1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2019-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//===----------------------------------------------------------------------===//
///
/// This is really just a stripped down version of the CSE pass. If we do CSE
/// in general prior to continuation splitting, the increased live ranges of
/// CSE'd values can create spills that we don't want. Here, we CSE just the
/// values that we had to hoist to minimize duplicated spills.
///
//===----------------------------------------------------------------------===//
#include "RTBuilder.h"
#include "Compiler/IGCPassSupport.h"
#include "iStdLib/utility.h"
#include "common/LLVMUtils.h"
#include "common/LLVMWarningsPush.hpp"
#include "llvm/ADT/DenseMap.h"
#include "common/LLVMWarningsPop.hpp"
using namespace llvm;
using namespace IGC;
#define DEBUG_TYPE "rayinfo-cse"
class RayInfoCSEPass : public FunctionPass
{
public:
RayInfoCSEPass() : FunctionPass(ID)
{
initializeRayInfoCSEPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override
{
return "RayInfoCSEPass";
}
void getAnalysisUsage(llvm::AnalysisUsage &AU) const override
{
AU.setPreservesCFG();
}
static char ID;
private:
bool Changed;
};
char RayInfoCSEPass::ID = 0;
struct CSEVal
{
Instruction* Inst;
CSEVal(Instruction* I) : Inst(I) { }
bool isSentinel() const
{
return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
}
};
namespace llvm {
// Tell DenseMap how to compare instructions to cheaply tell whether we
// can merge an instruction with one we've already seen.
template <> struct DenseMapInfo<CSEVal> {
static inline CSEVal getEmptyKey() {
return DenseMapInfo<Instruction*>::getEmptyKey();
}
static inline CSEVal getTombstoneKey() {
return DenseMapInfo<Instruction*>::getTombstoneKey();
}
static unsigned getHashValue(CSEVal Val);
static bool isEqual(CSEVal LHS, CSEVal RHS);
};
} // end namespace llvm
unsigned DenseMapInfo<CSEVal>::getHashValue(CSEVal Val) {
Instruction *Inst = Val.Inst;
// Mix in the opcode.
return hash_combine(
Inst->getOpcode(),
hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
}
bool DenseMapInfo<CSEVal>::isEqual(CSEVal LHS, CSEVal RHS)
{
Instruction* LHSI = LHS.Inst, * RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI;
if (LHSI->getOpcode() != RHSI->getOpcode())
return false;
if (LHSI->isIdenticalToWhenDefined(RHSI))
return true;
return false;
}
// Register pass to igc-opt
#define PASS_FLAG "rayinfo-cse"
#define PASS_DESCRIPTION "Lightweight CSE on entry block rayinfo intrinsics"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(RayInfoCSEPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_END(RayInfoCSEPass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
bool RayInfoCSEPass::runOnFunction(Function &F)
{
Changed = false;
auto& EntryBB = F.getEntryBlock();
uint32_t MemGeneration = 0;
DenseMap<CSEVal, Instruction*> AvailableValues;
DenseMap<CSEVal, std::pair<Instruction*, uint32_t>> AvailableCalls;
for (auto II = EntryBB.begin(); II != EntryBB.end(); /* empty */)
{
auto* I = &*II++;
if (I->mayWriteToMemory())
{
// Conservatively, don't CSE values that read from memory that
// have a write in between them.
MemGeneration++;
continue;
}
auto* GII = dyn_cast<GenIntrinsicInst>(I);
if (!GII)
continue;
switch (GII->getIntrinsicID())
{
case GenISAIntrinsic::GenISA_RayInfo:
case GenISAIntrinsic::GenISA_RayTCurrent:
case GenISAIntrinsic::GenISA_LocalBufferPointer:
break;
default:
continue;
}
if (GII->doesNotAccessMemory())
{
// If this is a simple instruction that we can value number, process it.
// See if the instruction has an available value. If so, use it.
if (Value *V = AvailableValues.lookup(I)) {
I->replaceAllUsesWith(V);
I->eraseFromParent();
Changed = true;
continue;
}
// Otherwise, just remember that this value is available.
AvailableValues.insert(std::make_pair(I, I));
continue;
}
else if (GII->onlyReadsMemory())
{
// If we have an available version of this call, and if it is the right
// generation, replace this instruction.
std::pair<Instruction*, unsigned> InVal = AvailableCalls.lookup(I);
if (InVal.first != nullptr && (MemGeneration == InVal.second))
{
I->replaceAllUsesWith(InVal.first);
I->eraseFromParent();
Changed = true;
continue;
}
// Otherwise, remember that we have this instruction.
AvailableCalls.insert(
std::make_pair(I, std::make_pair(I, MemGeneration)));
continue;
}
}
return Changed;
}
namespace IGC
{
Pass* createRayInfoCSEPass(void)
{
return new RayInfoCSEPass();
}
} // namespace IGC
|