1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
/*========================== begin_copyright_notice ============================
Copyright (C) 2017-2021 Intel Corporation
SPDX-License-Identifier: MIT
============================= end_copyright_notice ===========================*/
#include "../include/BiF_Definitions.cl"
#include "../../Headers/spirv.h"
GENERATE_SPIRV_OCL_VECTOR_FUNCTIONS_1ARGS( rint, float, float, f32 )
#if defined(cl_khr_fp64)
INLINE double SPIRV_OVERLOADABLE SPIRV_OCL_BUILTIN(rint, _f64, )( double x )
{
double absolute_x;
double rounded_int;
uint exp_;
// abs value
absolute_x = as_double(as_ulong(x) & ~DOUBLE_SIGN_MASK);
// round to nearest int if mantissa contains fractional parts
exp_ = as_ulong(absolute_x) >> DOUBLE_MANTISSA_BITS;
double nearest_int = 0.5 * (double)((exp_ < DOUBLE_MANTISSA_BITS + DOUBLE_BIAS) & 1);
rounded_int = SPIRV_OCL_BUILTIN(trunc, _f64, )(absolute_x + nearest_int);
// get the parity bit; does src has a fraction equal to 0.5?
uint parity = ((ulong)rounded_int) & 0x1;
uint has_a_half = ((rounded_int - absolute_x) == 0.5) & 0x1;
// if so, adjust the previous, truncated round, to the nearest even
rounded_int = rounded_int - 1.0 * (double)(has_a_half & parity);
// reapply the sign
ulong sign = as_ulong(x) & DOUBLE_SIGN_MASK;
rounded_int = as_double(sign | as_ulong(rounded_int));
return rounded_int;
}
GENERATE_SPIRV_OCL_VECTOR_FUNCTIONS_1ARGS( rint, double, double, f64 )
#endif // defined(cl_khr_fp64)
#if defined(cl_khr_fp16)
GENERATE_SPIRV_OCL_VECTOR_FUNCTIONS_1ARGS( rint, half, half, f16 )
#endif // defined(cl_khr_fp16)
|