File: RTStackFormat.h

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (1132 lines) | stat: -rw-r--r-- 44,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
/*========================== begin_copyright_notice ============================

Copyright (C) 2019-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file contains a definition of the structure of the ray tracing
/// stack as seen by a ray.  Each ray will have its own private copy of the
/// stack. Through a combination of offsetof() and sizeof(), passes will find
/// offsets to fields within the structs and update themselves automatically
/// when this file changes.
///
///
//===----------------------------------------------------------------------===//
#pragma once

#include "RayTracingRayDispatchGlobalData.h"
#include "RayTracingConstantsEnums.h"

#include <stdint.h>
#include <stddef.h>
#if !defined(__clang__) || (__clang_major__ >= 10)
#include <type_traits>
#endif


// This code defines a set of macros, that allows us to intentionally disable certain warnings
// in a way that is both concise and portable across compilers.
// We need to disable the warnings in such way because this C++ file may be compiled with Clang, GCC, and Microsoft Visual Studio Compiler
// This works around (at least) two known problems:
//  - QuickBuild treats compiler warnings as errors
//  - RTStackReflection.exe generates warnings when compiling this file
//
// The only macros that are used by the main code are:
//     DISABLE_WARNING_PUSH
//     DISABLE_WARNING_POP
//     and the macros for the individual warnings
// The others are lower level internal utilities, used only by higher level macros.
//
// Explanation of code in original resource : https://www.fluentcpp.com/2019/08/30/how-to-disable-a-warning-in-cpp/
#if defined(__clang__)
    #define DO_PRAGMA(X) _Pragma(#X)                                                     // internal utility
    #define DISABLE_WARNING_PUSH         DO_PRAGMA(GCC diagnostic push)
    #define DISABLE_WARNING_POP          DO_PRAGMA(GCC diagnostic pop)
    #define DISABLE_WARNING(warningName) DO_PRAGMA(GCC diagnostic ignored #warningName)  // internal utility
    // Add warnings that you want to disable here:
    #define DISABLE_WARNING_ANONYMOUS_STRUCT_UNION   \
        DISABLE_WARNING(-Wgnu-anonymous-struct)  // anonymous structs are a GNU extension
    #define DISABLE_WARNING_PADDING_AT_END_OF_STRUCT
    #define DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION \
        DISABLE_WARNING(-Wnested-anon-types)     // anonymous types declared in an anonymous union are an extension
#elif defined(__GNUC__)
    #define DO_PRAGMA(X) _Pragma(#X)                                                     // internal utility
    #define DISABLE_WARNING_PUSH         DO_PRAGMA(GCC diagnostic push)
    #define DISABLE_WARNING_POP          DO_PRAGMA(GCC diagnostic pop)
    // Treats only this header file as a system header, AKA disables all warnings in this header file only.
    // The effect does not extend into any file that includes this header file.
    #pragma GCC system_header
    // define the macros that are used in the code down below to prevent compiler failure
    // NOTE: Apparently GCC compiler doesn't support disabling individual warnings.
    #define DISABLE_WARNING_ANONYMOUS_STRUCT_UNION
    #define DISABLE_WARNING_PADDING_AT_END_OF_STRUCT
    #define DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION
#elif defined(_MSC_VER)
    #define DISABLE_WARNING_PUSH           __pragma(warning( push ))
    #define DISABLE_WARNING_POP            __pragma(warning( pop ))
    #define DISABLE_WARNING(warningNumber) __pragma(warning( disable : warningNumber ))  // internal utility
    // Add warnings that you want to disable here:
    #define DISABLE_WARNING_ANONYMOUS_STRUCT_UNION   \
        DISABLE_WARNING(4201)  // nonstandard extension used: nameless struct/union
    #define DISABLE_WARNING_PADDING_AT_END_OF_STRUCT \
        DISABLE_WARNING(4820)  // 'MemTravStack::<unnamed-tag>': '4' bytes padding added after data member 'MemTravStack::<unnamed-tag>::offset'
    #define DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION
#else
    // define the macros that are used in the code down below to prevent compiler failure
    // NOTE: internal utility macros should not be defined here
    #define DISABLE_WARNING_PUSH
    #define DISABLE_WARNING_POP
    // Add warnings that you want to disable here:
    #define DISABLE_WARNING_ANONYMOUS_STRUCT_UNION
    #define DISABLE_WARNING_PADDING_AT_END_OF_STRUCT
    #define DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION
#endif


DISABLE_WARNING_PUSH       // save the current pragma state, save the current compiler settings
// select the warnings that we want to disable, for this file only
DISABLE_WARNING_ANONYMOUS_STRUCT_UNION
DISABLE_WARNING_PADDING_AT_END_OF_STRUCT
DISABLE_WARNING_ANON_TYPES_IN_ANON_UNION


namespace IGC {

// will be patched with the global root signature at compile time
struct alignas(8) TypeHoleGlobalRootSig
{
    char __Padding[8];
};

// This is currently all of the cross-thread constant data that will be populated
// in the indirect data by the UMD (See D3D12RaytracingDispatch.h for more info).
struct RTGlobalsAndRootSig
{
    RayDispatchGlobalData RTGlobals;
    TypeHoleGlobalRootSig GlobalRootSig;
};

} // namespace IGC

namespace RTStackFormat {

uint32_t getRTStackHeaderSize(uint32_t MaxBVHLevels);

constexpr static uint32_t MAX_BVH_LEVELS = 2;
constexpr static uint32_t MEM_STACK_SIZE = 4;

// DXR uses two BVH levels: a top-level acceleration structure and a
// bottom-level acceleration structure.
constexpr static uint8_t TOP_LEVEL_BVH = 0;
constexpr static uint8_t BOTTOM_LEVEL_BVH = 1;

// Auxiliary types to make update of the structs easier.
using uint3 = uint32_t[3];
using uint4 = uint32_t[4];
using Vec3f = float[3];
using float4 = float[4];

static_assert(sizeof(uint3) == 12, "size mismatch");
static_assert(sizeof(uint4) == 16, "size mismatch");
static_assert(sizeof(Vec3f) == 12, "size mismatch");
static_assert(sizeof(float4) == 16, "size mismatch");

// This is taken from the functional model.  It's not clear that we have an
// immediate use to read these fields but it is useful to have here for
// documentation purposes.
struct KSP
{
    /* returns the base address of the shader record this KSP is part of */
    void* getShaderRecord() {
        return (char*)this + 8 * _offset - 32; // ShaderIdentifier is 32 bytes large
    }

    /* checks if this KSP is a NULL KSP */
    bool isNull() const {
        return *(uint64_t*)this == NullValue;
    }

    static constexpr uint64_t NullValue = 0;

public:
    uint64_t _offset               : 3;   // offset in 8-byte blocks to the start of shader parameters
    uint64_t _push_constant_enable : 1;   // If this field is enabled,
                                          // 8DWs are pushed from the Local
                                          // Arguments at 32B offset from the
                                          // start of the shader record address.

    uint64_t _dispatch_mode        : 1;   // 0 = SIMD16, 1 = SIMD8
    uint64_t _reserved0            : 1;
    uint64_t _shader               : 48;  // shader function pointer:
                                          // In hardware this are only 26 bits and
                                          // functions are assumed to be 64 bit aligned.
                                          // The functional model cannot assume 64 bit alignment
                                          // and we have to use more bits to store function pointers.

    uint64_t _reserved1            : 10;  // unused padding bytes
};

static_assert(sizeof(KSP) == 8, "changed?");

// This is the structure of a shader identifier as of DG2 at least.  The compiler
// output structure (i.e., RayTracingPipelineOutput) must obey this format as
// this is where HW expects the shaders to be.
struct ShaderIdentifier
{
    KSP ClosestHit;
    union
    {
        KSP Intersection;
        KSP AnyHit;
    };
    KSP Unused1;
    KSP Unused2;

    static constexpr uint32_t NumSlots = SHADER_IDENTIFIER_SIZE_IN_BYTES / sizeof(KSP);
    static constexpr uint32_t RaygenFirstOpenSlot = 1;
    static constexpr uint32_t NumRaygenOpenSlots  = NumSlots - RaygenFirstOpenSlot;
};

static_assert(ShaderIdentifier::NumSlots == 4);
static_assert(sizeof(ShaderIdentifier) == SHADER_IDENTIFIER_SIZE_IN_BYTES, "changed?");

// will be patched with the local root signature at compile time
struct alignas(32) TypeHoleLocalRootSig
{
    char __Padding[32];
};

// A shader record is composed of two parts:
// +-------------------+-------------------+
// | Shader Identifier |     Local Args    |
// +-------------------+-------------------+
//  <----32 bytes-----> <--(4K - 32) max-->
//
// That is, the entire record can be at most 4096 bytes so at
// most 4096 - 32 = 4064 bytes can be referenced by a local
// root signature.
struct alignas(RAYTRACING_SHADER_RECORD_BYTE_ALIGNMENT) ShaderRecord
{
    ShaderIdentifier ID;
    TypeHoleLocalRootSig LocalRootSig;
};

struct MemHit {
    float    t;                    // hit distance of current hit (or initial traversal distance)
    float    u, v;                 // barycentric hit coordinates

    enum class Bits : uint8_t
    {
        primIndexDelta  = 16,
        valid           = 1,
        leafType        = 3,
        primLeafIndex   = 4,
        bvhLevel        = 3,
        frontFace       = 1,
        done            = 1,
        pad0            = 3,

        primLeafPtr     = 42,
        hitGroupRecPtr0 = 22,

        instLeafPtr     = 42,
        hitGroupRecPtr1 = 22,
    };

    // This is the offset within the bitfield
    enum class Offset : uint8_t
    {
        // Add as needed
        valid         = 16,
        leafType      = 17,
        primLeafIndex = 20,
        bvhLevel      = 24,
        frontFace     = 27,
        done          = 28,
    };

    using T = uint32_t;

    union
    {
        uint32_t topOfPrimIndexDelta;
        uint32_t frontFaceDword;
        uint32_t hitInfoDWord;

        struct {
            uint32_t primIndexDelta : (T)Bits::primIndexDelta; // prim index delta for compressed meshlets and quads
            uint32_t valid          : (T)Bits::valid;          // set if there is a hit
            uint32_t leafType       : (T)Bits::leafType;       // type of node primLeafPtr is pointing to
            uint32_t primLeafIndex  : (T)Bits::primLeafIndex;  // index of the hit primitive inside the leaf
            uint32_t bvhLevel       : (T)Bits::bvhLevel;       // the instancing level at which the hit occured
            uint32_t frontFace      : (T)Bits::frontFace;      // whether we hit the front-facing side of a triangle (also used to pass opaque flag when calling intersection shaders)
            uint32_t done           : (T)Bits::done;           // used in sync mode to indicate that traversal is done (HW will only set this to 0)
            uint32_t pad0           : (T)Bits::pad0;           // unused bits (explicit padding)
        };
    };

    union
    {
        uint64_t topOfPrimLeafPtr;

        struct {
            uint64_t primLeafPtr     : (T)Bits::primLeafPtr;     // pointer to BVH leaf node (multiple of 64 bytes)
            uint64_t hitGroupRecPtr0 : (T)Bits::hitGroupRecPtr0; // LSB of hit group record of the hit triangle (multiple of 16 bytes)
        };
    };

    union
    {
        uint64_t topOfInstLeafPtr;

        struct {
            uint64_t instLeafPtr     : (T)Bits::instLeafPtr;     // pointer to BVH instance leaf node (in multiple of 64 bytes)
            uint64_t hitGroupRecPtr1 : (T)Bits::hitGroupRecPtr1; // MSB of hit group record of the hit triangle (multiple of 16 bytes)
        };
    };

    static_assert((uint32_t)Bits::primLeafPtr == (uint32_t)Bits::instLeafPtr,
        "Size changed?");
};

struct StackEntry
{
    enum class Bits : uint8_t
    {
        offset    = 31,
        lastChild = 1,
    };

    using T = uint32_t;

    uint32_t offset    : (T)Bits::offset;    // in multiples of 64B. max 2^29 prims i.e. max 2^30 nodes. one extra bit
    uint32_t lastChild : (T)Bits::lastChild;
};


/////////////// BVH structures ///////////////

enum NodeType : uint8_t
{
    NODE_TYPE_MIXED = 0x0,        // identifies a mixed internal node where each child can have a different type
    NODE_TYPE_INTERNAL = 0x0,     // internal BVH node with 6 children
    NODE_TYPE_INSTANCE = 0x1,     // instance leaf
    NODE_TYPE_PROCEDURAL = 0x3,   // procedural leaf
    NODE_TYPE_QUAD = 0x4,         // quad leaf
    NODE_TYPE_MESHLET = 0x6,      // meshlet leaf
    NODE_TYPE_INVALID = 0x7       // indicates invalid node
};

static constexpr const uint32_t NUM_CHILDREN = 6;

struct InternalNode
{
    Vec3f lower;          // world space origin of quantization grid
    int32_t childOffset;  // offset to all children in 64B multiples

    NodeType nodeType;    // the type of the node
    uint8_t pad;          // unused byte

    int8_t exp_x;         // 2^exp_x is the size of the grid in x dimension
    int8_t exp_y;         // 2^exp_y is the size of the grid in y dimension
    int8_t exp_z;         // 2^exp_z is the size of the grid in z dimension
    uint8_t nodeMask;     // mask used for ray filtering

    struct ChildData
    {
        uint8_t blockIncr : 2;  // size of child in 64 byte blocks
        uint8_t startPrim : 4;  // start primitive in fat leaf mode or child type in mixed mode
        uint8_t pad       : 2;  // unused bits
    } childData[NUM_CHILDREN];

    uint8_t lower_x[NUM_CHILDREN];  // the quantized lower bounds in x-dimension
    uint8_t upper_x[NUM_CHILDREN];  // the quantized upper bounds in x-dimension
    uint8_t lower_y[NUM_CHILDREN];  // the quantized lower bounds in y-dimension
    uint8_t upper_y[NUM_CHILDREN];  // the quantized upper bounds in y-dimension
    uint8_t lower_z[NUM_CHILDREN];  // the quantized lower bounds in z-dimension
    uint8_t upper_z[NUM_CHILDREN];  // the quantized upper bounds in z-dimension
};

enum GeometryFlags : uint32_t
{
    NONE = 0x0,
    RTX_OPAQUE = 0x1
};

struct PrimLeafDesc
{
    enum Type : uint32_t
    {
        TYPE_NONE = 0,

        /* For a node type of NODE_TYPE_MESHLET, the referenced leaf may
         * still be a QuadLeaf or a Meshlet. We need this as we produce
         * two quads instead of one meshlet when meshlet compression does
         * not work well. */

        TYPE_QUAD = 0,
        TYPE_MESHLET = 1,

        /* For a node type of NODE_TYPE_PROCEDURAL we support enabling
         * and disabling the opaque/non_opaque culling. */

        TYPE_OPACITY_CULLING_ENABLED = 0,
        TYPE_OPACITY_CULLING_DISABLED = 1
    };

    enum class Bits : uint8_t
    {
        shaderIndex = 24,
        geomMask    = 8,

        geomIndex   = 29,
        type        = 1,
        geomFlags   = 2,
    };

    using T = uint32_t;

    uint32_t shaderIndex : (T)Bits::shaderIndex; // shader index used for shader record calculations
    uint32_t geomMask    : (T)Bits::geomMask;    // geometry mask used for ray masking

    union
    {
        uint32_t topOfGeomIndex;

        struct {
            uint32_t geomIndex : (T)Bits::geomIndex; // the geometry index specifies the n'th geometry of the scene
            /* Type */
            uint32_t type      : (T)Bits::type;      // distinguish between QuadLeaves and Meshlets or enable/disable culling for procedurals and instances
            /* GeometryFlags */
            uint32_t geomFlags : (T)Bits::geomFlags; // geometry flags of this geometry
        };
    };
};

struct ProceduralLeaf
{
    static const uint32_t N = 13;

    enum class Bits : uint8_t
    {
        numPrimitives = 4,
        pad           = 32 - numPrimitives - N,
        last          = N,
    };

    using T = uint32_t;

    PrimLeafDesc leafDesc;                            // leaf header identifying the geometry
    uint32_t numPrimitives : (T)Bits::numPrimitives;  // number of stored primitives
    uint32_t pad           : (T)Bits::pad;            // explicit padding bits
    uint32_t last          : (T)Bits::last;           // bit vector with a last bit per primitive
    uint32_t _primIndex[N];                           // primitive indices of all primitives stored inside the leaf
};

static_assert(sizeof(ProceduralLeaf) == 64, "ProceduralLeaf must be 64 bytes large");

struct QuadLeaf
{
    PrimLeafDesc leafDesc;  // the leaf header

    uint32_t primIndex0;    // primitive index of first triangle (has to be at same offset as for CompressedMeshlet!)

    enum class Bits : uint8_t
    {
        primIndex1Delta = 16,
        j0              = 2,
        j1              = 2,
        j2              = 2,
        last            = 1,
        pad             = 9,
    };

    using T = uint32_t;

    union {
        uint32_t topOfPriIndex1Delta;

        struct {
            uint32_t primIndex1Delta : (T)Bits::primIndex1Delta;  // delta encoded primitive index of second triangle
            uint32_t j0              : (T)Bits::j0;               // specifies first vertex of second triangle
            uint32_t j1              : (T)Bits::j1;               // specified second vertex of second triangle
            uint32_t j2              : (T)Bits::j2;               // specified third vertex of second triangle
            uint32_t last            : (T)Bits::last;             // true if the second triangle is the last triangle in a leaf list
            uint32_t pad             : (T)Bits::pad;              // unused bits
        };
    };

    Vec3f v0;  // first vertex of first triangle
    Vec3f v1;  // second vertex of first triangle
    Vec3f v2;  // third vertex of first triangle
    Vec3f v3;  // additional vertex only used for second triangle
};

static_assert(sizeof(QuadLeaf) == 64, "QuadLeaf must be 64 bytes large");

static_assert(sizeof(QuadLeaf) == sizeof(ProceduralLeaf),
    "Leaves must be same size");

constexpr uint32_t LeafSize = sizeof(QuadLeaf);

/*
  The CompressedMeshlet structure stores triangles compressed
  losslessly. Between 1 to 16 triangles can get stored that index
  into a vertex array with up to 16 vertices.

  The structure contains a header, a list of delta compressed
  indices (allocated front to back), and a list of compressed
  vertices (allocated back to front).

 */
struct CompressedMeshlet
{
    PrimLeafDesc leafDesc;
    uint32_t first_triangle_primID;      // has to be at same offset as for QuadLeaf!

    uint32_t num_triangles         : 4;  // number of stored triangles (0 -> 1 triangle, 1 -> 2 triangles, etc..)
    uint32_t num_position_bits_x   : 4;  // number of bit pairs for x coordinate (0 -> 2 bits, 1 -> 4 bits, etc.)
    uint32_t num_position_bits_y   : 4;  // number of bit pairs for y coordinate (0 -> 2 bits, 1 -> 4 bits, etc.)
    uint32_t num_position_bits_z   : 4;  // number of bit pairs for z coordinate (0 -> 2 bits, 1 -> 4 bits, etc.)
    uint32_t num_primID_delta_bits : 4;  // number of bits for primIndex delta encoding (0 -> 1 bit, 1 -> 2 bits, etc.)
    uint32_t first_triangle_islast : 1;  // last bit for first triangle
    uint32_t pad                   : 8;  // explicit padding bits

    /* in this array triangles are stored front to back and vertex
     * positions back to front. */
    char data[100];

    Vec3f first_position;
};

static_assert(sizeof(CompressedMeshlet) == 128, "CompressedMeshlet has to be 128 bytes large");

enum class InstanceFlags : uint8_t
{
    NONE = 0x0,
    TRIANGLE_CULL_DISABLE = 0x1,
    TRIANGLE_FRONT_COUNTERCLOCKWISE = 0x2,
    FORCE_OPAQUE = 0x4,
    FORCE_NON_OPAQUE = 0x8
};

struct InstanceLeaf
{
    /* first 64 bytes accessed during traversal by hardware */
    struct Part0
    {
    public:
        enum class Bits : uint8_t
        {
            shaderIndex = 24,
            geomMask = 8,

            instContToHitGrpIndex = 24,
            pad0 = 5,
            type = 1,
            geomFlags = 2,

            startNodePtr = 48,
            instFlags = 8,
            reserved1 = 1,
            reserved2 = 7,
        };

        using T = uint32_t;

        uint32_t shaderIndex : (T)Bits::shaderIndex;  // shader index used to calculate instancing shader in case of software instancing
        uint32_t geomMask    : (T)Bits::geomMask;     // geometry mask used for ray masking

        union {
            uint32_t instContToHitGroupIndex;

            struct {
                uint32_t instanceContributionToHitGroupIndex : (T)Bits::instContToHitGrpIndex;  // TODO: add description
                uint32_t pad0                                : (T)Bits::pad0;                   // explicit padding bits
                /* PrimLeafDesc::Type */
                uint32_t type                                : (T)Bits::type;                   // enables/disables opaque culling
                /* GeometryFlags */
                uint32_t geomFlags                           : (T)Bits::geomFlags;              // geometry flags are not used for instances
            };
        };

        uint64_t startNodePtr : (T)Bits::startNodePtr;  // start node where to continue traversal of the instanced object
        uint64_t instFlags    : (T)Bits::instFlags;     // flags for the instance (see InstanceFlags)

        // DG2
        //uint64_t pad1         : 8;                    // unused bits (explicit padding)
        uint64_t reserved1 : (T)Bits::reserved1;  // 0 for less than or equal, 1 for greater
        uint64_t reserved2: (T)Bits::reserved2; // to be compared with ray.ComparisonValue


        // Note that the hardware swaps the translation components of the
        // world2obj and obj2world matrices, and uses column-major instead of row-major.

        // DXR and Vulkan specify transform matrices in row-major order.
        // A 3x4 row-major matrix from the API maps to HWInstanceLeaf layout as shown:
        //     | vx[0] vy[0] vz[0] p[0] |
        // M = | vx[1] vy[1] vz[1] p[1] |
        //     | vx[2] vy[2] vz[2] p[2] |

        Vec3f world2obj_vx;   // 1st col of Worl2Obj transform
        Vec3f world2obj_vy;   // 2nd col of Worl2Obj transform
        Vec3f world2obj_vz;   // 3rd col of Worl2Obj transform
        Vec3f obj2world_p;    // translation of Obj2World transform (on purpose in first 64 bytes)
    } part0;

    /* second 64 bytes accessed during shading */
    struct Part1
    {
        uint64_t bvhPtr : 48;   // pointer to BVH where start node belongs too
        uint64_t pad    : 16;   // unused bits (explicit padding)

        uint32_t instanceID;    // user defined value per DXR spec
        uint32_t instanceIndex; // geometry index of the instance (n'th geometry in scene)

        Vec3f obj2world_vx;     // 1st col of Obj2World transform
        Vec3f obj2world_vy;     // 2nd col of Obj2World transform
        Vec3f obj2world_vz;     // 3rd col of Obj2World transform
        Vec3f world2obj_p;      // translation of World2Obj transform
    } part1;
};

static_assert(sizeof(InstanceLeaf) == 128, "InstanceLeaf must be 128 bytes large");

struct alignas(256) BVH
{
    uint64_t rootNodeOffset;        // root node offset

    Vec3f   bounds_min;             // bounds of the BVH
    Vec3f   bounds_max;

    uint32_t nodeDataStart;         // first 64 byte block of node data
    uint32_t nodeDataCur;           // next free 64 byte block for node allocations
    uint32_t leafDataStart;         // first 64 byte block of leaf data
    uint32_t leafDataCur;           // next free 64 byte block for leaf allocations
    uint32_t proceduralDataStart;   // first 64 byte block for procedural leaf data
    uint32_t proceduralDataCur;     // next free 64 byte block for procedural leaf allocations
    uint32_t backPointerDataStart;  // first 64 byte block for back pointers
    uint32_t backPointerDataEnd;    // end of back pointer array

    // miscellaneous header information
    // ...

    // node data

    // These are really variable length arrays in memory but are here for
    // documentation purposes.
    InternalNode   innerNode[1];
    QuadLeaf       geomLeaf[1];
    ProceduralLeaf proceduralLeaf[1];
    InstanceLeaf   instLeaf[1];
    uint32_t       backPointers[1];

    // array size = 256 - (sizeOfStructMembers % 256)
    // sizeOfStructMembers = 8          //uint64_t rootNodeOffset
    //                     + 2*12       // Vec3f   bounds_min; Vec3f   bounds_max;
    //                     + 9 * 4      // 9 * uint32_t
    //                     + 64         // InternalNode
    //                     + 64         // QuadLeaf
    //                     + 64         // ProceduralLeaf
    //                     + 128        // InstanceLeaf
    char __Padding[124];
};

struct NodeInfo
{
    enum class Bits : uint8_t
    {
        type     = 3,
        parent   = 1,

        cur_prim = 4,
    };

    using T = uint32_t;

    /* NodeType */
    uint8_t  type     : (T)Bits::type;
    uint8_t  parent   : (T)Bits::parent;   // Indicates a culled stack entry where a single parent node
                                           // is stored in place of multiple child nodes
    uint8_t  cur_prim : (T)Bits::cur_prim;
};

/**
 * MemTravStack originally used to have two different definitions in two different files.
 * Here these two definitions are merged into one for preserving backwards compatibility.
 *
 * Basically these two definitions have different internal layouts, different fields, but they have the same size.
 * So we can put these two definitions inside an anonymous union inside the main structure definition.
 * The anonymous union allows both these definitions to be accessed at once.
 * And the anonymous structs force all the fields in a particular definition to be non-overlapping.
 * Since the NoneInfo nodeInfo[MEM_STACK_SIZE] cannot be defined in both these anonymous structs, it doesn't matter which one we put that field in.
 *
 * Any one of these fields can be used, as long as one is consistent with which "overlapping definition" is being used.
 * Or both can be used at once for type punning, to set the value of the full variable, and then get a particular sub-section of that value as a bit field.
 * We maybe having code which accesses the fields in the first definition, and also code somewhere else in the project which accesses the fields in the second definition.
 */
struct MemTravStack
{
    union {
        ///  The original definition from RTStackFormat.h
        struct {
            uint32_t indexArray0;   // Restart information for the stack. Described in the background document.
            uint32_t indexArray1;
            uint32_t indexArray2;
            StackEntry stackEntry[MEM_STACK_SIZE];
            NodeInfo nodeInfo[MEM_STACK_SIZE];
        };

        ///  The original definition from ocl_raytracing_structures.h
        struct {
            uint64_t curDepth      : 5;        // current depth in the restart trail
            uint64_t restartTrail0 : 29;       // lower bits of restart trail
            uint64_t restartTrail1 : 29;       // higher bits of restart trail
            uint64_t lastChild0    : 1;        // last child bit for node 0
            uint32_t restartTrail2 : 29;       // highest bits of restart trail
            uint32_t lastChild123  : 3;        // last child bit for nodes 1/2/3

            int32_t offset[MEM_STACK_SIZE];    // Signed offset relative to BVH root in multiples of 64B.
            NodeInfo pad[MEM_STACK_SIZE];      // padding to make sure two structs of this union are the same size
        };
    };
};

constexpr uint32_t getRayFlagMask(uint32_t Val)
{
    return (Val << 1) - 1;
}

enum class RAYTRACING_PIPELINE_FLAGS : uint16_t
{
    NONE = 0x0,
    SKIP_TRIANGLES = 0x100,
    SKIP_PROCEDURAL_PRIMITIVES = 0x200,
};

enum class RayFlags : uint16_t
{
    NONE = 0x00,
    FORCE_OPAQUE = 0x01,                        // forces geometry to be opaque (no anyhit shader invokation)
    FORCE_NON_OPAQUE = 0x02,                    // forces geometry to be non-opqaue (invoke anyhit shader)
    ACCEPT_FIRST_HIT_AND_END_SEARCH = 0x04,     // terminates traversal on the first hit found (shadow rays)
    SKIP_CLOSEST_HIT_SHADER = 0x08,             // skip execution of the closest hit shader
    CULL_BACK_FACING_TRIANGLES = 0x10,          // back facing triangles to not produce a hit
    CULL_FRONT_FACING_TRIANGLES = 0x20,         // front facing triangles do not produce a hit
    CULL_OPAQUE = 0x40,                         // opaque geometry does not produce a hit
    CULL_NON_OPAQUE = 0x80,                     // non-opaque geometry does not produce a hit

    SKIP_TRIANGLES = 0x100,                     // Skip all triangle intersections and consider them as misses
    SKIP_PROCEDURAL_PRIMITIVES = 0x200,         // Skip execution of intersection shaders for procedural primitives

    // Anything below this point should not be propagated to RayFlags()

    //TRIANGLE_FRONT_COUNTERCLOCKWISE = 0x4000, // This value MUST not be programmed by SW but used internally by HW only.

    LEVEL_ASCEND_DISABLED = 0x8000,             // disables the automatic level ascend for this level,
                                                // thus traversal will terminate when BVH at this level is done
};

// DXR spec:
// "Only defined ray flags are propagated by the system, e.g. visible to the RayFlags() shader intrinsic."
constexpr uint32_t RayFlagsMask = getRayFlagMask((uint32_t)RayFlags::SKIP_PROCEDURAL_PRIMITIVES);

struct MemRay
{
    // 32 B
    Vec3f org;         // the origin of the ray
    Vec3f dir;         // the direction of the ray
    float tnear;       // the start of the ray
    float tfar;        // the end of the ray

    enum class Bits : uint8_t
    {
        rootNodePtr = 48,
        rayFlags    = 16,

        rayFlagsCopy = rayFlags,

        hitGroupSRBasePtr = 48,
        hitGroupSRStride  = 16,

        missSRPtr             = 48,
        pad                   = 1,
        shaderIndexMultiplier = 8,

        instLeafPtr = 48,
        rayMask     = 8,

        ComparisonValue = 7,
    };

    using T = uint32_t;

    // This is the offset within the bitfield
    enum class Offset : uint8_t
    {
        // Add as needed
        ComparisonValue = (T)Bits::missSRPtr + (T)Bits::pad,
        shaderIndexMultiplier = (T)Offset::ComparisonValue + (T)Bits::ComparisonValue,
        rayFlagsCopy = 0,
        rayMask = (uint32_t)Bits::instLeafPtr,
    };

    // 32 B
    union {
        uint64_t topOfNodePtrAndFlags;

        struct {
            uint64_t rootNodePtr : (T)Bits::rootNodePtr; // root node to start traversal at
            uint64_t rayFlags    : (T)Bits::rayFlags;    // ray flags (see RayFlags structure)
        };
    };

    union {
        uint64_t hitGroupShaderRecordInfo;

        struct {
            uint64_t hitGroupSRBasePtr : (T)Bits::hitGroupSRBasePtr; // base of hit group shader record array (16-bytes alignment)
            uint64_t hitGroupSRStride  : (T)Bits::hitGroupSRStride;  // stride of hit group shader record array (16-bytes alignment)
        };
    };

    union {
        uint64_t missShaderRecordInfo;

        struct {
            uint64_t missSRPtr             : (T)Bits::missSRPtr;             // pointer to miss shader record to invoke on a miss (8-bytes alignment)

            // DG2
            //uint64_t pad                 : 8;                              // explicit padding bits
            uint64_t pad                   : (T)Bits::pad;                   // explicit padding bits
            uint64_t ComparisonValue       : (T)Bits::ComparisonValue;       // to be compared with Instance.ComparisonValue


            uint64_t shaderIndexMultiplier : (T)Bits::shaderIndexMultiplier; // shader index multiplier
        };
    };

    union {
        uint64_t topOfInstanceLeafPtr;

        struct {
            // the 'instLeafPtr' is not actually used by HW in the TOP_LEVEL_BVH.
            // We insert the user set rayflags here (i.e., the flags set without
            // the pipeline flags from the RTPSO). Other IHVs thought pipeline
            // flags would not modify the results of RayFlags(). So we will read
            // that value from here and write the flags|pipline in the rayFlags
            // above as usual. DXR spec will be modified to this behavior.

            uint64_t instLeafPtr : (T)Bits::instLeafPtr;  // the pointer to instance leaf in case we traverse an instance (64-bytes alignment)
            uint64_t rayMask     : (T)Bits::rayMask;      // ray mask used for ray masking
        };
    };
};

static_assert(sizeof(MemHit) == 32,       "MemHit has to be 32 bytes large");
static_assert(sizeof(MemRay) == 64,       "MemRay has to be 64 bytes large");
static_assert(sizeof(MemTravStack) == 32, "MemTravStack has to be 32 bytes large");

//org, dir, tnear and tfar
constexpr uint32_t RayInfoSize = 8;


// On DG2, writes will not go to the L1$ unless they are 16-byte aligned
// and at least 16 bytes in size.
constexpr uint32_t LSC_WRITE_GRANULARITY = 16;

struct StackPtrAndBudges
{
    enum class Bits : uint8_t
    {
        DimBits = 5,
    };

    using T = uint32_t;

    // This tracks the offset from the base of the HW portion of the stack
    // to wherever we currently point in the SW portion of the stack.
    uint16_t StackOffset;

    union {
        uint16_t BudgeBits;

        struct {
            uint16_t XSize : (T)Bits::DimBits;  // TODO: add description
            uint16_t YSize : (T)Bits::DimBits;  // TODO: add description
            uint16_t ZSize : (T)Bits::DimBits;  // TODO: add description
            uint16_t Pad   : 1;                 // explicit padding bit to get 16 bits in the union
        };
    };
};

static_assert(sizeof(StackPtrAndBudges) == 4, "wrong size?");

// The goal is to minimize the amount of data we put into the L1$.  Rather than
// storing a full a64 pointer and 3 dwords for the x,y,z DispatchRayIndex()
// values (2 + 3 = 5 dwords per ray), we note that the DXR spec says:
//
// "There are 3 dimensions passed in to set the grid size: width/height/depth.
//  These dimensions are constrained such that width*height*depth <= 2^30.
//  Exceeding this produces undefined behavior."
//
// This means we can compress the three dims into 30 bits and use the upper
// bits of the stack pointer dword to track how many bits are needed by
// each dimension
struct StackPtrDRIEncoding
{
    StackPtrAndBudges PtrAndBudges;
    uint32_t CompressedDispatchRayIndices;
};

static_assert(sizeof(StackPtrDRIEncoding) == 8, "wrong size?");

struct alignas(LSC_WRITE_GRANULARITY) SWHotZone_v1
{
    StackPtrDRIEncoding Encoding;

    // Compiler may elect to enlarge the hot-zone.
    //uint8_t additional_bytes[];

    // pad to LSC write granularity (16B on Gen12)
    char __Padding[LSC_WRITE_GRANULARITY - sizeof(StackPtrDRIEncoding)];
};

// We currently default to this encoding.  Set the 'EnableCompressedRayIndices'
// regkey to switch to the "v1" encoding above.
struct alignas(LSC_WRITE_GRANULARITY) SWHotZone_v2
{
    uint32_t StackOffset;
    uint32_t DispatchRaysIndex[3];

    // Compiler may elect to enlarge the hot-zone.
    //uint8_t additional_bytes[];

    // pad to LSC write granularity (16B on Gen12)
};

constexpr uint32_t StackFrameAlign = 16;
static_assert(IGC::RTStackAlign % LSC_WRITE_GRANULARITY == 0, "not aligned to write granularity?");

// This is the portion of the RTStack that we read and write from to
// communicate with the RTUnit.
template <uint32_t MaxBVHLevels>
struct HWRayData
{
    MemHit committedHit;    // stores committed hit
    MemHit potentialHit;    // stores potential hit that is passed to any hit shader

    MemRay       ray[MaxBVHLevels];       // stores a ray for each instancing level
    MemTravStack travStack[MaxBVHLevels]; // spill location for the internal stack state per instancing level
};

// This is the ShadowMemory that we maintain if we DONOT need spill/fill it to/from HW RTStack.
// We keep this data structure as small as possible to reduce the size.
template <uint32_t MaxBVHLevels>
struct SMRayData
{
    MemHit committedHit;    // stores committed hit
    MemHit potentialHit;    // stores potential hit that is passed to any hit shader

    MemRay       ray[MaxBVHLevels];       // stores a ray for each instancing level
    //MemTravStack travStack[MaxBVHLevels]; // spill location for the internal stack state per instancing level
};

// This is the raytracing software stack.  Every allocated stack will have
// this header at the very beginning.  The stack convention described at the
// top of this file will reside right after this data (i.e., we offset past
// this header to get to the compiler managed stack).
template <uint32_t MaxBVHLevels>
struct RTStack
{
    // HW accessible region
    HWRayData<MaxBVHLevels> hwRayData;
};

// This is the ShadowMemory's RTStack.
template <uint32_t MaxBVHLevels>
struct SMStack
{
    // SM accessible region
    SMRayData<MaxBVHLevels> smRayData;
};

// For now, we're just defaulting to using an RTStack assuming
// MAX_BVH_LEVELS == 2.
using RTStack2   = RTStack<MAX_BVH_LEVELS>;
using HWRayData2 = HWRayData<MAX_BVH_LEVELS>;
using SMStack2   = SMStack<MAX_BVH_LEVELS>;
using SMRayData2 = SMRayData<MAX_BVH_LEVELS>;

#if !defined(__clang__) || (__clang_major__ >= 10)
static_assert(std::is_standard_layout_v<RTStack2>);
static_assert(std::is_standard_layout_v<SMStack2>);
#endif

// Makes sure that important fields are at their proper offset from the starty of the structure.
// Update this if the structure changes.  This is just for documentation purposes.
static_assert(offsetof(HWRayData2, committedHit) == 0,  "unexpected offset!");
static_assert(offsetof(HWRayData2, potentialHit) == 32, "unexpected offset!");
static_assert(offsetof(HWRayData2, ray) == 64,          "unexpected offset!");
static_assert(offsetof(HWRayData2, travStack) == 192,   "unexpected offset!");
static_assert(offsetof(RTStack2, hwRayData) == 0,       "unexpected offset!");

// This is the structure of memory that will be allocated by the UMD:
template <typename HotZoneTy, typename HWRayDataTy, typename RTStackTy, typename SWStackTy,
          uint64_t DSS_COUNT, uint64_t NumDSSRTStacks, uint64_t SIMD_LANES_PER_DSS>
struct RTMemory
{
    // Packed SW hot-zones
    alignas(IGC::RTStackAlign) HotZoneTy HotZones[DSS_COUNT * NumDSSRTStacks];

    // HWRayData for synchronous ray tracing
    alignas(IGC::RTStackAlign) HWRayDataTy SyncStacks[DSS_COUNT * SIMD_LANES_PER_DSS];

    // RTMemBasePointer points here <----
    alignas(IGC::RTStackAlign) RTStackTy AsyncStacks[DSS_COUNT * NumDSSRTStacks];

    // Align to L3 sector size, or LSC sector size if stack is LSC-cached
    alignas(IGC::RTStackAlign) SWStackTy SWStacks[DSS_COUNT * NumDSSRTStacks];
};

// This will be invoked by the UMD to allocate stack space.
constexpr uint64_t calcRTMemoryAllocSize(
    uint64_t SWHotZoneSize,
    uint64_t SyncStackSize,
    uint64_t AsyncStackSize,
    uint64_t SWStackSize,
    uint64_t DSS_COUNT,
    uint64_t NumDSSRTStacks,
    uint64_t SIMD_LANES_PER_DSS)
{
    // SIMD_LANES_PER_DSS = EUCount * ThreadCount * SIMD16
    return IGC::Align(SWHotZoneSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign)     +
           IGC::Align(SyncStackSize * DSS_COUNT * SIMD_LANES_PER_DSS, IGC::RTStackAlign) +
           IGC::Align(AsyncStackSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign)    +
           IGC::Align(SWStackSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign);
}

constexpr uint32_t getSyncStackSize(){ return sizeof(HWRayData2); }

// As per this:
// The rtMemBasePtr points to the top of the async stacks.  After having computed
// the full allocation with 'calcRTMemoryAllocSize()', This returns the offset
// of the async stacks, hot zone, and sw stack from the base of the allocation.
constexpr uint64_t calcRTMemoryOffsets(
    uint64_t SWHotZoneSize,
    uint64_t SyncStackSize,
    uint64_t AsyncStackSize,
    uint64_t &SWHotZoneOffset,
    uint64_t &SWStackOffset,
    uint64_t DSS_COUNT,
    uint64_t NumDSSRTStacks,
    uint64_t SIMD_LANES_PER_DSS)
{
    uint64_t AsyncOffset =
        IGC::Align(SWHotZoneSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign) +
        IGC::Align(SyncStackSize * DSS_COUNT * SIMD_LANES_PER_DSS, IGC::RTStackAlign);

    // The hot zone is the base of the allocation
    SWHotZoneOffset = 0;
    SWStackOffset =
        AsyncOffset +
        IGC::Align(AsyncStackSize * DSS_COUNT * NumDSSRTStacks, IGC::RTStackAlign);

    return AsyncOffset;
}

// unit tests:
static_assert(
    calcRTMemoryAllocSize(
        sizeof(SWHotZone_v1), sizeof(HWRayData2), sizeof(HWRayData2), 128,
        32, 2048, 16 * 8 * 16) ==
    sizeof(RTMemory<SWHotZone_v1, HWRayData2, HWRayData2, uint8_t[128],
        32, 2048, 16 * 8 * 16>), "mismatch?");

static_assert(
    calcRTMemoryAllocSize(
        8, sizeof(HWRayData2), sizeof(HWRayData2), 136,
        32, 2048, 16 * 8 * 16) ==
    sizeof(RTMemory<uint8_t[8], HWRayData2, HWRayData2, uint8_t[136],
        32, 2048, 16 * 8 * 16>), "mismatch?");

struct TraceRayMessage
{
    /* a list of commands for the ray tracing hardware */
    enum TraceRayCtrl : uint8_t
    {
        TRACE_RAY_INITIAL = 0,              // Initializes hit and initializes traversal state
        TRACE_RAY_INSTANCE = 1,             // Loads committed hit and initializes traversal state
        TRACE_RAY_COMMIT = 2,               // Loads potential hit and loads traversal state
        TRACE_RAY_CONTINUE = 3,             // Loads committed hit and loads traversal state
        TRACE_RAY_NONE = 5                  // Illegal!
    };

    // This data is sent per message and is uniform across all rays in a dispatch.
    struct Header
    {
        // bits [63:0]
        uint64_t rtDispatchGlobalsPtr : 48;  // pointer to dispatch globals
        uint64_t padding;
        union {
            uint64_t rayQueryLocation;
            // bit 128
            uint64_t rayQuery         : 1;   // indicates a ray query message
        };
    } header;

    // this data is sent per ray (SIMD LANE)
    struct Payload
    {
        uint8_t      bvhLevel;     // the level tells the hardware which ray to process
        TraceRayCtrl traceRayCtrl; // the command the hardware should perform
        uint16_t     stackID;      // the ID of the stack of this thread
    } payload;

    static_assert(sizeof(Payload) == 4, "Payload must be 4 bytes");
};

// Extra rayquery information which are not part of RTStack
struct RayQueryStateInfo
{
    TraceRayMessage::TraceRayCtrl traceRayCtrl;
    //add more here if needed
};

// ShadowMemory: memory allocated by SW to spill/fill RTStackFormat::RayQueryObject
// ShadowMemory holds an array of RayQueryObject
// Implementation wise, ShadowMemory is used blindly by RayTracing FrontEnd no matter how many RayQueryObjects there are.
// And we rely on later optimization to boil away unnecessary ShadowMemory accesses.
// Theoretically (if optimization works perfectly well), there should be NO ShadowMemory access in GEN kernel
// unless there are multiple RayQuery objects whose liveness overlap with each other.
// NOTE: Not all information in RayQueryObject should be spill/fill, for example, those ShaderRecord information is only for async traceray.
// And we might want to avoid spill/fill the whole RayQueryObject. On the other hand, we want to reuse existing data structure like RTStack
// instead of recreating wheels. So, temporarily, we might still spill/fill the whole RayQueryObject.
template <uint32_t MaxBVHLevels>
struct RayQueryObject
{
    RTStack<MaxBVHLevels> rtStack;
    RayQueryStateInfo   stateInfo;
};

using RayQueryObject2 = RayQueryObject<MAX_BVH_LEVELS>;
//static_assert(std::is_standard_layout_v<RayQueryObject2>);

// TraceRayInline enums

enum COMMITTED_STATUS : uint32_t
{
    COMMITTED_NOTHING,
    COMMITTED_TRIANGLE_HIT,
    COMMITTED_PROCEDURAL_PRIMITIVE_HIT
};

} // namespace RTStackFormat


DISABLE_WARNING_POP  // restore the previously saved pragma state, restore former compiler settings