File: log1p_d_la_noLUT.cl

package info (click to toggle)
intel-graphics-compiler 1.0.12504.6-1%2Bdeb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 83,912 kB
  • sloc: cpp: 910,147; lisp: 202,655; ansic: 15,197; python: 4,025; yacc: 2,241; lex: 1,570; pascal: 244; sh: 104; makefile: 25
file content (759 lines) | stat: -rw-r--r-- 34,133 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
/*===================== begin_copyright_notice ==================================

Copyright (c) 2022 Intel Corporation

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


======================= end_copyright_notice ==================================*/

#include "../imf.h"
#pragma OPENCL FP_CONTRACT OFF
typedef struct
{
    unsigned long OneEighth;
    unsigned long ExpMask;
    unsigned long ExpInv;
    unsigned long OneHalf;
    unsigned long Eight;
    unsigned long ConvExp;
    unsigned long ConvConst;
    unsigned long One;
    unsigned long Shifter;
    unsigned long ThreeQuarters;
    unsigned long CoeffD7;
    unsigned long CoeffD6;
    unsigned long CoeffD5;
    unsigned long CoeffD4;
    unsigned long CoeffD3;
    unsigned long CoeffD2;
    unsigned long CoeffP12;
    unsigned long CoeffP11;
    unsigned long CoeffP10;
    unsigned long CoeffP9;
    unsigned long CoeffP8;
    unsigned long CoeffP7;
    unsigned long CoeffP6;
    unsigned long CoeffP5;
    unsigned long CoeffP4;
    unsigned long CoeffP3;
    unsigned long CoeffP2;
    unsigned long LogTwoHi;
    unsigned long LogTwoLo;
    unsigned long MinArg;
    unsigned long MaxArg;
} __internal_dlog1p_la_noLUT_data_t;
static __constant __internal_dlog1p_la_noLUT_data_t __internal_dlog1p_la_noLUT_data = {
    // OneEighth = 0.125
    0x3fc0000000000000uL,
    // ExpMask
    0x7ff0000000000000uL,
    // ExpInv
    0x7fe0000000000000uL,
    // OneHalf = 0.5
    0x3fe0000000000000uL,
    // Eight = 8.0
    0x4020000000000000uL,
    // ConvExp
    0x4138000000000000uL,
    // ConvConst
    0x4138040200000000uL,
    // One = 1.0
    0x3ff0000000000000uL,
    // Shifter = 2^49 + 2^48
    0x4308000000000000uL,
    // ThreeQuarters = 0.75
    0x3fe8000000000000uL,
    // Coefficients for polynomial d
    0x3fd2d69f78622232uL,
    0x3fc2896ff3f66bbduL,
    0x3fc8c588ce05a097uL,
    0x3fd013265a806008uL,
    0x3fd55613246dd7cfuL,
    0x3fdfffdc599639e8uL,
    // Coefficients for polynomial p
    0xbfbabc3280883f85uL,
    0x3fb7569b705ccf22uL,
    0xbfb98321c986c73fuL,
    0x3fbc725277fd96beuL,
    0xbfc00011b12ec07fuL,
    0x3fc2492404508eb2uL,
    0xbfc5555548c81da2uL,
    0x3fc9999999f242c7uL,
    0xbfd000000001dd61uL,
    0x3fd5555555554d65uL,
    0xbfdfffffffffffd9uL,
    // Log2hi ~= log(2) (high part)
    0x3fe62e42fefa4000uL,
    // Log2lo ~= log(2) (low part)
    0xbd48432a1b0e2000uL,
    // MinArg
    0xbfefffffffffffffuL,
    // MaxArg
    0x7fefffffffffffffuL
};

/* Macros to access other precomputed constants */
/* Table look-up: all DP constants are presented in hexadecimal form */
static __constant _iml_dp_union_t __dlog1p_la_CoutTab[210] = {
    0x00000000, 0x3FF00000, /* RCPR_Y[0]       =  1.0000000000e+00 */
    0x00000000, 0x00000000, /* LN_RCPR_Y_HI[0] =  0.0000000000e-01 */
    0x00000000, 0x00000000, /* LN_RCPR_Y_LO[0] =  0.0000000000e-01 */
    0x00000000, 0x3FEF8000, /* RCPR_Y[1]       =  9.8437500000e-01 */
    0x58A00000, 0x3F902056, /* LN_RCPR_Y_HI[1] =  1.5748356971e-02 */
    0x6C1B8BDF, 0xBD894F71, /* LN_RCPR_Y_LO[1] = -2.8774507469e-12 */
    0x00000000, 0x3FEF0800, /* RCPR_Y[2]       =  9.6972656250e-01 */
    0x16800000, 0x3F9F7A9B, /* LN_RCPR_Y_HI[2] =  3.0741141556e-02 */
    0x36C720C1, 0xBD7F5EA9, /* LN_RCPR_Y_LO[2] = -1.7831649473e-12 */
    0x00000000, 0x3FEE9000, /* RCPR_Y[3]       =  9.5507812500e-01 */
    0x5A380000, 0x3FA78859, /* LN_RCPR_Y_HI[3] =  4.5962135566e-02 */
    0x3420ECE9, 0xBD74422C, /* LN_RCPR_Y_LO[3] = -1.1515616617e-12 */
    0x00000000, 0x3FEE2000, /* RCPR_Y[4]       =  9.4140625000e-01 */
    0xC0080000, 0x3FAEEA31, /* LN_RCPR_Y_HI[4] =  6.0380510989e-02 */
    0xF93F24EE, 0xBD647844, /* LN_RCPR_Y_LO[4] = -5.8178677744e-13 */
    0x00000000, 0x3FEDB000, /* RCPR_Y[5]       =  9.2773437500e-01 */
    0xF8180000, 0x3FB333D7, /* LN_RCPR_Y_HI[5] =  7.5009821005e-02 */
    0x255F91DF, 0x3D4FA5B5, /* LN_RCPR_Y_LO[5] =  2.2486755795e-13 */
    0x00000000, 0x3FED4000, /* RCPR_Y[6]       =  9.1406250000e-01 */
    0x0AEA0000, 0x3FB700D3, /* LN_RCPR_Y_HI[6] =  8.9856329121e-02 */
    0x8DA99DED, 0x3D681C1E, /* LN_RCPR_Y_LO[6] =  6.8524290121e-13 */
    0x00000000, 0x3FECD800, /* RCPR_Y[7]       =  9.0136718750e-01 */
    0x3ECA0000, 0x3FBA956D, /* LN_RCPR_Y_HI[7] =  1.0384257110e-01 */
    0x29805896, 0x3D6BCC6F, /* LN_RCPR_Y_LO[7] =  7.9008291321e-13 */
    0x00000000, 0x3FEC7000, /* RCPR_Y[8]       =  8.8867187500e-01 */
    0xEE300000, 0x3FBE3707, /* LN_RCPR_Y_HI[8] =  1.1802720609e-01 */
    0x9CCECD58, 0x3D521ED0, /* LN_RCPR_Y_LO[8] =  2.5750595504e-13 */
    0x00000000, 0x3FEC1000, /* RCPR_Y[9]       =  8.7695312500e-01 */
    0xCDCD0000, 0x3FC0CE7E, /* LN_RCPR_Y_HI[9] =  1.3130173730e-01 */
    0x25400ABC, 0xBD5EB9AD, /* LN_RCPR_Y_LO[9] = -4.3663274938e-13 */
    0x00000000, 0x3FEBAC00, /* RCPR_Y[10]       =  8.6474609375e-01 */
    0x0C608000, 0x3FC299D3, /* LN_RCPR_Y_HI[10] =  1.4531934838e-01 */
    0xC311FB94, 0xBD41597F, /* LN_RCPR_Y_LO[10] = -1.2327636329e-13 */
    0x00000000, 0x3FEB5000, /* RCPR_Y[11]       =  8.5351562500e-01 */
    0x9DC98000, 0x3FC4462B, /* LN_RCPR_Y_HI[11] =  1.5839142994e-01 */
    0xD63B93E8, 0x3D59EDE9, /* LN_RCPR_Y_LO[11] =  3.6847821601e-13 */
    0x00000000, 0x3FEAF400, /* RCPR_Y[12]       =  8.4228515625e-01 */
    0xA1A60000, 0x3FC5F830, /* LN_RCPR_Y_HI[12] =  1.7163665669e-01 */
    0xD9C00F91, 0xBD5AB765, /* LN_RCPR_Y_LO[12] = -3.7966284860e-13 */
    0x00000000, 0x3FEA9800, /* RCPR_Y[13]       =  8.3105468750e-01 */
    0x16518000, 0x3FC7B009, /* LN_RCPR_Y_HI[13] =  1.8505967703e-01 */
    0xF2C19F96, 0xBD56B9D7, /* LN_RCPR_Y_LO[13] = -3.2295519303e-13 */
    0x00000000, 0x3FEA4000, /* RCPR_Y[14]       =  8.2031250000e-01 */
    0xDCF70000, 0x3FC95A5A, /* LN_RCPR_Y_HI[14] =  1.9806991376e-01 */
    0x58A0FF6F, 0x3D07F228, /* LN_RCPR_Y_LO[14] =  1.0634128304e-14 */
    0x00000000, 0x3FE9EC00, /* RCPR_Y[15]       =  8.1005859375e-01 */
    0x56110000, 0x3FCAF689, /* LN_RCPR_Y_HI[15] =  2.1064869597e-01 */
    0x117EF527, 0xBD522905, /* LN_RCPR_Y_LO[15] = -2.5807244110e-13 */
    0x00000000, 0x3FE99800, /* RCPR_Y[16]       =  7.9980468750e-01 */
    0x079D8000, 0x3FCC97F8, /* LN_RCPR_Y_HI[16] =  2.2338772175e-01 */
    0xCAE72327, 0xBD5D89D3, /* LN_RCPR_Y_LO[16] = -4.1976573966e-13 */
    0x00000000, 0x3FE94800, /* RCPR_Y[17]       =  7.9003906250e-01 */
    0x7A6B0000, 0x3FCE2A87, /* LN_RCPR_Y_HI[17] =  2.3567288854e-01 */
    0x5DE1C206, 0x3D5608E0, /* LN_RCPR_Y_LO[17] =  3.1313154472e-13 */
    0x00000000, 0x3FE8F800, /* RCPR_Y[18]       =  7.8027343750e-01 */
    0xBE620000, 0x3FCFC218, /* LN_RCPR_Y_HI[18] =  2.4811085983e-01 */
    0x6F1CF6A0, 0x3D34BBA4, /* LN_RCPR_Y_LO[18] =  7.3658333883e-14 */
    0x00000000, 0x3FE8AC00, /* RCPR_Y[19]       =  7.7099609375e-01 */
    0xE97BC000, 0x3FD0A504, /* LN_RCPR_Y_HI[19] =  2.6007197190e-01 */
    0x8CCB79DE, 0xBD47E7B5, /* LN_RCPR_Y_LO[19] = -1.6985605088e-13 */
    0x00000000, 0x3FE86000, /* RCPR_Y[20]       =  7.6171875000e-01 */
    0xCBAD0000, 0x3FD16B5C, /* LN_RCPR_Y_HI[20] =  2.7217788592e-01 */
    0x042D74BF, 0xBD323299, /* LN_RCPR_Y_LO[20] = -6.4651030640e-14 */
    0x00000000, 0x3FE81800, /* RCPR_Y[21]       =  7.5292968750e-01 */
    0xFBEF8000, 0x3FD22981, /* LN_RCPR_Y_HI[21] =  2.8378343204e-01 */
    0x609580DA, 0xBD3A1421, /* LN_RCPR_Y_LO[21] = -9.2649920791e-14 */
    0x00000000, 0x3FE7D000, /* RCPR_Y[22]       =  7.4414062500e-01 */
    0xBCE12000, 0x3FD2E9E2, /* LN_RCPR_Y_HI[22] =  2.9552524991e-01 */
    0x128D1DC2, 0x3D24300C, /* LN_RCPR_Y_LO[22] =  3.5860530920e-14 */
    0x00000000, 0x3FE78C00, /* RCPR_Y[23]       =  7.3583984375e-01 */
    0x802F4000, 0x3FD3A1AC, /* LN_RCPR_Y_HI[23] =  3.0674278753e-01 */
    0x6332A139, 0xBD433898, /* LN_RCPR_Y_LO[23] = -1.3657395391e-13 */
    0x00000000, 0x3FE74400, /* RCPR_Y[24]       =  7.2705078125e-01 */
    0xF41F0000, 0x3FD4668B, /* LN_RCPR_Y_HI[24] =  3.1875895348e-01 */
    0x62C5A8F7, 0xBD39AF17, /* LN_RCPR_Y_LO[24] = -9.1247722585e-14 */
    0x00000000, 0x3FE70400, /* RCPR_Y[25]       =  7.1923828125e-01 */
    0x9AB56000, 0x3FD5178D, /* LN_RCPR_Y_HI[25] =  3.2956256970e-01 */
    0x780B4E27, 0xBD451F56, /* LN_RCPR_Y_LO[25] = -1.5008377233e-13 */
    0x00000000, 0x3FE6C000, /* RCPR_Y[26]       =  7.1093750000e-01 */
    0xDF596000, 0x3FD5D5BD, /* LN_RCPR_Y_HI[26] =  3.4117075740e-01 */
    0x08A465DC, 0xBD0A0B2A, /* LN_RCPR_Y_LO[26] = -1.1565686246e-14 */
    0x00000000, 0x3FE68000, /* RCPR_Y[27]       =  7.0312500000e-01 */
    0x3E9C6000, 0x3FD68AC8, /* LN_RCPR_Y_HI[27] =  3.5222059359e-01 */
    0xC9D5BAE8, 0x3D442834, /* LN_RCPR_Y_LO[27] =  1.4322449351e-13 */
    0x00000000, 0x3FE64400, /* RCPR_Y[28]       =  6.9580078125e-01 */
    0x0F3AE000, 0x3FD73658, /* LN_RCPR_Y_HI[28] =  3.6269189346e-01 */
    0x9D367ECC, 0x3D46CAA5, /* LN_RCPR_Y_LO[28] =  1.6194398406e-13 */
    0x00000000, 0x3FE60400, /* RCPR_Y[29]       =  6.8798828125e-01 */
    0x61CC6000, 0x3FD7EF58, /* LN_RCPR_Y_HI[29] =  3.7398347426e-01 */
    0x353DDE1F, 0x3D4CEF42, /* LN_RCPR_Y_LO[29] =  2.0559272687e-13 */
    0x00000000, 0x3FE5C800, /* RCPR_Y[30]       =  6.8066406250e-01 */
    0xAF432000, 0x3FD89EB3, /* LN_RCPR_Y_HI[30] =  3.8468639484e-01 */
    0x30791139, 0x3D40E8B0, /* LN_RCPR_Y_LO[30] =  1.2014523375e-13 */
    0x00000000, 0x3FE59000, /* RCPR_Y[31]       =  6.7382812500e-01 */
    0x34A04000, 0x3FD94414, /* LN_RCPR_Y_HI[31] =  3.9478020801e-01 */
    0x8DA8002F, 0xBD4B4D1F, /* LN_RCPR_Y_LO[31] = -1.9398713900e-13 */
    0x00000000, 0x3FE55400, /* RCPR_Y[32]       =  6.6650390625e-01 */
    0x0CC0E000, 0x3FD9F724, /* LN_RCPR_Y_HI[32] =  4.0570927854e-01 */
    0xB174879D, 0x3D4B6291, /* LN_RCPR_Y_LO[32] =  1.9458238115e-13 */
    0x00000000, 0x3FE51C00, /* RCPR_Y[33]       =  6.5966796875e-01 */
    0xAE22A000, 0x3FDAA00C, /* LN_RCPR_Y_HI[33] =  4.1601864820e-01 */
    0x1F2FADAB, 0x3D46245C, /* LN_RCPR_Y_LO[33] =  1.5732859046e-13 */
    0x00000000, 0x3FE4E400, /* RCPR_Y[34]       =  6.5283203125e-01 */
    0xBDF08000, 0x3FDB4AB7, /* LN_RCPR_Y_HI[34] =  4.2643540906e-01 */
    0x8C3E8673, 0x3D364639, /* LN_RCPR_Y_LO[34] =  7.9134265754e-14 */
    0x00000000, 0x3FE4B000, /* RCPR_Y[35]       =  6.4648437500e-01 */
    0x9E272000, 0x3FDBEACD, /* LN_RCPR_Y_HI[35] =  4.3620624966e-01 */
    0x923C3257, 0xBD34BAC8, /* LN_RCPR_Y_LO[35] = -7.3646415096e-14 */
    0x00000000, 0x3FE47C00, /* RCPR_Y[36]       =  6.4013671875e-01 */
    0xE019C000, 0x3FDC8C77, /* LN_RCPR_Y_HI[36] =  4.4607350240e-01 */
    0xDBB1EB43, 0xBD44FF3B, /* LN_RCPR_Y_LO[36] = -1.4919270877e-13 */
    0x00000000, 0x3FE44800, /* RCPR_Y[37]       =  6.3378906250e-01 */
    0x93204000, 0x3FDD2FBE, /* LN_RCPR_Y_HI[37] =  4.5603908890e-01 */
    0x5E1C3CAA, 0xBD4671F5, /* LN_RCPR_Y_LO[37] = -1.5948238472e-13 */
    0x00000000, 0x3FE41400, /* RCPR_Y[38]       =  6.2744140625e-01 */
    0x04E1C000, 0x3FDDD4AA, /* LN_RCPR_Y_HI[38] =  4.6610498883e-01 */
    0x2DF01AFD, 0x3D32D851, /* LN_RCPR_Y_LO[38] =  6.6950849131e-14 */
    0x00000000, 0x3FE3E400, /* RCPR_Y[39]       =  6.2158203125e-01 */
    0xA6DA4000, 0x3FDE6E62, /* LN_RCPR_Y_HI[39] =  4.7548738760e-01 */
    0xE3D32749, 0x3D4CA9FB, /* LN_RCPR_Y_LO[39] =  2.0366996825e-13 */
    0x00000000, 0x3FE3B000, /* RCPR_Y[40]       =  6.1523437500e-01 */
    0x7FB06000, 0x3FDF168F, /* LN_RCPR_Y_HI[40] =  4.8575198621e-01 */
    0x0A7C0C6E, 0xBD2D6FB4, /* LN_RCPR_Y_LO[40] = -5.2289445586e-14 */
    0x00000000, 0x3FE38000, /* RCPR_Y[41]       =  6.0937500000e-01 */
    0xAF7A4000, 0x3FDFB358, /* LN_RCPR_Y_HI[41] =  4.9532143723e-01 */
    0xA3C16493, 0x3D41085F, /* LN_RCPR_Y_LO[41] =  1.2102467896e-13 */
    0x00000000, 0x3FE35400, /* RCPR_Y[42]       =  6.0400390625e-01 */
    0xCCB34800, 0x3FE02232, /* LN_RCPR_Y_HI[42] =  5.0417461377e-01 */
    0xFA057734, 0xBD2DC38B, /* LN_RCPR_Y_LO[42] = -5.2871226728e-14 */
    0x00000000, 0x3FE32400, /* RCPR_Y[43]       =  5.9814453125e-01 */
    0x5C40E000, 0x3FE0720E, /* LN_RCPR_Y_HI[43] =  5.1392286318e-01 */
    0xFD3F0109, 0xBD1C762F, /* LN_RCPR_Y_LO[43] = -2.5279040867e-14 */
    0x00000000, 0x3FE2F800, /* RCPR_Y[44]       =  5.9277343750e-01 */
    0xFD23E000, 0x3FE0BBF2, /* LN_RCPR_Y_HI[44] =  5.2294301454e-01 */
    0xA94A1946, 0xBD35F8BF, /* LN_RCPR_Y_LO[44] = -7.8059068610e-14 */
    0x00000000, 0x3FE2C800, /* RCPR_Y[45]       =  5.8691406250e-01 */
    0xCBC08000, 0x3FE10D53, /* LN_RCPR_Y_HI[45] =  5.3287687106e-01 */
    0xB54F6AF7, 0x3D1EFC5C, /* LN_RCPR_Y_LO[45] =  2.7520909654e-14 */
    0x00000000, 0x3FE2A000, /* RCPR_Y[46]       =  5.8203125000e-01 */
    0xF6F29800, 0x3FE151C3, /* LN_RCPR_Y_HI[46] =  5.4123113853e-01 */
    0xA293AE49, 0xBD2EDD97, /* LN_RCPR_Y_LO[46] = -5.4828310811e-14 */
    0x00000000, 0x3FE27400, /* RCPR_Y[47]       =  5.7666015625e-01 */
    0xBA0BA800, 0x3FE19DB6, /* LN_RCPR_Y_HI[47] =  5.5050216996e-01 */
    0xBD2DAECC, 0xBD324C53, /* LN_RCPR_Y_LO[47] = -6.5008097591e-14 */
    0x00000000, 0x3FE24800, /* RCPR_Y[48]       =  5.7128906250e-01 */
    0x6E70E800, 0x3FE1EA5F, /* LN_RCPR_Y_HI[48] =  5.5985995837e-01 */
    0xEB80651C, 0x3D3C1747, /* LN_RCPR_Y_LO[48] =  9.9799070913e-14 */
    0x00000000, 0x3FE22000, /* RCPR_Y[49]       =  5.6640625000e-01 */
    0xD8BEC000, 0x3FE230B0, /* LN_RCPR_Y_HI[49] =  5.6844370206e-01 */
    0x646DE661, 0xBD3B40FE, /* LN_RCPR_Y_LO[49] = -9.6825238382e-14 */
    0x00000000, 0x3FE1F800, /* RCPR_Y[50]       =  5.6152343750e-01 */
    0x1EC94000, 0x3FE2779E, /* LN_RCPR_Y_HI[50] =  5.7710176480e-01 */
    0x1994C90F, 0xBD235B99, /* LN_RCPR_Y_LO[50] = -3.4386369076e-14 */
    0x00000000, 0x3FE1D000, /* RCPR_Y[51]       =  5.5664062500e-01 */
    0xF9842000, 0x3FE2BF29, /* LN_RCPR_Y_HI[51] =  5.8583544477e-01 */
    0x79E2C481, 0xBD3E275C, /* LN_RCPR_Y_LO[51] = -1.0712765723e-13 */
    0x00000000, 0x3FE1A800, /* RCPR_Y[52]       =  5.5175781250e-01 */
    0x344F1000, 0x3FE30757, /* LN_RCPR_Y_HI[52] =  5.9464607445e-01 */
    0x533A1F99, 0xBD2EC82F, /* LN_RCPR_Y_LO[52] = -5.4679766712e-14 */
    0x00000000, 0x3FE18000, /* RCPR_Y[53]       =  5.4687500000e-01 */
    0xAD9D9000, 0x3FE35028, /* LN_RCPR_Y_HI[53] =  6.0353502187e-01 */
    0x1AB60655, 0xBD3BD1F0, /* LN_RCPR_Y_LO[53] = -9.8836743062e-14 */
    0x00000000, 0x3FE15C00, /* RCPR_Y[54]       =  5.4248046875e-01 */
    0xDDE5D000, 0x3FE39240, /* LN_RCPR_Y_HI[54] =  6.1160319652e-01 */
    0x2A914E99, 0xBD26D848, /* LN_RCPR_Y_LO[54] = -4.0580607621e-14 */
    0x00000000, 0x3FE13400, /* RCPR_Y[55]       =  5.3759765625e-01 */
    0x96586000, 0x3FE3DC52, /* LN_RCPR_Y_HI[55] =  6.2064484944e-01 */
    0xC05BC7A1, 0xBD262793, /* LN_RCPR_Y_LO[55] = -3.9354472139e-14 */
    0x00000000, 0x3FE11000, /* RCPR_Y[56]       =  5.3320312500e-01 */
    0xF8472000, 0x3FE41F8F, /* LN_RCPR_Y_HI[56] =  6.2885282985e-01 */
    0x5166B2E1, 0xBD34F784, /* LN_RCPR_Y_LO[56] = -7.4489260136e-14 */
    0x00000000, 0x3FE0EC00, /* RCPR_Y[57]       =  5.2880859375e-01 */
    0xCF40E000, 0x3FE4635B, /* LN_RCPR_Y_HI[57] =  6.3712873916e-01 */
    0x15F69AA9, 0xBD318B95, /* LN_RCPR_Y_LO[57] = -6.2333227002e-14 */
    0x00000000, 0x3FE0C800, /* RCPR_Y[58]       =  5.2441406250e-01 */
    0x7BF1F800, 0x3FE4A7B8, /* LN_RCPR_Y_HI[58] =  6.4547371109e-01 */
    0x4EB6653D, 0x3D34123A, /* LN_RCPR_Y_LO[58] =  7.1307234611e-14 */
    0x00000000, 0x3FE0A800, /* RCPR_Y[59]       =  5.2050781250e-01 */
    0x32C56000, 0x3FE4E4F8, /* LN_RCPR_Y_HI[59] =  6.5295038143e-01 */
    0xDCAF29D2, 0x3D1BADBD, /* LN_RCPR_Y_LO[59] =  2.4583604765e-14 */
    0x00000000, 0x3FE08400, /* RCPR_Y[60]       =  5.1611328125e-01 */
    0x269BC800, 0x3FE52A6D, /* LN_RCPR_Y_HI[60] =  6.6142900029e-01 */
    0x2E12EC6D, 0xBD2FFBBB, /* LN_RCPR_Y_LO[60] = -5.6813797915e-14 */
    0x00000000, 0x3FE06400, /* RCPR_Y[61]       =  5.1220703125e-01 */
    0x0194F000, 0x3FE568AA, /* LN_RCPR_Y_HI[61] =  6.6902637776e-01 */
    0x8CAE0304, 0xBD3C89DB, /* LN_RCPR_Y_LO[61] = -1.0138914174e-13 */
    0x00000000, 0x3FE04000, /* RCPR_Y[62]       =  5.0781250000e-01 */
    0x5C364800, 0x3FE5AF40, /* LN_RCPR_Y_HI[62] =  6.7764299402e-01 */
    0xAC10C9FB, 0x3D2DFA63, /* LN_RCPR_Y_LO[62] =  5.3251773437e-14 */
    0x00000000, 0x3FE02000, /* RCPR_Y[63]       =  5.0390625000e-01 */
    0xAA241800, 0x3FE5EE82, /* LN_RCPR_Y_HI[63] =  6.8536504012e-01 */
    0x0CDA46BE, 0x3D220238, /* LN_RCPR_Y_LO[63] =  3.1989820141e-14 */
    0x00000000, 0x3FE00000, /* RCPR_Y[64]       =  5.0000000000e-01 */
    0xFEFA3800, 0x3FE62E42, /* LN_RCPR_Y_HI[64] =  6.9314718056e-01 */
    0x93C76730, 0x3D2EF357, /* LN_RCPR_Y_LO[64] =  5.4979230187e-14 */
    /* Two parts of the ln(2.0) */
    0xFEFA3800, 0x3FE62E42, /* LN2_HI = 6.931471805598903e-01 */
    0x93C76730, 0x3D2EF357, /* LN2_LO = 5.497923018708371e-14 */
    /* Right Shifter to obtain j */
    0x00000040, 0x42D00000, /* RSJ = 2^(46)+1 */
    /* Right Shifter to obtain YHi */
    0x00000000, 0x41400000, /* RSY = 2^(21) */
    /* "Near 1" path (bound for u=1-x) */
    0x00000000, 0x3F840000, /* NEAR0_BOUND */
    /* Scale for denormalized arguments */
    0x00000000, 0x43B00000, /* DENORM_SCALE = 2^60 */
    /* Double precision constants: 0.0, 1.0 */
    0x00000000, 0x00000000,
    0x00000000, 0x3FF00000,
/*
//      Coefficients for (ln(1+u) - u)/u^2 approximation by
//        polynomial p0(u)
*/
    0x00000000, 0xBFE00000, /* A0 = -.500000000000000 */
    0x55555613, 0x3FD55555, /* A1 =  .333333333333344 */
    0x00000262, 0xBFD00000, /* A2 = -.250000000000034 */
    0x97B36C81, 0x3FC99999, /* A3 =  .199999999115651 */
    0x5228B38F, 0xBFC55555, /* A4 = -.166666665188498 */
    0x2481059D, 0x3FC249C0, /* A5 =  .142875688385215 */
    0x05A2836D, 0xBFC000B4  /* A6 = -.125021460296036 */
};

/*
//
//   Implementation of HA (High Accuracy) version of double precision vector
//   natural logarithm function starts here.
//
*/
inline int __ocl_svml_internal_dlog1p_noLUT_cout (double *a0, double *r)
{
    double x, y, u, da, *a = (&da);
    double dbP;
    double dbAbsU;
    double dbN, dbNLn2Hi, dbNLn2Lo;
    double dbRcprY, dbLnRcprYHi, dbLnRcprYLo, dbWHi, dbWLo;
    double dbYHi, dbYLo, dbUHi, dbuLo, dbResHi, dbResLo;
    double dbTmp;
    int iN, j;
    int i;
    int nRet = 0;
    (*a) = (*a0) + 1.0;
    /* Filter out Infs and NaNs */
    if ((((((_iml_dp_union_t *) & a[0])->dwords.hi_dword >> 20) & 0x7FF) != 0x7FF))
    {
        /* Here if argument is finite double precision number */
/*
//          Copy argument into temporary variable x,
//            and initially set iN equal to 0
*/
        x = a[0];
        iN = 0;
        /* Check if x is denormalized number or [+/-]0 */
        if (((((_iml_dp_union_t *) & x)->dwords.hi_dword >> 20) & 0x7FF) == 0)
        {
            /* Here if argument is denormalized or [+/-]0 */
            /* Scale x and properly adjust iN */
            x *= ((__constant double *) __dlog1p_la_CoutTab)[200];
            iN -= 60;
        }
        /* Starting from this point x is finite normalized number */
        if (x > ((__constant double *) __dlog1p_la_CoutTab)[201])
        {
            /* Here if x is positive finite normalized number */
            /* Get absolute value of u=x-1 */
            u = (x - 1.0);
            dbAbsU = u;
            (((_iml_dp_union_t *) & dbAbsU)->dwords.hi_dword =
             (((_iml_dp_union_t *) & dbAbsU)->dwords.hi_dword & 0x7FFFFFFF) | ((_iml_uint32_t) (0) << 31));
            /* Check if a[0] falls into "Near 1" range */
            if (dbAbsU > ((__constant double *) __dlog1p_la_CoutTab)[199])
            {
                /* 6) "Main" path */
                /* a) Range reduction */
                /* Get N taking into account denormalized arguments */
                iN += ((((_iml_dp_union_t *) & x)->dwords.hi_dword >> 20) & 0x7FF) - 0x3FF;
                dbN = (double) iN;
/*
//                  Compute N*Ln2Hi and N*Ln2Lo. Notice that N*Ln2Hi
//                    is error-free for any N
*/
                dbNLn2Hi = (dbN * ((__constant double *) __dlog1p_la_CoutTab)[195]);
                dbNLn2Lo = (dbN * ((__constant double *) __dlog1p_la_CoutTab)[196]);
                /* Get y */
                y = x;
                (((_iml_dp_union_t *) & y)->dwords.hi_dword =
                 (((_iml_dp_union_t *) & y)->dwords.hi_dword & 0x800FFFFF) | (((_iml_uint32_t) (0x3FF) & 0x7FF) << 20));
                /* Obtain j */
                dbTmp = (y + ((__constant double *) __dlog1p_la_CoutTab)[197]);
                j = (((_iml_dp_union_t *) & dbTmp)->dwords.lo_dword) & ((1 << (6 + 1)) - 1);
                /* Get table values of RcprY, LnRcprYHi, LnRcprYLo */
                dbRcprY = ((__constant double *) __dlog1p_la_CoutTab)[3 * (j)];
                dbLnRcprYHi = ((__constant double *) __dlog1p_la_CoutTab)[3 * (j) + 1];
                dbLnRcprYLo = ((__constant double *) __dlog1p_la_CoutTab)[3 * (j) + 2];
                /* Calculate WHi and WLo */
                dbWHi = (dbNLn2Hi + dbLnRcprYHi);
                dbWLo = (dbNLn2Lo + dbLnRcprYLo);
                /* Get YHi and YLo */
                dbTmp = (y + ((__constant double *) __dlog1p_la_CoutTab)[198]);
                dbYHi = (dbTmp - ((__constant double *) __dlog1p_la_CoutTab)[198]);
                dbYLo = (y - dbYHi);
                /* Get UHi, uLo and U */
                dbUHi = ((dbRcprY * dbYHi) - 1.0);
                dbuLo = (dbRcprY * dbYLo);
                u = (dbUHi + dbuLo);
                /* b) Approximation */
                dbP =
                    (((((((__constant double *) __dlog1p_la_CoutTab)[209] * u + ((__constant double *) __dlog1p_la_CoutTab)[208]) * u +
                        ((__constant double *) __dlog1p_la_CoutTab)[207]) * u + ((__constant double *) __dlog1p_la_CoutTab)[206]) * u +
                      ((__constant double *) __dlog1p_la_CoutTab)[205]) * u + ((__constant double *) __dlog1p_la_CoutTab)[204]) * u +
                    ((__constant double *) __dlog1p_la_CoutTab)[203];
                dbP = (dbP * u * u);
                /* c) Reconstruction */
                dbResHi = (dbWHi + dbUHi);
                dbResLo = ((dbWLo + dbuLo) + dbP);
                r[0] = (dbResHi + dbResLo);
            }
            else
            {
                /* 5) "Near 1" path (|u|<=NEAR0_BOUND) */
                dbP =
                    (((((((__constant double *) __dlog1p_la_CoutTab)[209] * u + ((__constant double *) __dlog1p_la_CoutTab)[208]) * u +
                        ((__constant double *) __dlog1p_la_CoutTab)[207]) * u + ((__constant double *) __dlog1p_la_CoutTab)[206]) * u +
                      ((__constant double *) __dlog1p_la_CoutTab)[205]) * u + ((__constant double *) __dlog1p_la_CoutTab)[204]) * u +
                    ((__constant double *) __dlog1p_la_CoutTab)[203];
                dbP = (dbP * u * u);
                dbP = (dbP + u);
                r[0] = dbP;
            }
        }
        else
        {
            /* Path 3) or 4). Here if argument is negative number or +/-0 */
            if (x == ((__constant double *) __dlog1p_la_CoutTab)[201])
            {
                /* Path 3). Here if argument is +/-0 */
                r[0] = -((__constant double *) __dlog1p_la_CoutTab)[202] / ((__constant double *) __dlog1p_la_CoutTab)[201];
                nRet = 2;
            }
            else
            {
                /* Path 4). Here if argument is negative number */
                r[0] = ((__constant double *) __dlog1p_la_CoutTab)[201] / ((__constant double *) __dlog1p_la_CoutTab)[201];
                nRet = 1;
            }
        }
    }
    else
    {
        /* Path 1) or 2). Here if argument is NaN or +/-Infinity */
        if (((((_iml_dp_union_t *) & a[0])->dwords.hi_dword >> 31) == 1)
            && (((((_iml_dp_union_t *) & a[0])->dwords.hi_dword & 0x000FFFFF) == 0) && ((((_iml_dp_union_t *) & a[0])->dwords.lo_dword) == 0)))
        {
            /* Path 2). Here if argument is -Infinity */
            r[0] = ((__constant double *) __dlog1p_la_CoutTab)[201] / ((__constant double *) __dlog1p_la_CoutTab)[201];
            nRet = 1;
        }
        else
        {
            /* Path 1). Here if argument is NaN or +Infinity */
            r[0] = a[0] * a[0];
        }
    }
    return nRet;
}

double __ocl_svml_log1p_noLUT (double a)
{
    unsigned int vm;
    double va1;
    double vr1;
    double r;
    va1 = a;;
    {
        double OneEighth;
        double t;
        unsigned long ExpMask;
        unsigned long ExpInv;
        unsigned long lt;
        unsigned long te;
        unsigned long ls;
        double s;
        double OneHalf;
        double tt;
        unsigned long ltt;
        double ss;
        double Eight;
        unsigned long ConvExp;
        double ConvConst;
        double sss;
        double k;
        double One;
        double q;
        double r;
        double Shifter;
        double ThreeQuarters;
        double sm;
        double mm;
        double m;
        double b;
        double nz;
        double z;
        double w;
        double ww;
        double v;
        double dg;
        double du;
        double cdg;
        double cdu;
        double dd;
        double pg;
        double pu;
        double pgg;
        double pug;
        double pgu;
        double puu;
        double cpgg;
        double cpug;
        double cpgu;
        double cpuu;
        double pp;
        double a;
        double mpzhi;
        double mpzlo;
        double LogTwoHi;
        double LogTwoLo;
        double lkhi;
        double lklo;
        double tts;
        double yhi;
        double tlo;
        double ttlo;
        double tttlo;
        double ttttlo;
        double ylo;
        double y;
        double MinArg;
        double MaxArg;
        double MaskArg;
        unsigned long MaskArgTmp;
        double MaskMin;
        double MaskMax;
// Compute t  = round(0.125 * x + 0.125) ~= 1/8 * (x + 1.0)
        OneEighth = as_double (__internal_dlog1p_la_noLUT_data.OneEighth);
        t = (OneEighth * va1);
        t = (t + OneEighth);
// We have 2^-56 <= t < 2^1021
//
// Compute exponent E of t
//
// Compute s = 2^-E
//
// We have s an integer power of two such that
//
// 2^-1023 <= s <= 2^53
//
        ExpMask = (__internal_dlog1p_la_noLUT_data.ExpMask);
        ExpInv = (__internal_dlog1p_la_noLUT_data.ExpInv);
        lt = as_ulong (t);
        te = (lt & ExpMask);
        ls = (ExpInv - te);
        s = as_double (ls);
// Compute tt = round(s * t + 0.5)
//
        OneHalf = as_double (__internal_dlog1p_la_noLUT_data.OneHalf);
        tt = (s * t);
        tt = (tt + OneHalf);
// Rescale s to make it become s = 2^-E * 0.125
        s = (s * OneEighth);
// We have 1.5 <= tt <= 2.5
//
// Compute exponent F of tt
//
// We have F \in { 0, 1 }
//
// Compute ss = s * 2^-F
//
        ltt = as_ulong (tt);
        te = (ltt & ExpMask);
        ls = (ExpInv - te);
        ss = as_double (ls);
        ss = (ss * s);
// We have ss an integer power of two such that
//
// 2^-1024 <= ss <= 2^53
//
// We compute k = -log2(ss)  where k is a FP number
//
// We have k an integer such that 53 <= k <= 1024.
//
        Eight = as_double (__internal_dlog1p_la_noLUT_data.Eight);
        ConvExp = (__internal_dlog1p_la_noLUT_data.ConvExp);
        ConvConst = as_double (__internal_dlog1p_la_noLUT_data.ConvConst);
        sss = (ss * Eight);
        ls = as_ulong (sss);
        ls = ((unsigned long) (ls) >> (20));
        ls = (ls | ConvExp);
        sss = as_double (ls);
        k = (ConvConst - sss);
// Now we compute
//
// r = round(ss * x - round(1 - ss))
//
// That quantity is often exact.
//
        One = as_double (__internal_dlog1p_la_noLUT_data.One);
        q = (One - ss);
        r = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (ss, va1, -(q));
// We have -0.25 <= r <= 0.5
//
// We compute
//
// sm = round((2^49 + 2^48) + r)
// mm = round(sm - (2^49 + 2^48))
// m  = round(mm * 0.75)
//
// It is pretty easy to show that
//
// m is "close" to 3/4 * nearestint(8.0 * r) * 0.125
//
        Shifter = as_double (__internal_dlog1p_la_noLUT_data.Shifter);
        ThreeQuarters = as_double (__internal_dlog1p_la_noLUT_data.ThreeQuarters);
        sm = (Shifter + r);
        mm = (sm - Shifter);
        m = (mm * ThreeQuarters);
// Compute
//
// b = m - r
// z = -round(r * m + b)
//
        b = (m - r);
        nz = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (r, m, b);
        z = (-(nz));
// We will need m + z = r * (1 - m) later.
//
// We compute it as mpzhi + mpzlo
//
// The subtraction 1 - m is exact (only a couple of
// cases to test).
//
        a = (One - m);
        mpzhi = (r * a);
        mpzlo = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (r, a, -(mpzhi));
// It can be shown that -114/1000 <= z <= 78/1000
//
// We have (in the absence of rounding errors)
//
// log(1 + x) = k * log(2) + (-log(1 - m)) + log(1 + z)
//
// We replace -log(1 - m) by a polynomial that
// needs to be accurate only at the couple of points m
// that are possible.
//
// We replace log(1 + z) by another polynomial.
//
// We will be running the two polynomial evaluations in
// parallel.
//
// We start by computing w = z^2 and v = m^2 in native precision
//
        w = (nz * nz);
        ww = (w * w);
        v = (m * m);
// Polynomial evaluation of d(m) = m + v * dd(m)
//
        du = as_double (__internal_dlog1p_la_noLUT_data.CoeffD7);
        dg = as_double (__internal_dlog1p_la_noLUT_data.CoeffD6);
        cdu = as_double (__internal_dlog1p_la_noLUT_data.CoeffD5);
        cdg = as_double (__internal_dlog1p_la_noLUT_data.CoeffD4);
        du = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (v, du, cdu);
        dg = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (v, dg, cdg);
        cdu = as_double (__internal_dlog1p_la_noLUT_data.CoeffD3);
        cdg = as_double (__internal_dlog1p_la_noLUT_data.CoeffD2);
        du = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (v, du, cdu);
        dg = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (v, dg, cdg);
        dd = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (m, du, dg);
// Polynomial evaluation of p(z) = z + w * pp(z)
//
        pgg = as_double (__internal_dlog1p_la_noLUT_data.CoeffP12);
        puu = as_double (__internal_dlog1p_la_noLUT_data.CoeffP11);
        pug = as_double (__internal_dlog1p_la_noLUT_data.CoeffP10);
        pgu = as_double (__internal_dlog1p_la_noLUT_data.CoeffP9);
        cpgg = as_double (__internal_dlog1p_la_noLUT_data.CoeffP8);
        cpuu = as_double (__internal_dlog1p_la_noLUT_data.CoeffP7);
        cpug = as_double (__internal_dlog1p_la_noLUT_data.CoeffP6);
        cpgu = as_double (__internal_dlog1p_la_noLUT_data.CoeffP5);
        pgg = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (ww, pgg, cpgg);
        puu = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (ww, puu, cpuu);
        pug = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (ww, pug, cpug);
        pgu = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (ww, pgu, cpgu);
        cpgg = as_double (__internal_dlog1p_la_noLUT_data.CoeffP4);
        cpuu = as_double (__internal_dlog1p_la_noLUT_data.CoeffP3);
        cpug = as_double (__internal_dlog1p_la_noLUT_data.CoeffP2);
        pgg = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (ww, pgg, cpgg);
        puu = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (ww, puu, cpuu);
        pug = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (ww, pug, cpug);
        pg = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (w, pgg, pug);
        pu = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (w, pgu, puu);
        pp = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (z, pu, pg);
// Multiplication of LogTwoHi + LogTwoLo with k
//
// k holds on 12 bits. The two constants have trailing
// zeros. Elementwise multiplication is exact
//
        LogTwoHi = as_double (__internal_dlog1p_la_noLUT_data.LogTwoHi);
        LogTwoLo = as_double (__internal_dlog1p_la_noLUT_data.LogTwoLo);
        lkhi = (k * LogTwoHi);
        lklo = (k * LogTwoLo);
// Here we have to do the final summation
//
// log(1 + x) ~= lkhi + lklo + m + dd + z + pp
//             = (lkhi + mpzhi) + (mpzlo + lklo + dd + pp)
//
        yhi = (lkhi + mpzhi);
        tts = (yhi - lkhi);
        tlo = (mpzhi - tts);
// Lower parts
        ttlo = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (pp, w, lklo);
        tttlo = SPIRV_OCL_BUILTIN (fma, _f64_f64_f64,) (dd, v, mpzlo);
        ttttlo = (ttlo + tttlo);
        ylo = (tlo + ttttlo);
// Final summation
        vr1 = (yhi + ylo);
// Compute rangemask for main-path arguments: -1.0 < x < 2^1024
        MinArg = as_double (__internal_dlog1p_la_noLUT_data.MinArg);
        MaxArg = as_double (__internal_dlog1p_la_noLUT_data.MaxArg);
        MaskMin = as_double ((unsigned long) ((va1 < MinArg) ? 0xffffffffffffffff : 0x0));
        MaskMax = as_double ((unsigned long) (((!(va1 <= MaxArg)) ? 0xffffffffffffffff : 0x0)));
        MaskArg = as_double ((as_ulong (MaskMin) | as_ulong (MaskMax)));
        MaskArgTmp = as_ulong (MaskArg);
        vm = 0;
        vm = MaskArgTmp;
    }
    if (__builtin_expect ((vm) != 0, 0))
    {
        double _vapi_arg1[1];
        double _vapi_res1[1];
        ((double *) _vapi_arg1)[0] = va1;
        ((double *) _vapi_res1)[0] = vr1;
        __ocl_svml_internal_dlog1p_noLUT_cout (_vapi_arg1, _vapi_res1);
        vr1 = ((double *) _vapi_res1)[0];
    };
    r = vr1;;
    return r;
}