File: lgamma_s_noFP64.cl

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (685 lines) | stat: -rw-r--r-- 23,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*========================== begin_copyright_notice ============================

Copyright (C) 2021 Intel Corporation

SPDX-License-Identifier: MIT

============================= end_copyright_notice ===========================*/

#include "../imf.h"
#pragma OPENCL FP_CONTRACT OFF

/*
//++
//  ALGORITHM DESCRIPTION
//  ---------------------
//
//  Case 2^13 <= x < OVERFLOW_BOUNDARY
//  ----------------------------------
//    Here we use algorithm based on the Stirling formula:
//      ln(GAMMA(x)) = ln(sqrt(2*Pi)) + (x-0.5)*ln(x) - x
//
//  Case 1 < x < 2^13
//  -----------------
//    To calculate ln(GAMMA(x)) for such arguments we use polynomial
//    approximation on following intervals: [1.0; 1.25), [1.25; 1.5),
//    [1.5, 1.75), [1.75; 2), [2; 4), [2^i; 2^(i+1)), i=1..8
//
//    Following variants of approximation and argument reduction are used:
//     1. [1.0; 1.25)
//        ln(GAMMA(x)) ~ (x-1.0)*P7(x)
//
//     2. [1.25; 1.5)
//        ln(GAMMA(x)) ~ ln(GAMMA(x0))+(x-x0)*P7(x-x0),
//        where x0 - point of local minimum on [1;2] rounded to nearest
//        precision number.
//
//     3. [1.5; 1.75)
//        ln(GAMMA(x)) ~ P8(x)
//
//     4. [1.75; 2.0)
//        ln(GAMMA(x)) ~ (x-2)*P7(x)
//
//     5. [2; 4)
//        ln(GAMMA(x)) ~ (x-2)*P10(x)
//
//     6. [2^i; 2^(i+1)), i=2..8
//        ln(GAMMA(x)) ~ P10((x-2^i)/2^i)
//
//  Case -9 < x < 1
//  ---------------
//    Here we use the recursive formula:
//    ln(GAMMA(x)) = ln(GAMMA(x+1)) - ln(x)
//
//    Using this formula we reduce argument to base interval [1.0; 2.0]
//
//  Case -2^13 < x < -9
//  --------------------
//    Here we use the formula:
//    ln(GAMMA(x)) = ln(Pi/(|x|*GAMMA(|x|)*sin(Pi*|x|))) =
//    = -ln(|x|) - ln((GAMMA(|x|)) - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
//    where r = x - rounded_to_nearest(x), i.e |r| <= 0.5 and
//    ln(sin(Pi*r)/(Pi*r)) is approximated by 8-degree polynomial of r^2
//
//  Case x < -2^13
//  --------------
//    Here we use algorithm based on the Stirling formula:
//    ln(GAMMA(x)) = -ln(sqrt(2*Pi)) + (|x|-0.5)ln(x) - |x| -
//    - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
//    where r = x - rounded_to_nearest(x).
//
//  Neighbourhoods of negative roots
//  --------------------------------
//    Here we use polynomial approximation
//    ln(GAMMA(x-x0)) = ln(GAMMA(x0)) + (x-x0)*P14(x-x0),
//    where x0 is a root of ln(GAMMA(x)) rounded to nearest
//    precision number.
//
//
//  Claculation of logarithm
//  ------------------------
//    Consider  x = 2^N * xf so
//    ln(x) = ln(frcpa(x)*x/frcpa(x))
//          = ln(1/frcpa(x)) + ln(frcpa(x)*x)
//
//    frcpa(x) = 2^(-N) * frcpa(xf)
//
//    ln(1/frcpa(x)) = -ln(2^(-N)) - ln(frcpa(xf))
//                   = N*ln(2) - ln(frcpa(xf))
//                   = N*ln(2) + ln(1/frcpa(xf))
//
//    ln(x) = ln(1/frcpa(x)) + ln(frcpa(x)*x) =
//          = N*ln(2) + ln(1/frcpa(xf)) + ln(frcpa(x)*x)
//          = N*ln(2) + T + ln(frcpa(x)*x)
//
//    Let r = 1 - frcpa(x)*x, note that r is quite small by
//    absolute value so
//
//    ln(x) = N*ln(2) + T + ln(1+r) ~ N*ln(2) + T + Series(r),
//    where T - is precomputed tabular value,
//    Series(r) = (P3*r + P2)*r^2 + (P1*r + 1)
//
//--
*/

typedef union
{
    uint hex;
    float fp;
} _iml_lg_sp_union_t;

__constant float __slgamma_ep__TWO_23H[2] = { 12582912.0, -12582912.0 };

static __constant unsigned int __slgamma_ep___p1[] = {
    0xbf13c468, // p[0] =       -0.577215672
    0x45e1ce83, // p[1] =       7225.81396
    0x46ce12fa, // p[2] =       26377.4883
    0x471654f6, // p[3] =       38484.9609
    0x46df1a7e, // p[4] =       28557.2461
    0x4630deb0, // p[5] =       11319.6719
    0x450f2d6a, // p[6] =       2290.83838
    0x4349cfaf, // p[7] =       201.811264
    0x409e3f5e, // p[8] =       4.94523525
};

static __constant unsigned int __slgamma_ep___q1[] = {
    0x46094625, // q[0] =       8785.53613
    0x470dff47, // q[1] =       36351.2773
    0x4770ab39, // q[2] =       61611.2227
    0x4756d11a, // q[3] =       54993.1016
    0x46d7efbe, // q[4] =       27639.8711
    0x45f1d60e, // q[5] =       7738.75684
    0x448b2aa3, // q[6] =        1113.3324
    0x4286f6d9, // q[7] =       67.4821243
    0x3f800000, // q[8] =                1
};

static __constant unsigned int __slgamma_ep___p2[] = {
    0x3ed87730, // p[0] =        0.422784328
    0x4a3ba0f4, // p[1] =          3074109
    0x4a9bd7cb, // p[2] =        5106661.5
    0x4a4bbea4, // p[3] =          3338153
    0x4984d666, // p[4] =       1088204.75
    0x48347653, // p[5] =       184793.297
    0x46724bc1, // p[6] =       15506.9385
    0x44079a7d, // p[7] =       542.413879
    0x409f2ffd, // p[8] =       4.97460794
};

static __constant unsigned int __slgamma_ep___q2[] = {
    0x4b1176a8, // q[0] =          9533096
    0x4b880313, // q[1] =         17827366
    0x4b4d7d87, // q[2] =         13467015
    0x4aa0c3f8, // q[3] =          5267964
    0x498ac20f, // q[4] =       1136705.88
    0x48021198, // q[5] =       133190.375
    0x45f2a865, // q[6] =       7765.04932
    0x43370868, // q[7] =       183.032837
    0x3f800000, // q[8] =                1
};

static __constant unsigned int __slgamma_ep___p3[] = {
    0x3fe55860, // p[0] =       1.79175949
    0x530287dd, // p[1] =   5.60625156e+11
    0x52e563ff, // p[2] =   4.92612583e+11
    0x521e92b7, // p[3] =   1.70266575e+11
    0x50db1347, // p[4] =   2.94037893e+10
    0x4f1ec0c1, // p[5] =   2.66343245e+09
    0x4ce7b23d, // p[6] =        121475560
    0x4a141ef5, // p[7] =       2426813.25
    0x46666416, // p[8] =       14745.0215
};

static __constant unsigned int __slgamma_ep___q3[] = {
    0x52cfd4fe, // q[0] =   4.46315823e+11
    0x529f237e, // q[1] =    3.4174763e+11
    0x51bd64f9, // q[2] =   1.01680357e+11
    0x505dd21b, // q[3] =   1.48861368e+10
    0x4e859e4d, // q[4] =   1.12087206e+09
    0x4c1dc2b8, // q[5] =         41356000
    0x491c19c9, // q[6] =       639388.562
    0x4528287c, // q[7] =       2690.53027
    0xbf800000, // q[8] =               -1
};

static __constant unsigned int __slgamma_ep___s[] = {
    0xbfd28d33, //      -1.64493406
    0xbf0a8993, //     -0.541161716
    0xbead9f8d, //     -0.339107901
    0xbe809fb7, //     -0.251218528
    0xbe49f046, //     -0.197205633
    0xbe43506b, //     -0.190736458
    0xbd222966, //    -0.0395902619
    0xbeac398d, //     -0.336376578
};

//! ===========================================================================
//! @brief Absolute value computation routine
//!
//! @param[in] x       Argument
//! @return            Returns absolute value
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_abs_fp32 (float x)
{
    return (x > 0.0f) ? x : ((x == 0.0f) ? 0.0f : (-x));
}   // static inline float _VSTATIC(own_abs_fp32)(float x)

//! ===========================================================================
//! @brief 32-bit natural logarithm value computation routine
//!
//! @param[in] a       Argument
//! @return            Returns 32-bit natural logarithm
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_log_fp32 (float a)
{
    unsigned int iHiDelta = 0x0u;
    unsigned int iLoRange = 0x0u;
    unsigned int iBrkValue = 0x0u;
    unsigned int iOffExpoMask = 0x0u;
    unsigned int iRangeMask = 0x0u;
    unsigned int iX = 0x0u;
    unsigned int iXTest = 0x0u;
    signed int iN = 0x0;
    unsigned int iR = 0x0u;
    unsigned int vm = 0x0u;
    int denorm_scale_exp = 0;

    float r = 0.0f;
    float sOne = 0.0f;
    float sLn2 = 0.0f;
    float sPoly[8] = { 0.0f };
    float sP = 0.0f;
    float va1 = 0.0f;
    float vr1 = 0.0f;
    float sN = 0.0f;
    float sR = 0.0f;

    struct
    {
        unsigned int sPoly[8];
        unsigned int iHiDelta;
        unsigned int iLoRange;
        unsigned int iBrkValue;
        unsigned int iOffExpoMask;
        unsigned int sOne;
        unsigned int sLn2;
        unsigned int sInfs[2];
        unsigned int sOnes[2];
        unsigned int sZeros[2];
    } own_log_fp32_data = {
        {0xbf000000u, 0x3eaaaa94u, 0xbe80058eu, 0x3e4ce190u, 0xbe28ad37u, 0x3e0fcb12u, 0xbe1ad9e3u, 0x3e0d84edu},
        0x00800000u, 0x01000000u, 0x3f2aaaabu, 0x007fffffu, 0x3f800000u, 0x3f317218u,
        {0x7f800000u, 0xff800000u}, {0x3f800000u, 0xbf800000u}, {0x00000000u, 0x80000000u}
    };

    va1 = a;

    /* argument is denormalized or [+/-]0 */
    if (as_uint (va1) <= 0x007fffff)
    {
        /* Scale */
        unsigned int _denorm_scale = 0x4D000000;    // 2^27
        float denorm_scale = *(float *) &_denorm_scale;
        va1 *= denorm_scale;
        denorm_scale_exp = 27;
    }

    iHiDelta = (own_log_fp32_data.iHiDelta);
    iLoRange = (own_log_fp32_data.iLoRange);

    iX = as_uint (va1);

    iXTest = (iX + iHiDelta);
    iRangeMask = ((unsigned int) (-(signed int) ((signed int) iXTest < (signed int) iLoRange)));
    iBrkValue = (own_log_fp32_data.iBrkValue);
    iOffExpoMask = (own_log_fp32_data.iOffExpoMask);

    iX = (iX - iBrkValue);
    iR = (iX & iOffExpoMask);
    iN = ((signed int) iX >> (23));
    iN = iN - denorm_scale_exp;
    iR = (iR + iBrkValue);
    sN = ((float) ((int) (iN)));
    sR = as_float (iR);
    vm = iRangeMask;

    sOne = as_float (own_log_fp32_data.sOne);
    sR = (sR - sOne);

    sPoly[7] = as_float (own_log_fp32_data.sPoly[7]);
    sPoly[6] = as_float (own_log_fp32_data.sPoly[6]);
    sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sPoly[7]), (sR), (sPoly[6]));

    sPoly[5] = as_float (own_log_fp32_data.sPoly[5]);
    sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[5]));

    sPoly[4] = as_float (own_log_fp32_data.sPoly[4]);
    sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[4]));

    sPoly[3] = as_float (own_log_fp32_data.sPoly[3]);
    sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[3]));

    sPoly[2] = as_float (own_log_fp32_data.sPoly[2]);
    sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[2]));

    sPoly[1] = as_float (own_log_fp32_data.sPoly[1]);
    sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[1]));

    sPoly[0] = as_float (own_log_fp32_data.sPoly[0]);
    sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[0]));

    sP = (sP * sR);
    sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sR));

    sLn2 = as_float (own_log_fp32_data.sLn2);
    vr1 = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sN), (sLn2), (sP));

    r = vr1;

    return r;
}   // static inline float _VSTATIC(own_log_fp32) (float a)

//! ===========================================================================
//! @brief 32-bit nearbyint computation routine
//!
//! @param[in] sA      Argument
//! @return            Returns 32-bit nearbyint
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_nearbyint_fp32 (float sA)
{
    float _rnd_s2p23 = 0.0f;
    float _rnd_sSignMask = 0.0f;
    float _rnd_sSign = 0.0f;
    float _rnd_sAbsArg = 0.0f;
    float _rnd_sRes_ub = 0.0f;
    float _rnd_sRange = 0.0f;
    unsigned int _rnd_i2p23 = 0x4b000000u;
    unsigned int _rnd_iSignMask = 0x80000000u;
    _rnd_s2p23 = (*((float *) &(_rnd_i2p23)));
    _rnd_sSignMask = (*((float *) &(_rnd_iSignMask)));
    (*((unsigned int *) &(_rnd_sSign))) = ((*((unsigned int *) &(sA))) & (*((unsigned int *) &(_rnd_sSignMask))));
    (*((unsigned int *) &(_rnd_sAbsArg))) = (~((*((unsigned int *) &(_rnd_sSignMask)))) & (*((unsigned int *) &(sA))));
    (*((unsigned int *) &(_rnd_sRange))) = ((unsigned int) (-(int) (_rnd_sAbsArg > _rnd_s2p23)));
    _rnd_sRes_ub = (_rnd_sAbsArg + _rnd_s2p23);
    _rnd_sRes_ub = (_rnd_sRes_ub - _rnd_s2p23);
    (*((unsigned int *) &(_rnd_sRes_ub))) = ((*((unsigned int *) &(_rnd_sRes_ub))) | (*((unsigned int *) &(_rnd_sSign))));
    (*((unsigned int *) &(_rnd_sRes_ub))) =
        (((~(*((unsigned int *) &(_rnd_sRange)))) & (*((unsigned int *) &(_rnd_sRes_ub)))) |
         ((*((unsigned int *) &(_rnd_sRange))) & (*((unsigned int *) &(sA)))));
    return _rnd_sRes_ub;
}   // static inline float _VSTATIC(own_nearbyint_fp32)( float sA )

//! ===========================================================================
//! @brief 32-bit ceil computation routine
//!
//! @param[in] sA      Argument
//! @return            Returns 32-bit ceil
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_ceilf_fp32 (float sA)
{
    float _rnd_s2p23 = 0.0f;
    float _rnd_sSignMask = 0.0f;
    float _rnd_sSign = 0.0f;
    float _rnd_sIsGreater = 0.0f;
    float _rnd_sOne = 0.0f;
    float _rnd_sAddOne = 0.0f;
    float _rnd_sAbsArg = 0.0f;
    float _rnd_sRes_ub = 0.0f;
    float _rnd_sRange = 0.0f;
    unsigned int _rnd_i2p23 = 0x4b000000u;
    unsigned int _rnd_iSignMask = 0x80000000u;
    unsigned int _rnd_iOne = 0x3f800000u;
    _rnd_sSignMask = (*((float *) &(_rnd_iSignMask)));
    (*((unsigned int *) &(_rnd_sSign))) = ((*((unsigned int *) &(sA))) & (*((unsigned int *) &(_rnd_sSignMask))));
    (*((unsigned int *) &(_rnd_sAbsArg))) = (~((*((unsigned int *) &(_rnd_sSignMask)))) & (*((unsigned int *) &(sA))));
    _rnd_s2p23 = (*((float *) &(_rnd_i2p23)));
    (*((unsigned int *) &(_rnd_sRange))) = ((unsigned int) (-(signed int) (_rnd_sAbsArg > _rnd_s2p23)));
    _rnd_sRes_ub = (_rnd_sAbsArg + _rnd_s2p23);
    _rnd_sRes_ub = (_rnd_sRes_ub - _rnd_s2p23);
    (*((unsigned int *) &(_rnd_sRes_ub))) = ((*((unsigned int *) &(_rnd_sRes_ub))) | (*((unsigned int *) &(_rnd_sSign))));
    (*((unsigned int *) &(_rnd_sIsGreater))) = ((unsigned int) (-(signed int) (sA > _rnd_sRes_ub)));
    _rnd_sOne = (*((float *) &(_rnd_iOne)));
    (*((unsigned int *) &(_rnd_sAddOne))) = ((*((unsigned int *) &(_rnd_sOne))) & (*((unsigned int *) &(_rnd_sIsGreater))));
    _rnd_sRes_ub = _rnd_sRes_ub + _rnd_sAddOne;
    (*((unsigned int *) &(_rnd_sRes_ub))) =
        (((~(*((unsigned int *) &(_rnd_sRange)))) & (*((unsigned int *) &(_rnd_sRes_ub)))) |
         ((*((unsigned int *) &(_rnd_sRange))) & (*((unsigned int *) &(sA)))));
    return _rnd_sRes_ub;
}   // static inline float _VSTATIC(own_ceilf_fp32)( float sA )

//! ===========================================================================
//! @brief 32-bit Gergo Nemes fast lgamma approximation
//!
//! @param[in] arg     Argument
//! @return            Returns 32-bit lgamma
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_lgamma_fast_fp32 (float arg)
{

    unsigned int __slgamma_ep_own_log2pif = 0x3feb3f8eu;
    float result = 0.5f * ((*(float *) &(__slgamma_ep_own_log2pif)) - SPIRV_OCL_BUILTIN(log, _f32, ) (arg));
    result = result + (arg * (SPIRV_OCL_BUILTIN(log, _f32, ) (arg + (1.0f / ((12.0f * arg) - (1.0f / (10.0f * arg))))) - 1.0f));
    return result;
}   // static inline float _VSTATIC(own_lgamma_fast_fp32) (float arg)

//! ===========================================================================
//! @brief 32-bit lgamma approximation for positive arguments in [0.0; 2^13)
//!
//! @param[in] arg     Argument
//! @return            Returns 64-bit lgamma
//!
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_lgamma_pos_fp32 (float arg)
{
    float result;

    if (arg >= 12.0f)
    {
        result = __slgamma_ep_own_lgamma_fast_fp32 (arg);
    }
    else
    {
        // ===========================================================================
        //   W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for
        //   the Natural Logarithm of the Gamma Function,' Math. Comp. 21,
        //   1967, pp. 198-203.
        // ===========================================================================
        __constant float *_p1 = (__constant float *) __slgamma_ep___p1;
        __constant float *_q1 = (__constant float *) __slgamma_ep___q1;
        __constant float *_p2 = (__constant float *) __slgamma_ep___p2;
        __constant float *_q2 = (__constant float *) __slgamma_ep___q2;
        __constant float *_p3 = (__constant float *) __slgamma_ep___p3;
        __constant float *_q3 = (__constant float *) __slgamma_ep___q3;

        unsigned int _brk0p6 = 0x3f2e0000;  // ~0.68
        unsigned int _xsmall = 0x257ff2d6;  // ~0.22e-15
        float brk0p6 = *(float *) &_brk0p6;
        float xsmall = *(float *) &_xsmall;

        float qq, pp, rr, rrr, c0;
        __constant float *_p, *_q;

        if (arg >= 4.0)
        {
            rr = arg - 4.0f;
            c0 = 0.0f;
            _p = _p3;
            _q = _q3;
            rrr = 1.0;
        }
        else if (arg >= 1.5)
        {
            rr = arg - 2.0f;
            c0 = 0.0f;
            _p = _p2;
            _q = _q2;
            rrr = rr;
        }
        else if (arg > brk0p6)
        {
            rr = arg - 1.0f;
            c0 = 0.0f;
            _p = _p1;
            _q = _q1;
            rrr = rr;
        }
        else if (arg > 0.5)
        {
            rr = arg - 1.0f;
            c0 = -SPIRV_OCL_BUILTIN(log, _f32, ) (arg);
            _p = _p2;
            _q = _q2;
            rrr = rr;
        }
        else if (arg > xsmall)
        {
            rr = arg;
            c0 = -SPIRV_OCL_BUILTIN(log, _f32, ) (arg);
            _p = _p1;
            _q = _q1;
            rrr = rr;
        }
        else    // arg <= xsmall
        {
            rr = 0.0;
            c0 = -SPIRV_OCL_BUILTIN(log, _f32, ) (arg);
            _p = _p1;
            _q = _q1;
            rrr = rr;
        }

        pp = _p[1] + rr * (_p[2] + rr * (_p[3] + rr * (_p[4] + rr * (_p[5] + rr * (_p[6] + rr * (_p[7] + rr * _p[8]))))));
        qq = _q[0] + rr * (_q[1] + rr * (_q[2] + rr * (_q[3] + rr * (_q[4] + rr * (_q[5] + rr * (_q[6] + rr * (_q[7] + rr * _q[8])))))));
        result = c0 + rrr * (_p[0] + rr * (pp / qq));
    }
    return result;
}

//! ===========================================================================
//! @brief 32-bit lgamma approximation
//!
//! @param[in] a     Argument pointer
//! @param[in] r     Result pointer
//! @return          Computation status
//! ===========================================================================

__attribute__((always_inline))
inline int __internal_slgamma_ep_cout (float *a, float *r)
{

    float x = (*a);
    float f = 0.0f, f1 = 0.0f;
    float ldx = 0.0f, t0 = 0.0f, t1 = 0.0f, t2 = 0.0f, result = 0.0f, y = 0.0f, y2 = 0.0f;
    float p = 0.0f, r1 = 0.0f, r2 = 0.0f;
    signed int ix = ((signed int) (((_iml_lg_sp_union_t *) & x)->hex));
    unsigned int iabsx = ((((_iml_lg_sp_union_t *) & x)->hex) & 0x7fffffff);
    unsigned int xsig = (((_iml_lg_sp_union_t *) & x)->hex >> 31);
    unsigned int exp_x = ((((_iml_lg_sp_union_t *) & x)->hex >> 23) & 0xFF);
    int i = 0, intx = 0;
    int signgam = 1;
    int nRet = 0;

    if (exp_x == 0xFF)
    {
        // For x==+/-infinity: return +infinity.
        // For x==NaN: raise invalid, return QNaN.
        (*r) = x * x;
    }
    else if (iabsx == 0x00000000u)
    {
        // x==+/-0
        if (xsig)
        {
            signgam = -1;
        }
        // Return +Infinity. Raise Zero divide.
        f = 0.0f;
        (*r) = 1.0f / f;
        nRet = 2;
    }
    else if (ix > 0x7C44AF8E)
    {
        unsigned int __big = 0x7f7fffff;
        float _big = *(float *) &__big;

        // OVERFLOW_BOUNDARY <= x <= +Max
        // Return +Infinity. Raise Inexact and Overflow.
        (*r) = _big * _big;
        nRet = 3;
    }
    else if (x > 0.0f)
    {
        (*r) = __slgamma_ep_own_lgamma_pos_fp32 (x);
    }
    else    // x < 0.0f
    {
        __constant float *_s = (__constant float *) __slgamma_ep___s;
        unsigned int __ln_sqrt_2_pi = 0x3f6b3f8e;   //      0.918938518
        float _ln_sqrt_2_pi = *(float *) &__ln_sqrt_2_pi;

        f = __slgamma_ep_own_nearbyint_fp32 (x);
        intx = (x == f);    /* Is x an integer? */
        if (!intx && (x > (__slgamma_ep__TWO_23H[1])) && !(((int) __slgamma_ep_own_ceilf_fp32 (x)) & 1))
        {
            signgam = -1;
        }

        if (intx)
        {
            // x is negative integer
            // Return +Infinity. Raise Zero divide
            f = 0.0f;
            (*r) = 1.0f / f;
            nRet = 2;
        }
        else if (x > -12.0)
        {
            // x > -12
            y = x;
            p = 1.0f;
            while (y < 1.0f)
            {
                p = p * y;
                y = y + 1.0f;
            }

            p = SPIRV_OCL_BUILTIN(fabs, _f32, ) (p);
            p = SPIRV_OCL_BUILTIN(log, _f32, ) (p);
            result = __slgamma_ep_own_lgamma_pos_fp32 (y);
            result = result - p;
            (*r) = result;
        }
        else if (x > -8192.0f)
        {
            // Here we use the formula:
            // ln(GAMMA(-x)) = ln(Pi/(x*GAMMA(x)*sin(Pi*x))) =
            // = -ln(x) - ln((GAMMA(x)) - ln(sin(Pi*r1)/(Pi*r1)) - ln(|r1|)
            // where r1 = x - rounded_to_nearest_integer(x), i.e |r1| <= 0.5
            // and ln(sin(Pi*r1)/(Pi*r1)) is approximated by
            // 8-degree polynomial of r1^2.
            //
            f = (__slgamma_ep__TWO_23H[0]) - x;
            f = f - (__slgamma_ep__TWO_23H[0]); // f=round(-x)
            ldx = x;
            ldx = -ldx;
            r1 = f;
            r1 = ldx - r1;
            r2 = r1 * r1;

            result = SPIRV_OCL_BUILTIN(log, _f32, ) (-x);
            result = -result;
            y = __slgamma_ep_own_lgamma_pos_fp32 (ldx);
            result = result - y;

            p = (((((((_s[7] * r2 + _s[6]) * r2 + _s[5]) * r2 + _s[4]) * r2 + _s[3]) * r2 + _s[2]) * r2 + _s[1]) * r2 + _s[0]) * r2;

            result = result - p;

            r1 = SPIRV_OCL_BUILTIN(fabs, _f32, ) (r1);
            y = SPIRV_OCL_BUILTIN(log, _f32, ) (r1);
            result = result - y;
            (*r) = result;
        }
        else
        {
            //
            // Case x < -2^13:
            // ---------------
            // Here we use algorithm based on the Stirling formula:
            // ln(GAMMA(x)) = -ln(sqrt(2*Pi)) + (x-0.5)ln(|x|) -
            // - x - ln(sin(Pi*r1)/(Pi*r1)) - ln(|r1|)
            // where r1 = x - rounded_to_nearest_integer(x).
            //
            result = _ln_sqrt_2_pi;
            ldx = x;
            t1 = ldx - 0.5f;
            t2 = -ldx;
            t2 = SPIRV_OCL_BUILTIN(log, _f32, ) (-x);
            t1 = t1 * t2;
            result = t1 - result;

            result = result - ldx;

            f = (__slgamma_ep__TWO_23H[0]);
            f = f - x;
            f = f - (__slgamma_ep__TWO_23H[0]);

            r1 = -ldx;
            r1 = r1 - f;
            r2 = r1 * r1;

            p = (((((((_s[7] * r2 + _s[6]) * r2 + _s[5]) * r2 + _s[4]) * r2 + _s[3]) * r2 + _s[2]) * r2 + _s[1]) * r2 + _s[0]) * r2;

            result = result - p;

            r1 = SPIRV_OCL_BUILTIN(fabs, _f32, ) (r1);
            y = SPIRV_OCL_BUILTIN(log, _f32, ) (r1);
            result = result - y;
            (*r) = result;
        }
    }   // else if ( exp_x == IML_EXPINF_32 )

    return nRet;
}   // _VAPI_COUT_SCOPE int _VAPI_COUT_NAME( __constant float* a, float* r)

float __ocl_svml_lgammaf (float a)
{
    float va1;
    float vr1;
    unsigned int vm;

    float r;

    va1 = a;;

    __internal_slgamma_ep_cout (&va1, &vr1);
    r = vr1;;

    return r;
}