File: RayTracingConstantCoalescingPass.cpp

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (529 lines) | stat: -rw-r--r-- 18,630 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/*========================== begin_copyright_notice ============================

Copyright (C) 2020-2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

//===----------------------------------------------------------------------===//
///
/// This pass coalesces reads from the RTGlobals and global root signature
/// into block reads.  It may be extended for the local root signature in the
/// future.
///
/// Rather than doing individual loads such as:
///
/// %&stackSizePerRay = getelementptr %RayDispatchGlobalData addrspace(1)* %globalPtr, i64 0, i32 2, i32 0
/// %stackSizePerRay = load i32 addrspace(1)* %&stackSizePerRay
///
/// %&rtMemBasePtr = getelementptr %RayDispatchGlobalData addrspace(1)* %globalPtr, i64 0, i32 0
/// %bc = bitcast i64 addrspace(1)* %&rtMemBasePtr to <2 x i32> addrspace(1)*
/// %rtMemBasePtr = load <2 x i32> addrspace(1)* %bc
///
/// ...
///
/// We can do a block load then extract out the pieces:
///
/// %BlockLoad = load <8 x i32> addrspace(1)* %globalPtr
///
/// %stackSizePerRay = extractelement <8 x i32> %BlockLoad, i64 4
///
/// %9 = extractelement <8 x i32> %BlockLoad, i64 0
/// %10 = extractelement <8 x i32> % BlockLoad, i64 1
/// %11 = insertelement <2 x i32> undef, i32 % 9, i64 0
/// %rtMemBasePtr = insertelement <2 x i32> % 11, i32 % 10, i64 1
///
/// ...
///
/// We trade some increased register pressure for fewer memory accesses.
///
/// We currently decompose the region of memory to access into blocks of at most
/// MAX_BLOCK_SIZE bytes.  Currently, VectorPreProcess will decompose these
/// further to 128-byte block reads.
///
/// There is a regkey "RayTracingConstantCoalescingMinBlockSize" that can be
/// used to tune register pressure vs. load tradeoff.  In units of OWords, you
/// may select how fine grained of an access to do.  For example, suppose we use
/// a block size of 2 OWords = 32 bytes and there are three DW accesses
/// at offsets 4, 20, and 96 bytes from the base of the global pointer.
///
/// The first two accesses will be grouped into a 32-byte message and the last
/// access will go in its own message (broken down to just a scalar read as it
/// was before).  This is because there were intervening empty blocks of
/// 32-bytes with no data used.  If we had set
/// RayTracingConstantCoalescingMinBlockSize = 8 (128 bytes), all three accesses
/// would be coalesced into the same read.
///
//===----------------------------------------------------------------------===//

#include "IGC/common/StringMacros.hpp"
#include "RTBuilder.h"
#include "RTStackFormat.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CodeGenPublicEnums.h"
#include "Compiler/CISACodeGen/PrepareLoadsStoresUtils.h"
#include "MemRegionAnalysis.h"
#include "Interval.h"

#include <vector>
#include "common/LLVMWarningsPush.hpp"
#include "llvmWrapper/Support/Alignment.h"
#include <llvm/IR/InstIterator.h>
#include <llvm/IR/Dominators.h>
#include <llvm/Support/MathExtras.h>
#include "llvmWrapper/IR/DerivedTypes.h"
#include "common/LLVMWarningsPop.hpp"

using namespace llvm;
using namespace IGC;
using namespace RTStackFormat;
using namespace Intervals;

class RayTracingConstantCoalescingPass : public FunctionPass
{
public:
    RayTracingConstantCoalescingPass(): FunctionPass(ID)
    {
        initializeRayTracingConstantCoalescingPassPass(*PassRegistry::getPassRegistry());
    }

    void getAnalysisUsage(llvm::AnalysisUsage &AU) const override
    {
        AU.setPreservesCFG();
        AU.addRequired<CodeGenContextWrapper>();
        AU.addRequired<DominatorTreeWrapperPass>();
    }

    bool runOnFunction(Function &M) override;
    StringRef getPassName() const override
    {
        return "RayTracingConstantCoalescingPass";
    }

    static char ID;
};

char RayTracingConstantCoalescingPass::ID = 0;
// Register pass to igc-opt
#define PASS_FLAG2 "raytracing-constant-coalescing-pass"
#define PASS_DESCRIPTION2 "Coalesce loads from RTGlobals"
#define PASS_CFG_ONLY2 false
#define PASS_ANALYSIS2 false
IGC_INITIALIZE_PASS_BEGIN(RayTracingConstantCoalescingPass, PASS_FLAG2, PASS_DESCRIPTION2, PASS_CFG_ONLY2, PASS_ANALYSIS2)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
IGC_INITIALIZE_PASS_END(RayTracingConstantCoalescingPass, PASS_FLAG2, PASS_DESCRIPTION2, PASS_CFG_ONLY2, PASS_ANALYSIS2)

// A load and its associated access range in bytes.
// The first uint64_t is the offset in bytes from the base of the global pointer.
// The second uint64_t is also the offset but the last byte (inclusive) accessed
// by the load.
using LoadInfo        = std::tuple<LoadInst*, uint64_t, uint64_t>;
// Same as LoadInfo but for the newly created block loads.
using BlockLoadInfo   = std::tuple<LoadInst*, uint64_t, uint64_t>;

static constexpr uint32_t MinBlockAlign = 16;

// We currently are doing the vector loads with a DW element type.  Change
// this and getVectorEltTy() to try other types (QW is the only one of interest
// probably).
static constexpr uint32_t getVectorEltSize()
{
    return 4;
}

static Type* getVectorEltTy(LLVMContext& C)
{
    static_assert(getVectorEltSize() == 4, "mismatch?");
    return Type::getInt32Ty(C);
}

// This class is responsible for computing the extraction indices across loads
// so we can replace the given load.  'LI' could straddle two contiguous loads
// so this should generate extractelements from the end of the left
// block load and the start of the right block load.
class Stitcher
{
public:
    Stitcher(Module& M, ArrayRef<BlockLoadInfo> Loads) :
        Loads(Loads), DL(M.getDataLayout()),
        IRB(M.getContext()), EltSize(getVectorEltSize()) {}

    Value* getReplacement(LoadInst* LI, const Interval& I)
    {
        Elts.clear();
        auto* LoadEltTy = LI->getType()->getScalarType();
        uint32_t LoadEltSize = uint32_t(DL.getTypeSizeInBits(LoadEltTy) / 8);
        IGCLLVM::FixedVectorType* vecType = llvm::dyn_cast<IGCLLVM::FixedVectorType>(LI->getType());
        // How many indices `LI` demands.
        uint32_t NumEltsRem =
            isa<VectorType>(LI->getType()) ?
            (uint32_t)vecType->getNumElements() : 1;

        auto& [LoadStart, LoadEnd] = I;
        // Expand the range out so it is aligned with the element type of
        // the block load.
        auto [NewLoadStart, NewLoadEnd] =
            expandRange(EltSize, EltSize, LoadStart, LoadEnd);

        IGC_ASSERT(NewLoadStart % EltSize == 0);
        IGC_ASSERT((NewLoadEnd - NewLoadStart + 1) % EltSize == 0);
        // This is the element index if we were to break up the entire range
        // into `EltSize` chunks without regards to any gaps in between loads.
        uint32_t StartIdx = uint32_t(NewLoadStart / EltSize);

        IRB.SetInsertPoint(LI);

        // Look for block loads that overlap with `LI` so we can extract
        // the needed data.
        for (auto& [BlockLI, BlockStart, BlockEnd] : Loads)
        {
            if (overlap(I, std::make_pair(BlockStart, BlockEnd)))
            {
                IGC_ASSERT(BlockStart % EltSize == 0);
                IGC_ASSERT((BlockEnd - BlockStart + 1) % EltSize == 0);
                uint32_t BlockStartIdx = uint32_t(BlockStart / EltSize);
                uint32_t BlockNumIdx = uint32_t((BlockEnd - BlockStart + 1) / EltSize);
                IGC_ASSERT(StartIdx >= BlockStartIdx);

                uint32_t MaxIdx = 0;

                for (uint32_t i = StartIdx - BlockStartIdx; i < BlockNumIdx; i++)
                {
                    auto* CurElt = IRB.CreateExtractElement(BlockLI, i);
                    MaxIdx = std::max(MaxIdx, i);

                    if (LoadEltSize > EltSize)
                    {
                        // we currently don't need to handle larger loads
                        // because we break them down in runOnFunction() (as
                        // long as they are no larger than 64-bit which
                        // shouldn't happen).
                        IGC_ASSERT_MESSAGE(0, "shouldn't happen!");
                    }
                    else if (LoadEltSize < EltSize)
                    {
                        // This could be needed in the future.
                        IGC_ASSERT_MESSAGE(0, "not yet!");
                    }
                    else
                    {
                        Elts.push_back(CurElt);
                        IGC_ASSERT(NumEltsRem > 0);
                        NumEltsRem--;
                        StartIdx++;
                        if (NumEltsRem == 0)
                            break;
                    }
                }

                auto Iter = MaxEltIdx.find(BlockLI);

                if (Iter != MaxEltIdx.end())
                    Iter->second = std::max(Iter->second, MaxIdx);
                else
                    MaxEltIdx.insert(std::make_pair(BlockLI, MaxIdx));

                if (NumEltsRem == 0)
                    break;
            }
        }

        if (Elts.empty())
        {
            IGC_ASSERT_MESSAGE(0, "couldn't find data?");
            return nullptr;
        }

        IGC_ASSERT_MESSAGE(NumEltsRem == 0, "Couldn't patch all values!");

        // Now that `Elts` has been populated, we just need to build the final
        // value to replace `LI` with.

        if (!isa<VectorType>(LI->getType()))
        {
            IGC_ASSERT(Elts.size() == 1);
            auto *Res = IRB.CreateBitOrPointerCast(Elts[0], LI->getType());
            Res->takeName(LI);
            return Res;
        }
        else
        {
            IGCLLVM::FixedVectorType* vecType = llvm::dyn_cast<IGCLLVM::FixedVectorType>(LI->getType());
            IGC_ASSERT(Elts.size() == vecType->getNumElements());
            Value* Vec = UndefValue::get(LI->getType());
            for (uint32_t i = 0; i < Elts.size(); i++)
            {
                auto* Elt = IRB.CreateBitOrPointerCast(Elts[i], LoadEltTy);
                Vec = IRB.CreateInsertElement(Vec, Elt, i);
            }

            Vec->takeName(LI);
            return Vec;
        }
    }
public:
    DenseMap<LoadInst*, uint32_t>& getMaxEltMap()
    {
        return MaxEltIdx;
    }
private:
    // Track the maximum element index that was accessed from `LI`.  This will
    // be used to shrink-wrap loads that only use part of their range.
    DenseMap<LoadInst*, uint32_t> MaxEltIdx;
    // The block loads.  The array is sorted and disjoint.
    ArrayRef<BlockLoadInfo> Loads;
    const DataLayout& DL;
    IRBuilder<> IRB;
    // Size of the element of the block loads (currently, all block loads
    // have the same type).  For example, if the block load is an <8 x i32>,
    // EltSize = 4.
    uint32_t EltSize = 0;
    // `Elts` will be populated with integer sized types corresponding to the
    // elements in `LI`.
    SmallVector<Value*, 16> Elts;
};

// returns true iff the interval `I` associated with some block is referenced
// by at least one load.
static bool needBlock(const Interval& I, ArrayRef<LoadInfo> Loads)
{
    for (auto& [LI, Start, End] : Loads)
    {
        if (overlap(I, std::make_pair(Start, End)))
            return true;
    }

    return false;
}

// Precondition: should have called expandRange on [StartOffset, EndOffset]
// prior to this.
static SortedIntervals getRanges(
    ArrayRef<LoadInfo> Loads,
    uint32_t MinBlockSize,
    uint64_t StartOffset,
    uint64_t EndOffset)
{
    SortedIntervals Intervals;

    // Get first set of needed blocks
    uint64_t NumMinBlocks = (EndOffset - StartOffset + 1) / MinBlockSize;

    uint64_t Start = StartOffset;
    for (uint32_t i = 0; i < NumMinBlocks; i++)
    {
        Interval CurInterval = std::make_pair(Start, Start + MinBlockSize - 1);
        if (needBlock(CurInterval, Loads))
            Intervals.push_back(CurInterval);
        Start += MinBlockSize;
    }

    // Given the intervals that have at least some part read by a load, do a
    // bottom up merging into bigger intervals.
    mergeIntervals(Intervals, [](uint64_t NewSize) {
        return llvm::isPowerOf2_64(NewSize) && NewSize <= MAX_BLOCK_SIZE;
    });

    return Intervals;
}

static SmallVector<BlockLoadInfo, 4> getBlockLoads(
    CodeGenContext &Ctx, Instruction* InsertPt, ArrayRef<Interval> Ranges)
{
    SmallVector<BlockLoadInfo, 4> BlockLoads;
    RTBuilder RTB(InsertPt, Ctx);

    auto* EltTy = getVectorEltTy(*Ctx.getLLVMContext());
    constexpr uint64_t EltSize = getVectorEltSize();

    auto* GlobalPtr = RTB.getGlobalBufferPtr();
    uint32_t AddrSpace = GlobalPtr->getType()->getPointerAddressSpace();

    GlobalPtr = RTB.CreateBitCast(GlobalPtr, RTB.getInt8PtrTy(AddrSpace));

    for (auto &R : Ranges)
    {
        auto &[Start, End] = R;
        uint64_t Size = End - Start + 1;
        IGC_ASSERT(Size % EltSize == 0);
        uint32_t NumElts = static_cast<uint32_t>(Size / EltSize);

        auto* VectorTy = IGCLLVM::FixedVectorType::get(EltTy, NumElts);
        auto* Ptr = RTB.CreateGEP(GlobalPtr, RTB.getInt32((uint32_t)Start));
        Ptr = RTB.CreateBitCast(Ptr, VectorTy->getPointerTo(AddrSpace));
        auto *LI = RTB.CreateAlignedLoad(
            Ptr, IGCLLVM::getAlign(MinBlockAlign), VALUE_NAME("BlockLoad"));
        RTB.setInvariantLoad(LI);

        BlockLoads.push_back(std::make_tuple(LI, Start, End));
    }

    return BlockLoads;
}

// It is safe to insert the block loads at the top of the block that
// dominates all loads.
static Instruction* getInsertPt(DominatorTree& DT, ArrayRef<LoadInfo> Loads)
{
    BasicBlock* InsertBB = nullptr;
    for (auto &[LI, Start, End] : Loads)
    {
        if (!InsertBB)
            InsertBB = LI->getParent();
        else
            InsertBB = DT.findNearestCommonDominator(InsertBB, LI->getParent());
    }

    auto* InsertPt = &*InsertBB->getFirstInsertionPt();
    return InsertPt;
}

bool RayTracingConstantCoalescingPass::runOnFunction(Function &F)
{
    auto *Ctx = getAnalysis<CodeGenContextWrapper>().getCodeGenContext();

    if (!Ctx->m_DriverInfo.supportsExpandedRTGlobals())
        return false;

    auto& DL = F.getParent()->getDataLayout();

    SmallVector<LoadInfo, 8> Loads;

    uint64_t StartOffset = std::numeric_limits<uint64_t>::max();
    uint64_t EndOffset   = 0;

    IRBuilder<> IRB(F.getContext());

    for (auto II = inst_begin(&F), EI = inst_end(&F); II != EI; /* empty */)
    {
        auto* LI = dyn_cast<LoadInst>(&*II++);
        // All accesses to the globals should have invariant.load attached
        // but we'll check just to be sure here in case that changes one day.
        if (!LI || !LI->getMetadata(LLVMContext::MD_invariant_load))
            continue;

        uint64_t Offset = 0;
        auto Region = getRegionOffset(LI->getPointerOperand(), &DL, &Offset);

        if (!Region || *Region != RTMemRegion::RTGlobals)
            continue;

        // This really shouldn't happen but just to be safe.  Only loads that
        // are int/float/pointer/vector should go through.
        if (LI->getType()->isAggregateType())
            continue;

        // make all loads 32-bit (makes vectorization easier).
        IRB.SetInsertPoint(LI);
        if (auto [NewVal, NewLI] = expand64BitLoad(IRB, DL, LI); NewVal)
        {
            NewVal->takeName(LI);
            LI->replaceAllUsesWith(NewVal);
            LI->eraseFromParent();
            LI = NewLI;
        }

        uint64_t Size = DL.getTypeSizeInBits(LI->getType()) / 8;

        uint64_t Start = Offset;
        uint64_t End   = Offset + Size - 1;

        Loads.push_back(std::make_tuple(LI, Start, End));

        StartOffset = std::min(StartOffset, Start);
        EndOffset   = std::max(EndOffset, End);
    }

    if (Loads.empty())
        return false;

    auto& DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();

    auto* InsertPt = getInsertPt(DT, Loads);

    // Minimum size of a load in bytes
    uint32_t MinBlockSize =
        IGC_GET_FLAG_VALUE(RayTracingConstantCoalescingMinBlockSize);
    MinBlockSize = (MinBlockSize == 0) ?
        4 * MinBlockAlign :
        MinBlockSize * MinBlockAlign;

    auto [NewStartOffset, NewEndOffset] =
        expandRange(MinBlockSize, MinBlockAlign, StartOffset, EndOffset);

    auto Ranges = getRanges(Loads, MinBlockSize, NewStartOffset, NewEndOffset);
    auto NewLoads = getBlockLoads(*Ctx, InsertPt, Ranges);

    Stitcher S{ *InsertPt->getModule(), NewLoads };

    for (auto& [LI, Start, End] : Loads)
    {
        if (auto* NewVal = S.getReplacement(LI, std::make_pair(Start, End)))
        {
            LI->replaceAllUsesWith(NewVal);
            LI->eraseFromParent();
        }
    }

    // After creating the block loads, shrink the ones that don't access
    // elements beyond what a smaller vector length would manage.
    // %v = load <8 x i32> addrspace(1)* %p
    // %x = extractelement <8 x i32> %v, i32 0
    // %y = extractelement <8 x i32> %v, i32 2
    // %z = extractelement <8 x i32> %v, i32 3
    // ==>
    // %v = load <4 x i32> addrspace(1)* %p
    // %x = extractelement <4 x i32> %v, i32 0
    // %y = extractelement <4 x i32> %v, i32 2
    // %z = extractelement <4 x i32> %v, i32 3
    for (auto& [LI, Idx] : S.getMaxEltMap())
    {
        IGCLLVM::FixedVectorType* vecType = llvm::dyn_cast<IGCLLVM::FixedVectorType>(LI->getType());
        uint32_t NumElts =
            isa<VectorType>(LI->getType()) ?
            (uint32_t)vecType->getNumElements() : 1;

        uint64_t NewSize = llvm::PowerOf2Ceil(Idx + 1);

        if (NewSize >= NumElts)
            continue;

        IRB.SetInsertPoint(LI);

        auto* EltTy = getVectorEltTy(F.getContext());
        auto* NewRetTy = IGCLLVM::FixedVectorType::get(EltTy, int_cast<uint32_t>(NewSize));
        auto* NewPtr = IRB.CreateBitCast(
            LI->getPointerOperand(),
            NewRetTy->getPointerTo(LI->getPointerAddressSpace()));

        auto *NewLoad = IRB.CreateAlignedLoad(
            NewPtr->getType()->getPointerElementType(),
            NewPtr,
            IGCLLVM::getAlign(LI->getAlignment()));
        NewLoad->takeName(LI);

        Value* V2 = UndefValue::get(LI->getType());
        for (uint32_t i = 0; i <= Idx; i++)
        {
            auto* Val = IRB.CreateExtractElement(NewLoad, i);
            V2 = IRB.CreateInsertElement(V2, Val, i);
        }

        LI->replaceAllUsesWith(V2);
        LI->eraseFromParent();
    }

    return true;
}

namespace IGC
{

Pass* createRayTracingConstantCoalescingPass(void)
{
    return new RayTracingConstantCoalescingPass();
}

} // namespace IGC