1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "../imf.h"
#pragma OPENCL FP_CONTRACT OFF
/*
//++
// ALGORITHM DESCRIPTION
// ---------------------
//
// Case 2^13 <= x < OVERFLOW_BOUNDARY
// ----------------------------------
// Here we use algorithm based on the Stirling formula:
// ln(GAMMA(x)) = ln(sqrt(2*Pi)) + (x-0.5)*ln(x) - x
//
// Case 1 < x < 2^13
// -----------------
// To calculate ln(GAMMA(x)) for such arguments we use polynomial
// approximation on following intervals: [1.0; 1.25), [1.25; 1.5),
// [1.5, 1.75), [1.75; 2), [2; 4), [2^i; 2^(i+1)), i=1..8
//
// Following variants of approximation and argument reduction are used:
// 1. [1.0; 1.25)
// ln(GAMMA(x)) ~ (x-1.0)*P7(x)
//
// 2. [1.25; 1.5)
// ln(GAMMA(x)) ~ ln(GAMMA(x0))+(x-x0)*P7(x-x0),
// where x0 - point of local minimum on [1;2] rounded to nearest
// precision number.
//
// 3. [1.5; 1.75)
// ln(GAMMA(x)) ~ P8(x)
//
// 4. [1.75; 2.0)
// ln(GAMMA(x)) ~ (x-2)*P7(x)
//
// 5. [2; 4)
// ln(GAMMA(x)) ~ (x-2)*P10(x)
//
// 6. [2^i; 2^(i+1)), i=2..8
// ln(GAMMA(x)) ~ P10((x-2^i)/2^i)
//
// Case -9 < x < 1
// ---------------
// Here we use the recursive formula:
// ln(GAMMA(x)) = ln(GAMMA(x+1)) - ln(x)
//
// Using this formula we reduce argument to base interval [1.0; 2.0]
//
// Case -2^13 < x < -9
// --------------------
// Here we use the formula:
// ln(GAMMA(x)) = ln(Pi/(|x|*GAMMA(|x|)*sin(Pi*|x|))) =
// = -ln(|x|) - ln((GAMMA(|x|)) - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
// where r = x - rounded_to_nearest(x), i.e |r| <= 0.5 and
// ln(sin(Pi*r)/(Pi*r)) is approximated by 8-degree polynomial of r^2
//
// Case x < -2^13
// --------------
// Here we use algorithm based on the Stirling formula:
// ln(GAMMA(x)) = -ln(sqrt(2*Pi)) + (|x|-0.5)ln(x) - |x| -
// - ln(sin(Pi*r)/(Pi*r)) - ln(|r|)
// where r = x - rounded_to_nearest(x).
//
// Neighbourhoods of negative roots
// --------------------------------
// Here we use polynomial approximation
// ln(GAMMA(x-x0)) = ln(GAMMA(x0)) + (x-x0)*P14(x-x0),
// where x0 is a root of ln(GAMMA(x)) rounded to nearest
// precision number.
//
//
// Claculation of logarithm
// ------------------------
// Consider x = 2^N * xf so
// ln(x) = ln(frcpa(x)*x/frcpa(x))
// = ln(1/frcpa(x)) + ln(frcpa(x)*x)
//
// frcpa(x) = 2^(-N) * frcpa(xf)
//
// ln(1/frcpa(x)) = -ln(2^(-N)) - ln(frcpa(xf))
// = N*ln(2) - ln(frcpa(xf))
// = N*ln(2) + ln(1/frcpa(xf))
//
// ln(x) = ln(1/frcpa(x)) + ln(frcpa(x)*x) =
// = N*ln(2) + ln(1/frcpa(xf)) + ln(frcpa(x)*x)
// = N*ln(2) + T + ln(frcpa(x)*x)
//
// Let r = 1 - frcpa(x)*x, note that r is quite small by
// absolute value so
//
// ln(x) = N*ln(2) + T + ln(1+r) ~ N*ln(2) + T + Series(r),
// where T - is precomputed tabular value,
// Series(r) = (P3*r + P2)*r^2 + (P1*r + 1)
//
//--
*/
typedef union
{
uint hex;
float fp;
} _iml_lg_sp_union_t;
__constant float __slgamma_ep__TWO_23H[2] = { 12582912.0, -12582912.0 };
static __constant unsigned int __slgamma_ep___p1[] = {
0xbf13c468, // p[0] = -0.577215672
0x45e1ce83, // p[1] = 7225.81396
0x46ce12fa, // p[2] = 26377.4883
0x471654f6, // p[3] = 38484.9609
0x46df1a7e, // p[4] = 28557.2461
0x4630deb0, // p[5] = 11319.6719
0x450f2d6a, // p[6] = 2290.83838
0x4349cfaf, // p[7] = 201.811264
0x409e3f5e, // p[8] = 4.94523525
};
static __constant unsigned int __slgamma_ep___q1[] = {
0x46094625, // q[0] = 8785.53613
0x470dff47, // q[1] = 36351.2773
0x4770ab39, // q[2] = 61611.2227
0x4756d11a, // q[3] = 54993.1016
0x46d7efbe, // q[4] = 27639.8711
0x45f1d60e, // q[5] = 7738.75684
0x448b2aa3, // q[6] = 1113.3324
0x4286f6d9, // q[7] = 67.4821243
0x3f800000, // q[8] = 1
};
static __constant unsigned int __slgamma_ep___p2[] = {
0x3ed87730, // p[0] = 0.422784328
0x4a3ba0f4, // p[1] = 3074109
0x4a9bd7cb, // p[2] = 5106661.5
0x4a4bbea4, // p[3] = 3338153
0x4984d666, // p[4] = 1088204.75
0x48347653, // p[5] = 184793.297
0x46724bc1, // p[6] = 15506.9385
0x44079a7d, // p[7] = 542.413879
0x409f2ffd, // p[8] = 4.97460794
};
static __constant unsigned int __slgamma_ep___q2[] = {
0x4b1176a8, // q[0] = 9533096
0x4b880313, // q[1] = 17827366
0x4b4d7d87, // q[2] = 13467015
0x4aa0c3f8, // q[3] = 5267964
0x498ac20f, // q[4] = 1136705.88
0x48021198, // q[5] = 133190.375
0x45f2a865, // q[6] = 7765.04932
0x43370868, // q[7] = 183.032837
0x3f800000, // q[8] = 1
};
static __constant unsigned int __slgamma_ep___p3[] = {
0x3fe55860, // p[0] = 1.79175949
0x530287dd, // p[1] = 5.60625156e+11
0x52e563ff, // p[2] = 4.92612583e+11
0x521e92b7, // p[3] = 1.70266575e+11
0x50db1347, // p[4] = 2.94037893e+10
0x4f1ec0c1, // p[5] = 2.66343245e+09
0x4ce7b23d, // p[6] = 121475560
0x4a141ef5, // p[7] = 2426813.25
0x46666416, // p[8] = 14745.0215
};
static __constant unsigned int __slgamma_ep___q3[] = {
0x52cfd4fe, // q[0] = 4.46315823e+11
0x529f237e, // q[1] = 3.4174763e+11
0x51bd64f9, // q[2] = 1.01680357e+11
0x505dd21b, // q[3] = 1.48861368e+10
0x4e859e4d, // q[4] = 1.12087206e+09
0x4c1dc2b8, // q[5] = 41356000
0x491c19c9, // q[6] = 639388.562
0x4528287c, // q[7] = 2690.53027
0xbf800000, // q[8] = -1
};
static __constant unsigned int __slgamma_ep___s[] = {
0xbfd28d33, // -1.64493406
0xbf0a8993, // -0.541161716
0xbead9f8d, // -0.339107901
0xbe809fb7, // -0.251218528
0xbe49f046, // -0.197205633
0xbe43506b, // -0.190736458
0xbd222966, // -0.0395902619
0xbeac398d, // -0.336376578
};
//! ===========================================================================
//! @brief Absolute value computation routine
//!
//! @param[in] x Argument
//! @return Returns absolute value
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_abs_fp32 (float x)
{
return (x > 0.0f) ? x : ((x == 0.0f) ? 0.0f : (-x));
} // static inline float _VSTATIC(own_abs_fp32)(float x)
//! ===========================================================================
//! @brief 32-bit natural logarithm value computation routine
//!
//! @param[in] a Argument
//! @return Returns 32-bit natural logarithm
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_log_fp32 (float a)
{
unsigned int iHiDelta = 0x0u;
unsigned int iLoRange = 0x0u;
unsigned int iBrkValue = 0x0u;
unsigned int iOffExpoMask = 0x0u;
unsigned int iRangeMask = 0x0u;
unsigned int iX = 0x0u;
unsigned int iXTest = 0x0u;
signed int iN = 0x0;
unsigned int iR = 0x0u;
unsigned int vm = 0x0u;
int denorm_scale_exp = 0;
float r = 0.0f;
float sOne = 0.0f;
float sLn2 = 0.0f;
float sPoly[8] = { 0.0f };
float sP = 0.0f;
float va1 = 0.0f;
float vr1 = 0.0f;
float sN = 0.0f;
float sR = 0.0f;
struct
{
unsigned int sPoly[8];
unsigned int iHiDelta;
unsigned int iLoRange;
unsigned int iBrkValue;
unsigned int iOffExpoMask;
unsigned int sOne;
unsigned int sLn2;
unsigned int sInfs[2];
unsigned int sOnes[2];
unsigned int sZeros[2];
} own_log_fp32_data = {
{0xbf000000u, 0x3eaaaa94u, 0xbe80058eu, 0x3e4ce190u, 0xbe28ad37u, 0x3e0fcb12u, 0xbe1ad9e3u, 0x3e0d84edu},
0x00800000u, 0x01000000u, 0x3f2aaaabu, 0x007fffffu, 0x3f800000u, 0x3f317218u,
{0x7f800000u, 0xff800000u}, {0x3f800000u, 0xbf800000u}, {0x00000000u, 0x80000000u}
};
va1 = a;
/* argument is denormalized or [+/-]0 */
if (as_uint (va1) <= 0x007fffff)
{
/* Scale */
unsigned int _denorm_scale = 0x4D000000; // 2^27
float denorm_scale = *(float *) &_denorm_scale;
va1 *= denorm_scale;
denorm_scale_exp = 27;
}
iHiDelta = (own_log_fp32_data.iHiDelta);
iLoRange = (own_log_fp32_data.iLoRange);
iX = as_uint (va1);
iXTest = (iX + iHiDelta);
iRangeMask = ((unsigned int) (-(signed int) ((signed int) iXTest < (signed int) iLoRange)));
iBrkValue = (own_log_fp32_data.iBrkValue);
iOffExpoMask = (own_log_fp32_data.iOffExpoMask);
iX = (iX - iBrkValue);
iR = (iX & iOffExpoMask);
iN = ((signed int) iX >> (23));
iN = iN - denorm_scale_exp;
iR = (iR + iBrkValue);
sN = ((float) ((int) (iN)));
sR = as_float (iR);
vm = iRangeMask;
sOne = as_float (own_log_fp32_data.sOne);
sR = (sR - sOne);
sPoly[7] = as_float (own_log_fp32_data.sPoly[7]);
sPoly[6] = as_float (own_log_fp32_data.sPoly[6]);
sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sPoly[7]), (sR), (sPoly[6]));
sPoly[5] = as_float (own_log_fp32_data.sPoly[5]);
sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[5]));
sPoly[4] = as_float (own_log_fp32_data.sPoly[4]);
sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[4]));
sPoly[3] = as_float (own_log_fp32_data.sPoly[3]);
sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[3]));
sPoly[2] = as_float (own_log_fp32_data.sPoly[2]);
sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[2]));
sPoly[1] = as_float (own_log_fp32_data.sPoly[1]);
sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[1]));
sPoly[0] = as_float (own_log_fp32_data.sPoly[0]);
sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sPoly[0]));
sP = (sP * sR);
sP = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sP), (sR), (sR));
sLn2 = as_float (own_log_fp32_data.sLn2);
vr1 = SPIRV_OCL_BUILTIN(fma, _f32_f32_f32, ) ((sN), (sLn2), (sP));
r = vr1;
return r;
} // static inline float _VSTATIC(own_log_fp32) (float a)
//! ===========================================================================
//! @brief 32-bit nearbyint computation routine
//!
//! @param[in] sA Argument
//! @return Returns 32-bit nearbyint
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_nearbyint_fp32 (float sA)
{
float _rnd_s2p23 = 0.0f;
float _rnd_sSignMask = 0.0f;
float _rnd_sSign = 0.0f;
float _rnd_sAbsArg = 0.0f;
float _rnd_sRes_ub = 0.0f;
float _rnd_sRange = 0.0f;
unsigned int _rnd_i2p23 = 0x4b000000u;
unsigned int _rnd_iSignMask = 0x80000000u;
_rnd_s2p23 = (*((float *) &(_rnd_i2p23)));
_rnd_sSignMask = (*((float *) &(_rnd_iSignMask)));
(*((unsigned int *) &(_rnd_sSign))) = ((*((unsigned int *) &(sA))) & (*((unsigned int *) &(_rnd_sSignMask))));
(*((unsigned int *) &(_rnd_sAbsArg))) = (~((*((unsigned int *) &(_rnd_sSignMask)))) & (*((unsigned int *) &(sA))));
(*((unsigned int *) &(_rnd_sRange))) = ((unsigned int) (-(int) (_rnd_sAbsArg > _rnd_s2p23)));
_rnd_sRes_ub = (_rnd_sAbsArg + _rnd_s2p23);
_rnd_sRes_ub = (_rnd_sRes_ub - _rnd_s2p23);
(*((unsigned int *) &(_rnd_sRes_ub))) = ((*((unsigned int *) &(_rnd_sRes_ub))) | (*((unsigned int *) &(_rnd_sSign))));
(*((unsigned int *) &(_rnd_sRes_ub))) =
(((~(*((unsigned int *) &(_rnd_sRange)))) & (*((unsigned int *) &(_rnd_sRes_ub)))) |
((*((unsigned int *) &(_rnd_sRange))) & (*((unsigned int *) &(sA)))));
return _rnd_sRes_ub;
} // static inline float _VSTATIC(own_nearbyint_fp32)( float sA )
//! ===========================================================================
//! @brief 32-bit ceil computation routine
//!
//! @param[in] sA Argument
//! @return Returns 32-bit ceil
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_ceilf_fp32 (float sA)
{
float _rnd_s2p23 = 0.0f;
float _rnd_sSignMask = 0.0f;
float _rnd_sSign = 0.0f;
float _rnd_sIsGreater = 0.0f;
float _rnd_sOne = 0.0f;
float _rnd_sAddOne = 0.0f;
float _rnd_sAbsArg = 0.0f;
float _rnd_sRes_ub = 0.0f;
float _rnd_sRange = 0.0f;
unsigned int _rnd_i2p23 = 0x4b000000u;
unsigned int _rnd_iSignMask = 0x80000000u;
unsigned int _rnd_iOne = 0x3f800000u;
_rnd_sSignMask = (*((float *) &(_rnd_iSignMask)));
(*((unsigned int *) &(_rnd_sSign))) = ((*((unsigned int *) &(sA))) & (*((unsigned int *) &(_rnd_sSignMask))));
(*((unsigned int *) &(_rnd_sAbsArg))) = (~((*((unsigned int *) &(_rnd_sSignMask)))) & (*((unsigned int *) &(sA))));
_rnd_s2p23 = (*((float *) &(_rnd_i2p23)));
(*((unsigned int *) &(_rnd_sRange))) = ((unsigned int) (-(signed int) (_rnd_sAbsArg > _rnd_s2p23)));
_rnd_sRes_ub = (_rnd_sAbsArg + _rnd_s2p23);
_rnd_sRes_ub = (_rnd_sRes_ub - _rnd_s2p23);
(*((unsigned int *) &(_rnd_sRes_ub))) = ((*((unsigned int *) &(_rnd_sRes_ub))) | (*((unsigned int *) &(_rnd_sSign))));
(*((unsigned int *) &(_rnd_sIsGreater))) = ((unsigned int) (-(signed int) (sA > _rnd_sRes_ub)));
_rnd_sOne = (*((float *) &(_rnd_iOne)));
(*((unsigned int *) &(_rnd_sAddOne))) = ((*((unsigned int *) &(_rnd_sOne))) & (*((unsigned int *) &(_rnd_sIsGreater))));
_rnd_sRes_ub = _rnd_sRes_ub + _rnd_sAddOne;
(*((unsigned int *) &(_rnd_sRes_ub))) =
(((~(*((unsigned int *) &(_rnd_sRange)))) & (*((unsigned int *) &(_rnd_sRes_ub)))) |
((*((unsigned int *) &(_rnd_sRange))) & (*((unsigned int *) &(sA)))));
return _rnd_sRes_ub;
} // static inline float _VSTATIC(own_ceilf_fp32)( float sA )
//! ===========================================================================
//! @brief 32-bit Gergo Nemes fast lgamma approximation
//!
//! @param[in] arg Argument
//! @return Returns 32-bit lgamma
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_lgamma_fast_fp32 (float arg)
{
unsigned int __slgamma_ep_own_log2pif = 0x3feb3f8eu;
float result = 0.5f * ((*(float *) &(__slgamma_ep_own_log2pif)) - SPIRV_OCL_BUILTIN(log, _f32, ) (arg));
result = result + (arg * (SPIRV_OCL_BUILTIN(log, _f32, ) (arg + (1.0f / ((12.0f * arg) - (1.0f / (10.0f * arg))))) - 1.0f));
return result;
} // static inline float _VSTATIC(own_lgamma_fast_fp32) (float arg)
//! ===========================================================================
//! @brief 32-bit lgamma approximation for positive arguments in [0.0; 2^13)
//!
//! @param[in] arg Argument
//! @return Returns 64-bit lgamma
//!
//! ===========================================================================
__attribute__((always_inline))
inline float __slgamma_ep_own_lgamma_pos_fp32 (float arg)
{
float result;
if (arg >= 12.0f)
{
result = __slgamma_ep_own_lgamma_fast_fp32 (arg);
}
else
{
// ===========================================================================
// W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for
// the Natural Logarithm of the Gamma Function,' Math. Comp. 21,
// 1967, pp. 198-203.
// ===========================================================================
__constant float *_p1 = (__constant float *) __slgamma_ep___p1;
__constant float *_q1 = (__constant float *) __slgamma_ep___q1;
__constant float *_p2 = (__constant float *) __slgamma_ep___p2;
__constant float *_q2 = (__constant float *) __slgamma_ep___q2;
__constant float *_p3 = (__constant float *) __slgamma_ep___p3;
__constant float *_q3 = (__constant float *) __slgamma_ep___q3;
unsigned int _brk0p6 = 0x3f2e0000; // ~0.68
unsigned int _xsmall = 0x257ff2d6; // ~0.22e-15
float brk0p6 = *(float *) &_brk0p6;
float xsmall = *(float *) &_xsmall;
float qq, pp, rr, rrr, c0;
__constant float *_p, *_q;
if (arg >= 4.0)
{
rr = arg - 4.0f;
c0 = 0.0f;
_p = _p3;
_q = _q3;
rrr = 1.0;
}
else if (arg >= 1.5)
{
rr = arg - 2.0f;
c0 = 0.0f;
_p = _p2;
_q = _q2;
rrr = rr;
}
else if (arg > brk0p6)
{
rr = arg - 1.0f;
c0 = 0.0f;
_p = _p1;
_q = _q1;
rrr = rr;
}
else if (arg > 0.5)
{
rr = arg - 1.0f;
c0 = -SPIRV_OCL_BUILTIN(log, _f32, ) (arg);
_p = _p2;
_q = _q2;
rrr = rr;
}
else if (arg > xsmall)
{
rr = arg;
c0 = -SPIRV_OCL_BUILTIN(log, _f32, ) (arg);
_p = _p1;
_q = _q1;
rrr = rr;
}
else // arg <= xsmall
{
rr = 0.0;
c0 = -SPIRV_OCL_BUILTIN(log, _f32, ) (arg);
_p = _p1;
_q = _q1;
rrr = rr;
}
pp = _p[1] + rr * (_p[2] + rr * (_p[3] + rr * (_p[4] + rr * (_p[5] + rr * (_p[6] + rr * (_p[7] + rr * _p[8]))))));
qq = _q[0] + rr * (_q[1] + rr * (_q[2] + rr * (_q[3] + rr * (_q[4] + rr * (_q[5] + rr * (_q[6] + rr * (_q[7] + rr * _q[8])))))));
result = c0 + rrr * (_p[0] + rr * (pp / qq));
}
return result;
}
//! ===========================================================================
//! @brief 32-bit lgamma approximation
//!
//! @param[in] a Argument pointer
//! @param[in] r Result pointer
//! @return Computation status
//! ===========================================================================
__attribute__((always_inline))
inline int __internal_slgamma_ep_cout (float *a, float *r)
{
float x = (*a);
float f = 0.0f, f1 = 0.0f;
float ldx = 0.0f, t0 = 0.0f, t1 = 0.0f, t2 = 0.0f, result = 0.0f, y = 0.0f, y2 = 0.0f;
float p = 0.0f, r1 = 0.0f, r2 = 0.0f;
signed int ix = ((signed int) (((_iml_lg_sp_union_t *) & x)->hex));
unsigned int iabsx = ((((_iml_lg_sp_union_t *) & x)->hex) & 0x7fffffff);
unsigned int xsig = (((_iml_lg_sp_union_t *) & x)->hex >> 31);
unsigned int exp_x = ((((_iml_lg_sp_union_t *) & x)->hex >> 23) & 0xFF);
int i = 0, intx = 0;
int signgam = 1;
int nRet = 0;
if (exp_x == 0xFF)
{
// For x==+/-infinity: return +infinity.
// For x==NaN: raise invalid, return QNaN.
(*r) = x * x;
}
else if (iabsx == 0x00000000u)
{
// x==+/-0
if (xsig)
{
signgam = -1;
}
// Return +Infinity. Raise Zero divide.
f = 0.0f;
(*r) = 1.0f / f;
nRet = 2;
}
else if (ix > 0x7C44AF8E)
{
unsigned int __big = 0x7f7fffff;
float _big = *(float *) &__big;
// OVERFLOW_BOUNDARY <= x <= +Max
// Return +Infinity. Raise Inexact and Overflow.
(*r) = _big * _big;
nRet = 3;
}
else if (x > 0.0f)
{
(*r) = __slgamma_ep_own_lgamma_pos_fp32 (x);
}
else // x < 0.0f
{
__constant float *_s = (__constant float *) __slgamma_ep___s;
unsigned int __ln_sqrt_2_pi = 0x3f6b3f8e; // 0.918938518
float _ln_sqrt_2_pi = *(float *) &__ln_sqrt_2_pi;
f = __slgamma_ep_own_nearbyint_fp32 (x);
intx = (x == f); /* Is x an integer? */
if (!intx && (x > (__slgamma_ep__TWO_23H[1])) && !(((int) __slgamma_ep_own_ceilf_fp32 (x)) & 1))
{
signgam = -1;
}
if (intx)
{
// x is negative integer
// Return +Infinity. Raise Zero divide
f = 0.0f;
(*r) = 1.0f / f;
nRet = 2;
}
else if (x > -12.0)
{
// x > -12
y = x;
p = 1.0f;
while (y < 1.0f)
{
p = p * y;
y = y + 1.0f;
}
p = SPIRV_OCL_BUILTIN(fabs, _f32, ) (p);
p = SPIRV_OCL_BUILTIN(log, _f32, ) (p);
result = __slgamma_ep_own_lgamma_pos_fp32 (y);
result = result - p;
(*r) = result;
}
else if (x > -8192.0f)
{
// Here we use the formula:
// ln(GAMMA(-x)) = ln(Pi/(x*GAMMA(x)*sin(Pi*x))) =
// = -ln(x) - ln((GAMMA(x)) - ln(sin(Pi*r1)/(Pi*r1)) - ln(|r1|)
// where r1 = x - rounded_to_nearest_integer(x), i.e |r1| <= 0.5
// and ln(sin(Pi*r1)/(Pi*r1)) is approximated by
// 8-degree polynomial of r1^2.
//
f = (__slgamma_ep__TWO_23H[0]) - x;
f = f - (__slgamma_ep__TWO_23H[0]); // f=round(-x)
ldx = x;
ldx = -ldx;
r1 = f;
r1 = ldx - r1;
r2 = r1 * r1;
result = SPIRV_OCL_BUILTIN(log, _f32, ) (-x);
result = -result;
y = __slgamma_ep_own_lgamma_pos_fp32 (ldx);
result = result - y;
p = (((((((_s[7] * r2 + _s[6]) * r2 + _s[5]) * r2 + _s[4]) * r2 + _s[3]) * r2 + _s[2]) * r2 + _s[1]) * r2 + _s[0]) * r2;
result = result - p;
r1 = SPIRV_OCL_BUILTIN(fabs, _f32, ) (r1);
y = SPIRV_OCL_BUILTIN(log, _f32, ) (r1);
result = result - y;
(*r) = result;
}
else
{
//
// Case x < -2^13:
// ---------------
// Here we use algorithm based on the Stirling formula:
// ln(GAMMA(x)) = -ln(sqrt(2*Pi)) + (x-0.5)ln(|x|) -
// - x - ln(sin(Pi*r1)/(Pi*r1)) - ln(|r1|)
// where r1 = x - rounded_to_nearest_integer(x).
//
result = _ln_sqrt_2_pi;
ldx = x;
t1 = ldx - 0.5f;
t2 = -ldx;
t2 = SPIRV_OCL_BUILTIN(log, _f32, ) (-x);
t1 = t1 * t2;
result = t1 - result;
result = result - ldx;
f = (__slgamma_ep__TWO_23H[0]);
f = f - x;
f = f - (__slgamma_ep__TWO_23H[0]);
r1 = -ldx;
r1 = r1 - f;
r2 = r1 * r1;
p = (((((((_s[7] * r2 + _s[6]) * r2 + _s[5]) * r2 + _s[4]) * r2 + _s[3]) * r2 + _s[2]) * r2 + _s[1]) * r2 + _s[0]) * r2;
result = result - p;
r1 = SPIRV_OCL_BUILTIN(fabs, _f32, ) (r1);
y = SPIRV_OCL_BUILTIN(log, _f32, ) (r1);
result = result - y;
(*r) = result;
}
} // else if ( exp_x == IML_EXPINF_32 )
return nRet;
} // _VAPI_COUT_SCOPE int _VAPI_COUT_NAME( __constant float* a, float* r)
float __ocl_svml_lgammaf (float a)
{
float va1;
float vr1;
unsigned int vm;
float r;
va1 = a;;
__internal_slgamma_ep_cout (&va1, &vr1);
r = vr1;;
return r;
}
|