1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2019-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//===----------------------------------------------------------------------===//
///
/// After shader splitting, we have a collection of spill/fill intrinsics
/// that represent the live values across a continuation.
/// The goal of this pass is to do some analysis to determine cases where
/// spills can be rematerialized (recomputed) in the continuation so we don't
/// have to spill it.
///
//===----------------------------------------------------------------------===//
#include "RTBuilder.h"
#include "Compiler/IGCPassSupport.h"
#include "iStdLib/utility.h"
#include "common/LLVMUtils.h"
#include "ContinuationUtils.h"
#include "SplitAsyncUtils.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/InstIterator.h>
#include <llvm/ADT/Optional.h>
#include <llvm/ADT/SetVector.h>
#include <llvm/Transforms/Utils/ValueMapper.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
#include "llvmWrapper/IR/DerivedTypes.h"
using namespace llvm;
using namespace IGC;
using ComputeChain = SmallVector<Value*, 4>;
// Compare two values to see if they are equivalent. We include a value map
// to morph the RHS to the left so isIdenticalTo() will return the right result.
static bool compareEntry(
Value* LHS, Value* RHS, ValueToValueMapTy &VM)
{
auto* LHSI = dyn_cast<Instruction>(LHS);
auto* RHSI = dyn_cast<Instruction>(RHS);
if (!LHSI || !RHSI)
return false;
if (LHSI->getOpcode() != RHSI->getOpcode())
return false;
VM[RHSI] = LHSI;
if (isa<AllocaInst>(LHSI))
{
if (LHSI == RHSI)
return true;
else
return false;
}
RemapInstruction(RHSI, VM, RF_NoModuleLevelChanges);
return LHSI->isIdenticalTo(RHSI);
}
// Walk both chains to check if they are equivalent.
static bool areChainsEqual(ArrayRef<Value*> LHS, ArrayRef<Value*> RHS)
{
if (LHS.size() != RHS.size())
return false;
ValueToValueMapTy VM;
for (uint32_t i = 0; i < LHS.size(); i++)
{
if (!compareEntry(LHS[i], RHS[i], VM))
return false;
}
return true;
}
class LateRematPass : public ModulePass
{
public:
LateRematPass() : ModulePass(ID)
{
initializeLateRematPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &F) override;
StringRef getPassName() const override
{
return "LateRematPass";
}
void getAnalysisUsage(llvm::AnalysisUsage &AU) const override
{
AU.setPreservesCFG();
AU.addRequired<CodeGenContextWrapper>();
}
static char ID;
private:
using MkComputeChainFunc =
std::function<Optional<ComputeChain>(SpillValueIntrinsic*)>;
using Thunk = std::function<void()>;
bool Changed;
Optional<ComputeChain> getAddressComputation(
ContinuationInfo &CI,
Value* V);
Optional<ComputeChain> unify(
ArrayRef<SpillValueIntrinsic*> Spills,
MkComputeChainFunc fn);
void remat(
ArrayRef<Value*> Chain,
ValueToValueMapTy& VM,
FillValueIntrinsic* FI);
SmallVector<Thunk, 4> Thunks;
bool tryRematAllocas(
ContinuationInfo &CI,
const DenseMap<const AllocaInst*, uint32_t> &AllocaMap,
FillValueIntrinsic* Fill,
ContinuationInfo::SpillColl& Spills);
bool tryMemRayOpt(
FillValueIntrinsic* Fill,
ContinuationInfo::SpillColl& Spills);
bool tryRematLocalPointer(
ContinuationInfo& CI,
FillValueIntrinsic* Fill,
ContinuationInfo::SpillColl& Spills);
RayDispatchShaderContext* m_CGCtx = nullptr;
uint32_t shrinkSpill(
const DataLayout &DL,
BasicBlock* BB,
bool Sort);
void shrinkFill(
const DataLayout &DL,
BasicBlock* BB,
bool Sort);
void markContinuationIntrinsic(
BasicBlock* BB,
uint32_t MaxOffset);
bool postprocess(ContinuationInfo& ContInfo, const DataLayout& DL);
std::vector<uint32_t> computeNewOrder(const BasicBlock& BB) const;
void removeDeadSpills(BasicBlock& BB);
void rearrangeSpills(
BasicBlock& BB, const std::vector<uint32_t> &Order) const;
void rearrangeFills(
BasicBlock& BB, const std::vector<uint32_t> &Order) const;
static bool justRespill(const SpillValueIntrinsic* SI);
static BasicBlock* getSpillLoopBB(
const ContinuationInfo& ContInfo, BasicBlock* FillBB);
static bool expandSpill(
RTBuilder& RTB, const DataLayout& DL, SpillValueIntrinsic* SI);
static Value* expandFill(
RTBuilder& RTB, const DataLayout& DL, FillValueIntrinsic* FI);
static void expandFills(BasicBlock& BB, const DataLayout& DL, RTBuilder& RTB);
static void expandSpills(BasicBlock& BB, const DataLayout& DL, RTBuilder& RTB);
// If there are trivial rematerializations of spills that bottom out in
// other already spilled values, we can just remat those expressions and use
// the other fills.
//
// For example, consider:
//
// for (uint i = 0; i < count; i++)
// {
// uint y = 2*i;
// TraceRay(...);
// use(i)
// use(y)
// }
//
// Given that both `i` and `y` are live across TraceRay(), they will both
// be spilled. We first note that we don't fully rematerialize
// `y` during splitting. Here, given that `i` is already spilled, we can
// trivially recompute `y` in the continuation using the fill of `i`:
//
// y = 2*fill(i)
bool doCrossFillRemat(ContinuationInfo& ContInfo);
// Moves all the fills in `BB` to the top of the block and returns the first
// instruction after the last fill.
Instruction* moveFills(BasicBlock& BB);
};
char LateRematPass::ID = 0;
// Register pass to igc-opt
#define PASS_FLAG "late-remat"
#define PASS_DESCRIPTION "Do more involved remat after splitting"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(LateRematPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(LateRematPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
bool LateRematPass::runOnModule(Module &M)
{
m_CGCtx = static_cast<RayDispatchShaderContext*>(
getAnalysis<CodeGenContextWrapper>().getCodeGenContext());
Changed = false;
ModuleMetaData* modMD = m_CGCtx->getModuleMetaData();
auto &FuncMD = modMD->FuncMD;
auto RootFuncs = getRootFunctions(m_CGCtx, M);
const bool CanPromoteContinuations =
m_CGCtx->requiresIndirectContinuationHandling() &&
m_CGCtx->m_DriverInfo.supportsRaytracingContinuationPromotion();
for (auto* Root : RootFuncs)
{
auto MD = FuncMD.find(Root);
IGC_ASSERT_MESSAGE((MD != FuncMD.end()), "Missing metadata?");
auto ShaderTy = MD->second.rtInfo.callableShaderType;
Thunks.clear();
ContinuationInfo ContInfo{ ShaderTy };
// We calculate info about spills/fills here to be queried by the below
// loop. We build up a collection of functions at the end to actually
// execute the transformations so we don't have to update the internal
// data structures here.
ContMap Group = getFuncGroup(Root);
ContInfo.calculate(*Root, Group);
// We expect that allocas will only be in the root function. If there
// was a need between shader splitting and late remat to add allocas
// in the continuations then we need to add those here as well.
auto AllocaMap = RTBuilder::getAllocaNumberMap(*Root);
bool DidPromote = false;
for (auto& [Fill, Spills] : ContInfo.spillfills())
{
bool CurChange = false;
if (tryRematAllocas(ContInfo, AllocaMap, Fill, Spills))
CurChange = true;
else if (tryMemRayOpt(Fill, Spills))
CurChange = true;
else if (CanPromoteContinuations &&
tryRematLocalPointer(ContInfo, Fill, Spills))
{
DidPromote = true;
CurChange = true;
}
Changed |= CurChange;
if (CurChange)
ContInfo.markDead(Fill);
}
if (DidPromote)
{
uint32_t CurSlot = RTStackFormat::ShaderIdentifier::RaygenFirstOpenSlot;
for (auto& [_, ContFn] : Group)
{
auto MD = FuncMD.find(ContFn);
auto& rtInfo = MD->second.rtInfo;
rtInfo.SlotNum = CurSlot++;
}
}
// Now execute the actions at the end.
for (auto Thunk : Thunks)
Thunk();
ContInfo.bulkUpdate();
if (IGC_IS_FLAG_DISABLED(DisableCrossFillRemat))
{
bool Modified = doCrossFillRemat(ContInfo);
if (Modified)
Modified |= doCrossFillRemat(ContInfo);
Changed |= Modified;
}
auto& DL = M.getDataLayout();
Changed |= postprocess(ContInfo, DL);
}
DumpLLVMIR(m_CGCtx, "LateRematPass");
return Changed;
}
template <typename T, typename FnTy>
auto static filter(BasicBlock* BB, FnTy Fn) -> SmallVector<T*, 8>
{
SmallVector<T*, 8> Insts;
for (auto& I : *BB)
{
if (auto* II = Fn(&I))
Insts.push_back(II);
}
return Insts;
}
// Sort the spills/fills in descending order of size to ensure alignment for
// the larger types. For example, if SplitAsync generated code like:
//
// SpillValue(i1 %x, i64 0)
// SpillValue(i64 %y, i64 1)
//
// The %y spill would just be byte-aligned leading to suboptimal code.
// This will generate:
//
// SpillValue(i64 %y, i64 0)
// SpillValue(i1 %x, i64 8)
template<typename T, typename _ValFn>
static void
sortInstsBySize(const DataLayout &DL, SmallVectorImpl<T*> &Insts, _ValFn ValFn)
{
if (!Insts.empty())
{
IRBuilder<> IRB(Insts[0]);
bool SchedFill = isa<FillValueIntrinsic>(Insts[0]);
// If we're scheduling fills, create a temporary anchor for the insert
// point and delete at the end.
Instruction* InsertPt = SchedFill ?
IRB.CreateRetVoid() :
Insts[Insts.size() - 1]->getNextNode();
std::stable_sort(Insts.begin(), Insts.end(),
[&](auto* A, auto* B) {
return DL.getTypeAllocSize(ValFn(A)->getType()) >
DL.getTypeAllocSize(ValFn(B)->getType());
});
for (auto* I : Insts)
I->moveBefore(InsertPt);
if (SchedFill)
InsertPt->eraseFromParent();
}
}
// Is the data coming into the spill just a fill from the same memory location?
bool LateRematPass::justRespill(const SpillValueIntrinsic* SI)
{
if (auto* FI = dyn_cast<FillValueIntrinsic>(SI->getData()))
return (SI->getOffset() == FI->getOffset());
return false;
}
void LateRematPass::rearrangeFills(
BasicBlock& BB, const std::vector<uint32_t>& Order) const
{
if (Order.empty())
return;
std::vector<FillValueIntrinsic*> CurFills;
CurFills.reserve(Order.size());
for (auto& I : BB)
{
if (auto* FI = dyn_cast<FillValueIntrinsic>(&I))
CurFills.push_back(FI);
}
IGC_ASSERT_MESSAGE(Order.size() == CurFills.size(),
"fills going to same continuation should match!");
std::vector<FillValueIntrinsic*> Fills{ Order.size() };
for (uint32_t i = 0; i < Order.size(); i++)
Fills[i] = CurFills[Order[i]];
// temporary anchor
IRBuilder<> IRB(CurFills[0]);
auto* InsertPt = IRB.CreateRetVoid();
for (auto* Fill : Fills)
Fill->moveBefore(InsertPt);
InsertPt->eraseFromParent();
}
void LateRematPass::removeDeadSpills(BasicBlock& BB)
{
for (auto I = BB.begin(), E = BB.end(); I != E; /* empty */)
{
auto* II = &*I++;
if (auto* SI = dyn_cast<SpillValueIntrinsic>(II))
{
if (justRespill(SI))
SI->eraseFromParent();
}
}
}
void LateRematPass::rearrangeSpills(
BasicBlock& BB, const std::vector<uint32_t>& Order) const
{
if (Order.empty())
return;
std::vector<SpillValueIntrinsic*> CurSpills;
CurSpills.reserve(Order.size());
for (auto& I : BB)
{
if (auto* SI = dyn_cast<SpillValueIntrinsic>(&I))
CurSpills.push_back(SI);
}
IGC_ASSERT_MESSAGE(Order.size() == CurSpills.size(),
"spills going to same continuation should match!");
std::vector<SpillValueIntrinsic*> Spills{ Order.size() };
for (uint32_t i = 0; i < Order.size(); i++)
Spills[i] = CurSpills[Order[i]];
Instruction* LastSpill = CurSpills[CurSpills.size() - 1];
IGC_ASSERT(LastSpill);
auto* InsertPt = LastSpill->getNextNode();
for (auto* Spill : Spills)
Spill->moveBefore(InsertPt);
}
std::vector<uint32_t> LateRematPass::computeNewOrder(const BasicBlock& BB) const
{
std::vector<std::pair<const SpillValueIntrinsic*, uint32_t>> Spills;
uint32_t Cnt = 0;
for (auto& I : BB)
{
if (auto* SI = dyn_cast<SpillValueIntrinsic>(&I))
Spills.push_back({ SI, Cnt++ });
}
llvm::stable_sort(Spills, [](const auto &A, const auto &B) {
return !justRespill(A.first) && justRespill(B.first);
});
std::vector<uint32_t> Indices;
for (auto [_, Idx] : Spills)
Indices.push_back(Idx);
return Indices;
}
BasicBlock* LateRematPass::getSpillLoopBB(
const ContinuationInfo& ContInfo,
BasicBlock* FillBB)
{
auto I = ContInfo.SuspendPoints.find(FillBB->getParent());
if (I == ContInfo.SuspendPoints.end())
return nullptr;
auto& Suspends = I->second;
auto II = llvm::find_if(Suspends, [&](ContinuationHLIntrinsic* I) {
return I->getContinuationFn() == FillBB->getParent();
});
// If there isn't a self-loop, then there is nothing to do.
if (II == Suspends.end())
return nullptr;
return (*II)->getParent();
}
// If we encounter TraceRay() with a loop, try to rearrange the fields of
// spills that loop back to the continuation such that the fields that are only
// filled just to be re-spilled are moved to the bottom so they can be skipped
// in the loop.
bool LateRematPass::postprocess(ContinuationInfo& ContInfo, const DataLayout &DL)
{
bool Changed = false;
RTBuilder RTB(*m_CGCtx->getLLVMContext(), *m_CGCtx);
SmallVector<BasicBlock*, 4> BBs;
for (auto& [FillBB, SpillBBs] : ContInfo.spillfillblocks())
{
Changed = true;
BasicBlock* SpillLoopBB = nullptr;
if (IGC_IS_FLAG_DISABLED(DisableSpillReorder))
SpillLoopBB = getSpillLoopBB(ContInfo, FillBB);
if (SpillLoopBB)
{
auto Order = computeNewOrder(*SpillLoopBB);
for (auto* BB : SpillBBs)
rearrangeSpills(*BB, Order);
rearrangeFills(*FillBB, Order);
BBs.push_back(SpillLoopBB);
}
bool Sort = SpillLoopBB ? false : true;
for (auto* BB : SpillBBs)
{
uint32_t MaxOffset = shrinkSpill(DL, BB, Sort);
if (m_CGCtx->doSpillWidening())
markContinuationIntrinsic(BB, MaxOffset);
}
shrinkFill(DL, FillBB, Sort);
}
if (IGC_IS_FLAG_DISABLED(DisableSpillReorder))
{
for (auto& [FillBB, SpillBBs] : ContInfo.spillfillblocks())
{
if (SpillBBs.size() == 1)
{
auto Order = computeNewOrder(*SpillBBs[0]);
for (auto* BB : SpillBBs)
rearrangeSpills(*BB, Order);
rearrangeFills(*FillBB, Order);
for (auto* BB : SpillBBs)
shrinkSpill(DL, BB, false);
shrinkFill(DL, FillBB, false);
}
}
}
for (auto* BB : BBs)
{
removeDeadSpills(*BB);
}
for (auto& [FillBB, SpillBBs] : ContInfo.spillfillblocks())
{
for (auto* BB : SpillBBs)
expandSpills(*BB, DL, RTB);
expandFills(*FillBB, DL, RTB);
}
return Changed;
}
static void topoSort(
Instruction* I,
const SetVector<Instruction*>& Insts,
SmallVector<Instruction*, 4>& SortedInsts,
std::unordered_set<Instruction*>& Visited)
{
if (!Visited.insert(I).second)
return;
for (auto& Op : I->operands())
{
if (isa<Constant>(Op))
continue;
auto* OpI = dyn_cast<Instruction>(Op);
if (!OpI)
continue;
if (Insts.count(OpI) == 0)
continue;
topoSort(OpI, Insts, SortedInsts, Visited);
}
SortedInsts.push_back(I);
}
// Return a topological sort of `Insts`.
static SmallVector<Instruction*, 4>
topoSort(const SetVector<Instruction*>& Insts)
{
SmallVector<Instruction*, 4> SortedInsts;
std::unordered_set<Instruction*> Visited;
for (auto* I : Insts)
{
::topoSort(I, Insts, SortedInsts, Visited);
}
IGC_ASSERT(Insts.size() == SortedInsts.size());
return SortedInsts;
}
Instruction* LateRematPass::moveFills(BasicBlock& BB)
{
// temporary anchor
IRBuilder<> IRB(&BB.front());
auto* InsertPt = IRB.CreateRetVoid();
for (auto I = BB.begin(), E = BB.end(); I != E; /* empty */)
{
auto* II = &*I++;
if (isa<FillValueIntrinsic>(II))
II->moveBefore(InsertPt);
}
auto* NewInsertPt = InsertPt->getNextNode();
InsertPt->eraseFromParent();
return NewInsertPt;
}
bool LateRematPass::doCrossFillRemat(ContinuationInfo& ContInfo)
{
DenseMap<BasicBlock*, std::unique_ptr<ValueToValueMapTy>> VMs;
for (auto& [Fill, Spills] : ContInfo.spillfills())
{
auto& CurVM = VMs[Fill->getParent()];
if (!CurVM)
CurVM = std::make_unique<ValueToValueMapTy>();
for (auto* S : Spills)
{
if (auto *I = dyn_cast<Instruction>(S->getData()))
CurVM->insert({ I, Fill });
}
}
// It's easier to reason about this if we leave the current function
// unchanged while walking it. We then apply this collection of changes
// at the end.
struct TODO
{
FillValueIntrinsic* FI = nullptr;
MutableArrayRef<SpillValueIntrinsic*> Spills;
Value* NewVal = nullptr;
};
SmallVector<TODO, 4> TODOList;
struct RematSeq
{
Instruction* Head = nullptr;
uint32_t NumInst = 0;
};
bool Changed = false;
RematChecker RMChecker{ *m_CGCtx, RematStage::LATE };
const uint32_t Threshold = m_CGCtx->opts().RematThreshold;
SmallVector<RematSeq, 4> RematInsts;
for (auto& [FillBB, SpillBBs] : ContInfo.spillfillblocks())
{
auto VMsI = VMs.find(FillBB);
if (VMsI == VMs.end())
continue;
auto *InsertPt = moveFills(*FillBB);
auto& VM = VMsI->second;
uint32_t NumInsts = 0;
Instruction* HeadI = nullptr;
for (auto& I : *FillBB)
{
auto* FI = dyn_cast<FillValueIntrinsic>(&I);
if (!FI)
break;
auto* Val =
dyn_cast_or_null<Instruction>(ContInfo.findUniqueSpillRoot(FI));
if (!Val)
continue;
auto Insts = RMChecker.canFullyRemat(Val, Threshold, VM.get());
if (!Insts)
continue;
Instruction* NewI = nullptr;
for (auto* I : *Insts)
{
NumInsts++;
Changed = true;
NewI = I->clone();
if (!HeadI)
HeadI = NewI;
NewI->setName(I->getName());
NewI->insertBefore(InsertPt);
RemapInstruction(NewI, *VM, RF_NoModuleLevelChanges);
(*VM)[I] = NewI;
}
if (NewI)
{
auto& Spills = ContInfo.getSpills(FI);
for (auto* Spill : Spills)
(*VM)[Spill] = NewI;
TODOList.push_back({ FI, Spills, NewI });
}
}
if (HeadI)
RematInsts.push_back({ HeadI, NumInsts });
}
for (auto& Item : TODOList)
{
Item.FI->replaceAllUsesWith(Item.NewVal);
for (auto* SI : Item.Spills)
SI->eraseFromParent();
ContInfo.markDead(Item.FI);
Item.FI->eraseFromParent();
}
ContInfo.bulkUpdate();
// Even though `canFullyRemat()` returns a topo sorted collection of
// instructions for each rematerialized fill, we must sort the collection
// of instructions at the end since they aren't necessarily collectively
// sorted.
for (auto& Seq : RematInsts)
{
SetVector<Instruction*> Insts;
Instruction* Cur = Seq.Head;
for (uint32_t i = 0; i < Seq.NumInst; i++)
{
Insts.insert(Cur);
Cur = Cur->getNextNode();
}
auto* InsertPt = Cur;
auto Sorted = topoSort(Insts);
for (auto* I : Sorted)
I->moveBefore(InsertPt);
}
return Changed;
}
bool LateRematPass::expandSpill(
RTBuilder& RTB, const DataLayout& DL, SpillValueIntrinsic* SI)
{
if (auto* VTy = dyn_cast<IGCLLVM::FixedVectorType>(SI->getData()->getType()))
{
uint64_t CurLoc = SI->getOffset();
RTB.SetInsertPoint(SI->getNextNode());
auto* EltTy = VTy->getElementType();
uint64_t EltSize = DL.getTypeAllocSize(EltTy);
for (uint32_t i = 0; i < VTy->getNumElements(); i++)
{
auto* Elt = RTB.CreateExtractElement(SI->getData(), i);
RTB.getSpillValue(Elt, CurLoc + EltSize * i);
}
return true;
}
return false;
}
Value* LateRematPass::expandFill(
RTBuilder& RTB, const DataLayout& DL, FillValueIntrinsic* FI)
{
if (auto* VTy = dyn_cast<IGCLLVM::FixedVectorType>(FI->getType()))
{
uint64_t CurLoc = FI->getOffset();
RTB.SetInsertPoint(FI->getNextNode());
Value* Vec = UndefValue::get(VTy);
auto* EltTy = VTy->getElementType();
uint64_t EltSize = DL.getTypeAllocSize(EltTy);
for (uint32_t i = 0; i < VTy->getNumElements(); i++)
{
auto* Elt = RTB.getFillValue(EltTy, CurLoc + EltSize * i);
Vec = RTB.CreateInsertElement(Vec, Elt, i);
}
return Vec;
}
return nullptr;
}
void LateRematPass::expandFills(
BasicBlock& BB, const DataLayout& DL, RTBuilder& RTB)
{
for (auto I = BB.begin(), E = BB.end(); I != E; /* empty */)
{
auto* II = &*I++;
if (auto* FI = dyn_cast<FillValueIntrinsic>(II))
{
if (auto *Vec = expandFill(RTB, DL, FI))
{
FI->replaceAllUsesWith(Vec);
FI->eraseFromParent();
}
}
}
}
void LateRematPass::expandSpills(
BasicBlock& BB, const DataLayout& DL, RTBuilder& RTB)
{
for (auto I = BB.begin(), E = BB.end(); I != E; /* empty */)
{
auto* II = &*I++;
if (auto* SI = dyn_cast<SpillValueIntrinsic>(II))
{
if (expandSpill(RTB, DL, SI))
SI->eraseFromParent();
}
}
}
void LateRematPass::markContinuationIntrinsic(
BasicBlock* BB,
uint32_t MaxOffset)
{
for (auto& I : reverse(*BB))
{
if (auto *CI = dyn_cast<ContinuationHLIntrinsic>(&I))
{
RTBuilder::setSpillSize(*CI, MaxOffset);
return;
}
}
}
uint32_t LateRematPass::shrinkSpill(
const DataLayout& DL,
BasicBlock* BB,
bool Sort)
{
auto Spills = filter<SpillValueIntrinsic>(
BB,
[](auto* I) { return dyn_cast<SpillValueIntrinsic>(I); });
if (Sort)
sortInstsBySize(DL, Spills, [](auto* I) { return I->getData(); });
uint64_t CurLoc = 0;
for (auto* SI : Spills)
{
SI->setOffset(CurLoc);
CurLoc += DL.getTypeSizeInBits(SI->getData()->getType()) / 8;
}
return int_cast<uint32_t>(CurLoc);
}
void LateRematPass::shrinkFill(
const DataLayout& DL,
BasicBlock* BB,
bool Sort)
{
auto Fills = filter<FillValueIntrinsic>(
BB,
[](auto* I) { return dyn_cast<FillValueIntrinsic>(I); });
if (Sort)
sortInstsBySize(DL, Fills, [](auto* I) { return I; });
uint64_t CurLoc = 0;
for (auto* FI : Fills)
{
FI->setOffset(CurLoc);
CurLoc += DL.getTypeSizeInBits(FI->getType()) / 8;
}
}
static int32_t getMemRayIndex(
const Value* V,
const TraceRayAsyncHLIntrinsic* TRI)
{
// Skip Tmax
for (uint32_t i = 0; i < RTStackFormat::RayInfoSize - 1; i++)
{
if (V == TRI->getRayInfo(i))
return i;
}
return -1;
}
bool LateRematPass::tryMemRayOpt(
FillValueIntrinsic* Fill,
ContinuationInfo::SpillColl& Spills)
{
// When maxTraceRecursionDepth <= 1, we know there won't be any recursive
// traces. If we spill MemRay fields (obj, dir, and Tmin but *not*
// Tmax) we know that HW doesn't update those entries. In that case, we
// can just read from the corresponding memory slot instead of the spill
// slot.
if (m_CGCtx->pipelineConfig.maxTraceRecursionDepth > 1)
return false;
if (!Fill->getType()->isFloatTy())
return false;
int32_t CurVal = -1;
for (auto *SI : Spills)
{
TraceRayAsyncHLIntrinsic* TRI = nullptr;
for (auto& I : reverse(*SI->getParent()))
{
if (auto* GII = dyn_cast<TraceRayAsyncHLIntrinsic>(&I))
{
TRI = GII;
break;
}
}
// If we didn't find a trace the spills must be due to a CallShader().
if (!TRI)
return false;
int32_t Ret = getMemRayIndex(SI->getData(), TRI);
if (Ret < 0)
return false;
if (CurVal < 0)
CurVal = Ret;
if (Ret != CurVal)
return false;
}
auto go = [=]()
{
RTBuilder RTB(Fill, *m_CGCtx);
auto* StackPointer = RTB.getAsyncStackPointer();
Value* RematVal = RTB.getRayInfo(StackPointer, CurVal);
Fill->replaceAllUsesWith(RematVal);
for (auto* SI : Spills)
SI->eraseFromParent();
Fill->eraseFromParent();
};
Thunks.push_back(go);
return true;
}
bool LateRematPass::tryRematLocalPointer(
ContinuationInfo& CI,
FillValueIntrinsic* Fill,
ContinuationInfo::SpillColl& Spills)
{
if (!CI.canPromoteContinuations())
return false;
if (!Fill->getType()->isPointerTy())
return false;
if (Fill->getType()->getPointerAddressSpace() != ADDRESS_SPACE_CONSTANT)
return false;
if (auto* Root = CI.findUniqueSpillRoot(Fill))
{
if (auto* LP = dyn_cast<LocalBufferPointerIntrinsic>(Root))
{
auto go = [=]()
{
auto* NewLP = LP->clone();
NewLP->insertBefore(Fill);
Fill->replaceAllUsesWith(NewLP);
for (auto* SI : Spills)
SI->eraseFromParent();
Fill->eraseFromParent();
};
Thunks.push_back(go);
return true;
}
}
return false;
}
bool LateRematPass::tryRematAllocas(
ContinuationInfo& CI,
const DenseMap<const AllocaInst*, uint32_t> &AllocaMap,
FillValueIntrinsic* Fill,
ContinuationInfo::SpillColl& Spills)
{
// Remat alloca address calculations when possible
if (!Fill->getType()->isPointerTy())
return false;
// Bail out if it's not a global pointer: it couldn't be a product of an
// alloca.
if (!RTBuilder::isNonLocalAlloca(Fill->getType()->getPointerAddressSpace()))
return false;
auto addrComputation = [&](SpillValueIntrinsic* SI)
{
return getAddressComputation(CI, SI->getData());
};
if (auto Chain = unify(Spills, addrComputation))
{
auto NewChain = *Chain;
// We capture some of these by value as they change from function to
// function.
auto go = [&,NewChain,Fill,Spills]()
{
ValueToValueMapTy VM;
RTBuilder RTB(Fill, *m_CGCtx);
for (auto* V : NewChain)
{
if (auto* AI = dyn_cast<AllocaInst>(V))
{
// Actually do the replacement calculation now.
auto I = AllocaMap.find(AI);
IGC_ASSERT_MESSAGE((I != AllocaMap.end()), "missing alloca?");
Value* stackBufferPtr = RTB.createAllocaNumber(AI, I->second);
// Given that we've examined the stack layout at this point,
// don't add additional allocas before intrinsic lowering
// (it's okay to add them to the end of the alloca list
// if needed).
VM[AI] = stackBufferPtr;
break;
}
}
// We just handled the alloca above (the first instruction). Skip
// it and pass in the rest.
remat(makeArrayRef(NewChain).drop_front(1), VM, Fill);
Value* NewVal = VM[NewChain.back()];
Fill->replaceAllUsesWith(NewVal);
for (auto* SI : Spills)
SI->eraseFromParent();
Fill->eraseFromParent();
};
Thunks.push_back(go);
return true;
}
return false;
}
// Walk the chain and inject the instructions at the given point.
void LateRematPass::remat(
ArrayRef<Value*> Chain,
ValueToValueMapTy& VM,
FillValueIntrinsic* FI)
{
for (auto* V : Chain)
{
IGC_ASSERT_MESSAGE(!isa<Argument>(V), "can't remat an arg!");
if (isa<Constant>(V))
continue;
auto* I = cast<Instruction>(V);
I->insertBefore(FI);
VM[I] = I;
RemapInstruction(I, VM, RF_NoModuleLevelChanges);
I->setDebugLoc(FI->getDebugLoc());
}
}
static void freeChain(ComputeChain* Chain)
{
// remove all references
for (auto* V : *Chain)
{
if (auto* I = dyn_cast<Instruction>(V))
{
if (!I->getParent())
I->dropAllReferences();
}
}
// now actually delete them
for (auto* V : *Chain)
{
if (auto* I = dyn_cast<Instruction>(V))
{
if (!I->getParent())
I->deleteValue();
}
}
}
// Ensure that all spills write the same value. For each spill, we try to
// compute a sequence of instructions without side-effects that represents that
// value. If we fail to do so (e.g., some pattern that we don't yet understand
// or side-effects that we couldn't remat) then we can't unify the spills. If
// we find that they all would, in fact, spill the same value then the returned
// computation is a candidate to rematerialize.
Optional<ComputeChain> LateRematPass::unify(
ArrayRef<SpillValueIntrinsic*> Spills,
MkComputeChainFunc fn)
{
if (Spills.empty())
return None;
auto First = fn(Spills[0]);
if (!First.hasValue())
return None;
for (auto* Spill : Spills.drop_front(1))
{
if (auto Curr = fn(Spill))
{
if (!areChainsEqual(*First, *Curr))
{
freeChain(&*First);
freeChain(&*Curr);
return None;
}
else
{
freeChain(&*Curr);
}
}
else
{
freeChain(&*First);
return None;
}
}
return First;
}
// See if we can trivially trace back to the originating alloca if 'V' is
// a stack address.
Optional<ComputeChain> LateRematPass::getAddressComputation(
ContinuationInfo &CI,
Value* V)
{
auto lift = [](ComputeChain& Chain, ValueToValueMapTy& VM)
{
for (auto* V : Chain)
{
if (auto* I = dyn_cast<Instruction>(V))
{
RemapInstruction(I, VM, RF_NoModuleLevelChanges);
}
}
};
ComputeChain Chain;
auto* I = dyn_cast<Instruction>(V);
if (!I)
return None;
std::unique_ptr<ComputeChain, decltype(&freeChain)> Guard(&Chain, &freeChain);
ValueToValueMapTy VM;
auto push = [&](Instruction* I)
{
auto* NewI = I->clone();
Chain.push_back(NewI);
VM[I] = NewI;
};
// Can add more analysis here if necessary though this does a good job
// on all workloads seen so far.
while (I)
{
switch (I->getOpcode())
{
case Instruction::GetElementPtr:
if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
return None;
push(I);
I = dyn_cast<Instruction>(I->getOperand(0));
break;
case Instruction::BitCast:
push(I);
I = dyn_cast<Instruction>(I->getOperand(0));
break;
case Instruction::Call:
if (auto* FI = dyn_cast<FillValueIntrinsic>(I))
{
if (auto* Root = CI.findUniqueSpillRoot(FI))
{
I = dyn_cast<Instruction>(Root);
VM[FI] = I;
}
else
{
return None;
}
}
else
{
return None;
}
break;
case Instruction::Alloca:
Chain.push_back(I);
VM[I] = I;
// reverse back to dominance order.
std::reverse(std::begin(Chain), std::end(Chain));
lift(Chain, VM);
Guard.release();
return Chain;
default:
return None;
}
}
return None;
}
namespace IGC
{
Pass* createLateRematPass(void)
{
return new LateRematPass();
}
} // namespace IGC
|