1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2019-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
//===----------------------------------------------------------------------===//
///
/// Any transformations required for functional correctness prior to splitting
/// shaders into continuations.
///
//===----------------------------------------------------------------------===//
#include "RTBuilder.h"
#include "RTStackFormat.h"
#include "RTArgs.h"
#include "Compiler/IGCPassSupport.h"
#include "Compiler/CodeGenPublicEnums.h"
#include "common/LLVMWarningsPush.hpp"
#include <llvm/IR/InstIterator.h>
#include "common/LLVMWarningsPop.hpp"
#include "Probe/Assertion.h"
#include "Utils.h"
using namespace llvm;
using namespace IGC;
using namespace RTStackFormat;
class SplitPreparePass : public ModulePass
{
public:
SplitPreparePass() : ModulePass(ID)
{
initializeSplitPreparePassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override;
StringRef getPassName() const override
{
return "SplitPreparePass";
}
void getAnalysisUsage(llvm::AnalysisUsage &AU) const override
{
AU.addRequired<CodeGenContextWrapper>();
}
static char ID;
private:
void hoistValues(Function &F, CallableShaderTypeMD Ty) const;
bool processShader(Function& F, FunctionMetaData &FMD) const;
private:
RayDispatchShaderContext *m_CGCtx = nullptr;
const UnifiedBits* RayFlagBits = nullptr;
};
char SplitPreparePass::ID = 0;
// Register pass to igc-opt
#define PASS_FLAG "split-prepare-pass"
#define PASS_DESCRIPTION "transformations required before continuation splitting to ensure correctness"
#define PASS_CFG_ONLY false
#define PASS_ANALYSIS false
IGC_INITIALIZE_PASS_BEGIN(SplitPreparePass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
IGC_INITIALIZE_PASS_DEPENDENCY(CodeGenContextWrapper)
IGC_INITIALIZE_PASS_END(SplitPreparePass, PASS_FLAG, PASS_DESCRIPTION, PASS_CFG_ONLY, PASS_ANALYSIS)
bool SplitPreparePass::runOnModule(Module &M)
{
m_CGCtx = static_cast<RayDispatchShaderContext*>(
getAnalysis<CodeGenContextWrapper>().getCodeGenContext());
ModuleMetaData* modMD = m_CGCtx->getModuleMetaData();
auto &FuncMD = modMD->FuncMD;
auto FlagBits = examineRayFlags(*m_CGCtx);
RayFlagBits = &FlagBits;
bool Changed = false;
for (auto& F : M)
{
if (F.isDeclaration())
continue;
auto MD = FuncMD.find(&F);
IGC_ASSERT_MESSAGE((MD != FuncMD.end()), "Missing metadata?");
Changed |= processShader(F, MD->second);
}
return Changed;
}
bool SplitPreparePass::processShader(
Function& F, FunctionMetaData &FMD) const
{
auto ShaderTy = FMD.rtInfo.callableShaderType;
hoistValues(F, ShaderTy);
switch (ShaderTy)
{
case ClosestHit:
case AnyHit:
{
// Lower triangle intersection attributes here so we can spill the
// barycentrics if necessary. The procedural intersection attributes
// are allocated in a stack frame so don't need to be spilled. They
// will be processed later.
auto HitTy = m_CGCtx->getHitGroupType(F.getName().str());
if (HitTy == HIT_GROUP_TYPE::TRIANGLES)
{
RTArgs Args(&F, ShaderTy,
HitTy,
m_CGCtx, FMD, FMD.rtInfo.Types);
RTBuilder RTB(&*F.getEntryBlock().getFirstInsertionPt(), *m_CGCtx);
auto* StackPointer = RTB.getAsyncStackPointer();
RTBuilder::lowerIntersectionAttributeFromMemHit(
F, Args, StackPointer);
}
break;
}
default:
break;
}
return true;
}
// For example, say that WorldRayOrigin() is invoked after a TraceRay() call:
// [shader("closesthit")]
// void ClosestHitShader(...)
// {
// TraceRay(...)
// ... = WorldRayOrigin()
// }
// in a closest-hit shader. Given that we set up the RTStack MemRay::org value
// when doing a TraceRay(), if we try to read it in the continuation after the
// TraceRay() we'll read the value from the ray passed to the TraceRay() rather
// than the ray that we're still processing.
//
// Here, we hoist system values to the entry block (at least for now) so that
// they will spill and we can use the correct value in the continuation.
//
// In addition, local pointers aren't valid in continuations since the private
// shader table just contains shaders. We spill the pointer so it can be
// refilled in the continuation if needed.
void SplitPreparePass::hoistValues(
Function &F,
CallableShaderTypeMD Ty) const
{
IGC_ASSERT(RayFlagBits);
bool HoistSysVal = (Ty == ClosestHit || Ty == Miss);
IRBuilder<> IRB(F.getContext());
auto *IP = &*F.getEntryBlock().getFirstInsertionPt();
for (auto II = inst_begin(F), IE = inst_end(F); II != IE; /* empty */)
{
auto* I = &*II++;
if (auto *RIQ = dyn_cast<RayInfoIntrinsic>(I))
{
if (RIQ->getInfoKind() == IGC::RAY_FLAGS)
{
if (auto V = RayFlagBits->getConstant())
{
auto* C = IRB.getInt32((uint32_t)V->getZExtValue());
RIQ->replaceAllUsesWith(C);
RIQ->eraseFromParent();
continue;
}
}
if (HoistSysVal)
RIQ->moveBefore(IP);
}
else if (auto *HK = dyn_cast<HitKindIntrinsic>(I))
{
if (HoistSysVal)
HK->moveBefore(IP);
}
else if (auto *LocalPtr = dyn_cast<LocalBufferPointerIntrinsic>(I))
{
LocalPtr->moveBefore(IP);
}
}
}
namespace IGC
{
Pass* createSplitPreparePass(void)
{
return new SplitPreparePass();
}
} // namespace IGC
|