayOffsetNode != nullptr)
                    {
                        // Get the offset from metadata.
                        llvm::Value* operandValue = llvm::cast<llvm::ValueAsMetadata>(arrayOffsetNode->getOperand(0))->getValue();
                        uint32_t arrayOffset = (uint32_t)llvm::cast<llvm::ConstantInt>(operandValue)->getZExtValue();

                        auto I = LocalSlots.find(arrayOffset);
                        IGC_ASSERT_MESSAGE((I != LocalSlots.end()), "missing?");

                        // Calculate the offset in bytes from the beginning of array
                        llvm::Value* gepIndex = builder.CreateSub(intrin->getOperand(0), builder.getInt32(arrayOffset));
                        // Divide by the size of array element to get element index
                        uint32_t typeSizeInBytes = (uint32_t)(F.getParent()->getDataLayout().getTypeAllocSize(I->second.Ty->getArrayElementType()));
                        gepIndex = builder.CreateUDiv(gepIndex, builder.getInt32(typeSizeInBytes));

                        Indices =
                        {
                            builder.getInt32(0),
                            builder.getInt32(I->second.GEPIdx),
                            gepIndex
                        };
                    }
                    else
                    {
                        IGC_ASSERT_MESSAGE(0, "Missing shader record buffer array info metadata.");
                    }
                }
                else
                {
                    uint64_t byteOffset =
                        cast<ConstantInt>(intrin->getOperand(0))->getZExtValue();
                    auto I = LocalSlots.find(byteOffset);
                    IGC_ASSERT_MESSAGE((I != LocalSlots.end()), "missing?");
                    Indices = {
                        builder.getInt32(0),
                        builder.getInt32(I->second.GEPIdx)
                    };
                }

                basePtr = builder.CreateInBoundsGEP(basePtr, Indices,
                    VALUE_NAME("&LocalRootSigElt[]"));

                found = true;
            }

            if (found)
            {
                LoadInst* LI = builder.CreateLoad(basePtr);
                RTBuilder::setInvariantLoad(LI);
                intrin->replaceAllUsesWith(LI);
                toDelete.push_back(intrin);
            }
        }
    }

    for (auto it : toDelete)
    {
        it->eraseFromParent();
    }

    return true;
}

namespace IGC
{

Pass* CreateBindlessKernelArgLoweringPass(void)
{
    return new BindlessKernelArgLoweringPass();
}

} // namespace IGC